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Abstract: In deeper layers, ResNet heavily depends on skip connections and Relu. Although skip con-
nections have demonstrated their usefulness in networks, a major issue arises when the dimensions
between layers are not consistent. In such cases, it is necessary to use techniques such as zero-padding
or projection to match the dimensions between layers. These adjustments increase the complexity of
the network architecture, resulting in an increase in parameter number and a rise in computational
costs. Another problem is the vanishing gradient caused by utilizing Relu. In our model, after
making appropriate adjustments to the inception blocks, we replace the deeper layers of ResNet
with modified inception blocks and Relu with our non-monotonic activation function (NMAF). To
reduce parameter number, we use symmetric factorization and 1× 1 convolutions. Utilizing these
two techniques contributed to reducing the parameter number by around 6 M parameters, which has
helped reduce the run time by 30 s/epoch. Unlike Relu, NMAF addresses the deactivation problem
of the non-positive number by activating the negative values and outputting small negative numbers
instead of zero in Relu, which helped in enhancing the convergence speed and increasing the accuracy
by 5%, 15%, and 5% for the non-noisy datasets, and 5%, 6%, 21% for non-noisy datasets.

Keywords: inception; non-monotonic activation function (NMAF); 1 × 1 convolutions; residual
networks; symmetric factorization

1. Introduction

The recent trend to improve the classification accuracy of the neural network is to
increase the number and size of layers [1].

Stacking further layers for learning better neural networks and getting higher classifi-
cation accuracy is a way that always leads to exploding or vanishing gradients. This issue
has been extensively addressed in the literature [2–17].

In [18], Peng et al. proposed a new approach that addresses the difficulties of training
the deep neural network. The authors used the Inception-ResNet network to treat these
difficulties. In this work, the authors proposed to initialize the value into small values to
enhance the stability of the model training.

Min et al. [19] proposed a deep neural network called a network in the network. The
authors suggested adding a nonlinear activation function after each 1× 1 convolution to
reduce the number of parameters and enhance computational efficiency.

Simonyan et al. addressed the impact of convolutional network depth on classification
accuracy [20]. In this work, the authors proposed a new image classification model called
VGG. In this model, 3× 3 convolution filters are used to assess networks with increasing
depth. The authors in this work have achieved considerable enhancements in classification
ConvNet training [21]. The top-1 and top-5 errors are used to evaluate the classification
performance.

Inspired by the shorter connections between layers, Huang et al. [22] proposed a novel
deep neural network called a dense convolutional network (DenseNet). In this work, the
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authors used a feed-forward fashion to reduce the number of parameters and speed up
the training process. DenseNets can enhance classification accuracy without significant
performance penalties.

Victor et al. [23] proposed using pre-trained models such as ResNet-50 and VGG-19
to minimize the computing time and reduce the training data. In this study, the authors
conducted a comparison between pre-trained models and the ones that are trained from
scratch. Dropout regularization and data augmentation are used to reduce overfitting.

In [24], Cheng et al. proposed using a modular group attention block to extract the
feature dependencies from medical images. In this approach, a new ResNet variant called
ResGANet is created by accumulating the group attention blocks in the ResNet style.
Experimental results demonstrated that ResGANet could reduce the number of parameters
and improve medical image classification accuracy.

Sarwinda et al. [25] proposed applying the ResNet model to detect colorectal cancer.
In this approach, ResNet-18 and ResNet-50 are trained on colon gland images to classify
colorectal cancer into malignant and benign. Three dataset distribution models are built and
used to evaluate the performance of the proposed model in terms of sensitivity, specificity
values, and accuracy.

In [26],the dataset of interest is used to learn the model architecture. To reduce the
cost of searching for the architectural building block, the authors proposed to search for the
architectural building block in the small dataset, then transfer the block into a larger dataset.
In this approach, a new search space called NASNet is adopted to make the transfer process
as smooth as possible.

Zoph and Le [27] created neural network descriptions based on recurrent networks.
In this work, a recurrent neural network is built and used to search in variable-length
architecture space. For enhancing classification accuracy on a validation set, reinforcement
learning is used to train the recurrent network.

Szegedy et al. [28–30] designed a deep convolutional neural network based on the
1× 1 convolutions. The authors argued that applying 1× 1 convolutions helps to reduce
the computation time and the number of parameters, which allows for increasing the width
and depth of the network without any severe performance penalty.

Clevert et al. [31] proposed a new activation function called exponential linear unit
(ELU) to speed up the learning process of deep neural networks. Applying ELU helped
to enhance learning characteristics and improve classification accuracy. In this aspect, the
negative values in ELU were used to minimize the variation of the forward propagation
and accelerate the learning process.

Chen et al. [32] proposed using a convolutional neural network to classify the hy-
perspectral image. In this work, the authors used a combination of max pooling and
convolutional layers to extract deep features. To relieve the overfitting problem, L2 regular-
ization for the spectral convolutional neural network is adopted.

Mou et al. [33] proposed analyzing hyperspectral pixels to sequential data and using
network reasoning to identify information categories. In this approach, a new activation
function called parametric rectified tanh is created and used to analyze hyperspectral
sequential data.

Nindam et al. [34] designed a new deep neural network architecture for classifying
jasmine rice seed germination. In this architecture, the dataset of rice seed germination is
collected and classified into three different classes: poor, good, and excellent germination.

Bensaoud and Kalita [35] proposed a new multitask learning framework to classify
malware images. In this framework, malware features are extracted and used to create
Portable Network Graphic (PNG) and bitmap images. Experimental results showed that
the proposed model could detect a variety of obfuscation methods, such as encryption,
instruction overlapping, and packing.

Based on the idea of replacing Inception modules with depthwise separable convolu-
tions, a new deep convolutional network is proposed in [36]. Experimental results showed
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that the classification accuracy achieved by the new convolutional network is slightly
higher than by Inception modules.

Zhong et al. [37] addressed the degradation problem of hyperspectral image classifica-
tion accuracy in the deeper layers. To alleviate the influence of the classification accuracy
degradation problem, the authors proposed adding identity mappings to the convolutional
neural networks.

Based on the streamlined architecture, Howard et al. [38] proposed a new classi-
fication model used to generate lightweight deep neural networks. In this model, two
global hyperparameters are created and utilized to achieve a trade-off between accuracy
and latency.

In [39], the authors proposed a novel histopathology image recognition system to
minimize the error rate and speed up breast cancer diagnosis. This work uses GoogLeNet
to create a hybrid convolutional neural network, while hierarchy voting tactics and bagging
techniques are adopted to improve classification performance.

Ghassemi et al. [40] addressed the difficulties that often tumor classification in MR
images faces. In this work, the authors proposed a new deep-learning method. In this
proposed method, the deep neural network is trained on different datasets of MR images,
then used the trained network as a classifier to classify three tumor classes.

Xie et al. [41] proposed repeating building blocks to construct a new image classi-
fication modularized network called ResNeXt. The proposed network is multi-branch
and homogeneous, in addition to containing three dimensions: depth, width, and cardi-
nality. COCO detection set and ImageNet-5K are used to evaluate the performance of
ResNeXt. Experimental results showed that ResNeXt achieved better classification accuracy
than ResNet.

Ershad and Ramakrishnan [42] proposed a new two-stage approach for cervical cancer
diagnosis in pap smear images. In this approach, the texture information of the cytoplasm
and nucleolus is extracted. In this aspect, the author used a suitable threshold to segment
the pap smear image, then classified the pap smear images with the optimized multi-layer
feed-forward neural network. In this work, a genetic algorithm is used to optimize the
classification accuracy of the proposed model. On the other hand, the cross-over process
and innovative chromosomes are used to manage the parameters.

Attallah [43] proposed a new computer-aided diagnostic (CAD) model. In this model,
the author proposed to extract features from multiple domains instead of only one domain.
In this aspect, the author proposed to examine the effect of each set of handcrafted attributes
on diagnostic accuracy, then used the principal component analysis to combine the whole
deep learning features. Compared to other models, this model is less complex and more
effective in retrieving several textural descriptors from different domains. However, this
model can only be used for classifying pap smear images.

The ResNet model has been widely used in the literature. In the deeper layer of the
ResNet model [2], the authors used Relu and shortcut connections to make connections
between different layers to solve the exploding gradients problem [44]. However, when
the dimensionalities between layers are different, projection shortcuts should be used for
matching the dimensions, which inevitably leads over time to increasing the architecture
complexity, maximizing the number of parameters, increasing the computational cost, and
decreasing the classification accuracy, especially in the deeper branches of the network. A
large number of parameters can increase the likelihood of the network being exposed to
overfitting, especially when the sample size of the training set is relatively limited. On the
other hand, utilizing Relu causes the vanishing gradient problem. In this case, the network
will be unable to perform backpropagation, which hampers learning and convergence, and
ultimately results in more accuracy degradation.

Main Contributions

The main contributions of the proposed model can be summarized as follows:
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1. The major problem of the Relu activation function is the deactivation of the non-
positive numbers. The deactivation problem causes vanishing gradients, slower
convergence, and degrading classification accuracy. Our proposed non-monotonic
activation function (NMAF) succeeded in solving the deactivation of the non-positive
numbers by activating the negative values and outputting small negative numbers
instead of zero in Relu, which helped in enhancing the convergence speed and increas-
ing the classification accuracy by 5%, 15%, and 5% for the non-noisy datasets, and 5%,
6%, and 21% for the noisy datasets.

2. To reduce the number of weights (parameters) and avoid stacking the outputs resulting
from aggregating the values from layer to layer in our neural network, we created two
effective techniques, 1× 1 convolutions and symmetric factorization. Utilizing these
two techniques contributed to reducing the parameter number by around 6 million
parameters compared with ResNet50, which has helped reduce the run time of our
network by 30 s per epoch.

3. After taking the essential information of the input image and the decrease in the
complexity of the network into consideration, a balanced combination of residual
network and inception blocks has been created and used to achieve an incredible
classification accuracy of 90.20%, 78.20%, and 92.00% for non-noisy datasets, and
88.37%, 84.66%, and 75.00% for the noisy datasets.

4. To smartly manage underfitting and overfitting problems, appropriate parameters γ
and α are created and used to control the slope of NMAF for negative and positive
input values, respectively.

2. Proposed Neural Network

As mentioned above, in the ResNet model, the greater the depth of the network, the
lower the classification accuracy, and the greater the training time and the number of
parameters [15]. For that reason, in our proposed model, we avoid utilizing the deeper
layers of the residual network. In our proposed model, instead of utilizing the deeper layers
(deeper branches) of the ResNet, we have modified and used the inception blocks. On the
other hand, we replaced the conventional Relu activation function with our proposed non-
monotonic activation function (NMAF). In this aspect, the vanishing gradient problem has
been addressed carefully in our non-monotonic activation function (NMAF). To smoothly
avoid this problem, we proposed activating the negative values and outputting small
negative numbers instead of zero in Relu. Thanks to adopting NMAF, our proposed model
became able to expedite learning in the deeper layers during the training process, resulting
in better classification accuracy, consuming less time, and utilizing fewer parameters.

Although our proposed method adopts the inception technique proposed in [28], our
proposed model differs from [28] in many aspects. Firstly, in our proposed model, we adopt
our proposed non-monotonic activation function (NMAF) instead of Relu. Secondly, the
number of inception and reduction blocks is relatively different from that in [28]. Thirdly,
the number of filters in each block and the sizes of each filter differ from [28]. Fourthly, in
the classification layer, we apply an average pooling filter instead of global average pooling.
Based on our experiments, we found that utilizing global average pooling significantly
degrades classification accuracy. Fifthly, unlike [28], we did not find applying dropout
essential in our network. Sixthly, in our neural network, we avoided adding an auxiliary
classifier. We found that adding the auxiliary classifier causes instability during training,
thus can decrease the classification accuracy as the number of classes increases.

In our neural network, we apply various filters with different sizes (1× 1, 3× 3, 5× 5,
and 7× 7), which aligns with the fact that each image contains objects with different scales.
Therefore, these objects must be processed through diverse sizes of filters [28].

In this work, we focus on increasing classification accuracy and reducing the training
time and the number of parameters. To reach this goal, we proposed applying the adjusted
residual layers to the shallower layers of our proposed network to capture more informa-
tion from varying scales of the input images. In contrast, the modified inception blocks
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have been created and utilized in our deeper layers to avoid complexity and gain better
classification accuracy with fewer parameters.

Our neural network uses 1× 1 convolutions to reduce the dimension and the pro-
posed on-monotonic activation function to activate the negative values and output small
negative numbers. Adopting 1× 1 convolutions followed by the proposed non-monotonic
activation function (NMAF) allows not only to increase the number of blocks but also to
maximize the size of each block without leading to any computational difficulties during
the training process.

For memory efficiency reasons, in our neural network architecture (Figures 1, 2 and A1–A3),
the filters with larger sizes are applied after 1× 1 convolutions, while average-pooling and
max-pooling are applied before 1× 1 convolutions. This effective architecture enables us to
avoid the output stacking problems generated by accumulating the values from layer to
layer, thus preventing exploding gradients in the last layers of the network.

Preceding layer

1x1 Convolutional1x1 Convolutional 1x1 Convolutional 3x3 Average pooling

1x7 Convolutional

7x1 Convolutional

7x1 Convolutional

1x7 Convolutional

1x1 Convolutional

Filter concatenation

7x1 Convolutional

1x7 Convolutional

Figure 1. Block diagram of Inception II.
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Preceding layer

1x1 Convolutional1x1 Convolutional 3x3 Max pooling, s=2

1x7 Convolutional

7x1 Convolutional

3x3 Convolutional, s=2

Filter concatenation

3x3 Convolutional, s=2

Figure 2. Block diagram of Reduction II.

2.1. Inception and Reduction

In our network architecture, we modify and use the inception blocks to reduce the
number of parameters, which results in less runtime and better accuracy.

Applying the inception modules in our model differs from [28] in six aspects:
1. Replacing the Relu activation function with the proposed non-monotonic activation

function (NMAF).
2. The number of inception and reduction blocks differs from that in [28].
3. The number of filters and the size of each filter are different.
4. In the classification layer, the global average pooling filter is replaced with the average

pooling filter.
5. Avoid utilizing dropout in our model.
6. Avert applying the auxiliary classifier.

As shown in Figures 1 and 2, we utilize the symmetric factorization method to reduce
the number of parameters in Inception block II and Reduction block II. In this method, first,
we factorize the filter 7 × 7 into symmetric filters of sizes 1 × 7 and 7 × 1, then replace
them with a series of 3 × 3 convolution filters. In this process, we reduce the number of
parameters by 29%. Whereas, in Inception block III (Figure A2), we factorize the filter size
of 3 × 3 into symmetric filters of sizes 1 × 3 and 3 × 1, which means that the number of
parameters is reduced by 33%. In reduction block I (Figure A3), we first reduce the number
of parameters by applying 1 × 1 convolution, then factorize the filter 5 × 5 that is received
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from Inception block I by 3 × 3 and 3 × 3 filters, which helps in reducing the number of
parameters by 36%.

To calculate the number of parameters in each layer, let us suppose w is the shape
of the filter’s width, h is the shape of the filter’s height, m is the number of filters in the
previous layer, n is the number of filters in the current layer, and b is the bias, then the
number of the parameters in the current layer can be calculated as follows:

parameters_number = (w ∗ h ∗m + b) ∗ n

2.2. Proposed Network Architecture

As shown in Figure 3, the architecture of our proposed network can be described
as follows:

1. We start with the 3 × 3 zero padding to control the shrinkage of the input
image dimensions.

2. We apply a convolution layer with 64 filters of size 7 × 7, batch normalization, and
proposed non-monotonic activation function (NMAF).

3 Apply (3, 3) max pooling with a stride of (2, 2) to halve the parameters and computations.
4. Adopt three residual blocks (config: convolution layers with 64, 64, and 256 filters of

sizes 1 × 1, 3 × 3, and 1× 1, respectively). In these three blocks, each convolution
layer is followed by batch normalization and NMAF.

5. Apply four residual blocks (config: convolution layers with 128, 128, and 256 filters of
sizes 1× 1, 3× 3, and 1× 1, respectively).

6. In this phase, we apply three inception blocks (config: convolution layers, batch
normalization, and our proposed non-monotonic Activation Function (NMAF)), where
Inception block I is repeated three times, while Inception block II and Inception block
III are repeated twice.

7. Two reduction blocks (config: convolution layers, batch normalization, and NMAF)
are applied.

8. In the classification layer, we apply average pooling with a stride of (2, 2).
9. Adopting a fully connected layer with 2048 neurons.
10. Getting the final output layer with 100, 10, and 6 classes.

Input

150x150x3

3x3

Zero padding

7x7

Conv2D

NMAF

BN

3x3

Max pooling

s=2

1x1 Conv 64

+(BN,NMAF)

3x3 Conv 64

+(BN,NMAF)

1x1 Conv 256

+(BN,NMAF)

1x1 Conv 64

+(BN,NMAF)

3x3 Conv 64

+(BN,NMAF)

1x1 Conv 256

+(BN,NMAF)

1x1 Conv 64

+(BN,NMAF)

3x3 Conv 64

+(BN,NMAF)

1x1 Conv 256

+(BN,NMAF)

1x1 Conv 128

+(BN,NMAF)

3x3 Conv 128

+(BN,NMAF)

1x1 Conv 256

+(BN,NMAF)

1x1 Conv 128

+(BN,NMAF)

3x3 Conv 128

+(BN,NMAF)

1x1 Conv 256

+(BN,NMAF)

1x1 Conv 128

+(BN,NMAF)

3x3 Conv 128

+(BN,NMAF)

1x1 Conv 256

+(BN,NMAF)

1x1 Conv 128

+(BN,NMAF)

3x3 Conv 128

+(BN,NMAF)

1x1 Conv 256

+(BN,NMAF)

Inception block I

(Conv,BN,NMAF)

3x

Reduction block I

(Conv,BN,NMAF)

Inception block II

(Conv,BN,NMAF)

2x

Reduction block II

(Conv,BN,NMAF)

Inception block III

(Conv,BN,NMAF)

2x

2x2

Average pooling

Fully connected

2048

Output

6/2/10/100

classes

Figure 3. Block diagram of proposed neural network.

2.3. Proposed Non-Monotonic Activation Function (NMAF)

The activation function has a pivotal influence on the runtime complexity and training
accuracy. For that reason, the activation function represents the cornerstone of neural
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networks. The most common example of activation functions is rectified linear activation
function (Relu), which is extensively used in the literature. In ResNet [2] and Inception [28]
models, the authors used Relu in their networks. In this activation function, all outputs
of negative inputs are arbitrarily forced to zero, which leads to the deactivation of many
neurons during training. The deactivation problem causes damage to the neural network
capability, which results in a vanishing gradient, slower convergence, and more accuracy
degradation [45]. To overcome these problems, we proposed a non-monotonicity activation
function called NMAF. Our proposed activation function (NMAF) addresses the problem
of deactivating the non-positive numbers by activating the negative values and outputting
small negative numbers instead of zero in Relu, thus enhancing the convergence speed. It
is noteworthy that our proposed activation function (NMAF) gains its non-monotonicity
feature from the negative part of its graph.

Experimental results provide solid evidence that NMAF can adapt to various datasets
and achieve a significant improvement in learning both positive and negative values
compared to Relu, which enhances our model’s classification performance. NMAF also has
a better capability in training deeper networks than Relu.

In our proposed non-monotonic activation function (NMAF), γ is used to control
the slope of NMAF for negative input values. In contrast, α is used to manage the slope
of NMAF for positive input values. In this aspect, we conducted our experiments with
the parameter γ in the range 0 < γ < 1. Based on our experiments, we found that
adopting γ with a value greater than one usually leads to an exploding gradient problem.
In contrast, adopting γ with a value of less than zero always results in a vanishing negative
values problem.

Our proposed non-monotonic activation function (NMAF) is visualized in Figure A4.
The equation that represents our proposed non-monotonic activation function (NMAF)

is as follows:

f (x) = x ∗ sin(α) ∗ σ(
2x

γ + 1
) =

x ∗ sin(α)
1 + exp(−2x

γ+1 )
, (1)

where
σ(

2x
γ + 1

) = sigmoid(
2x

γ + 1
) =

1
1 + exp(−2x

1+γ )
(2)

The derivative of NMAF can be calculated as follows:

f ′(x) =
sin(α)(1 + exp(−2x

γ+1 )) +
2

γ+1 exp(−2x
γ+1 )(x ∗ sin(α))

(1 + exp(−x))2

= sin(α)[
(1 + exp(−2x

γ+1 )) +
2x

1+γ ∗ exp(−2x
γ+1 )

(1 + exp(−2x
γ+1 ))

2
]

= sin(α)[σ(
2x

γ + 1
) +

2x
γ + 1

(σ(
2x

γ + 1
)− σ(

2x
γ + 1

)
2
)]

=
2

γ + 1
∗ f (x) + sin(α) ∗ σ(

2x
γ + 1

)− 2
γ + 1

∗ f (x) ∗ σ(
2x

γ + 1
)

=
2

γ + 1
∗ f (x) + σ(

2x
γ + 1

)[sin(α)− 2
γ + 1

∗ f (x)]

3. Experimental Results

In our experiments, network training and weights initialization have been completed
from scratch. In these experiments, we use the extended version of stochastic gradient
descent (Adam optimizer) with a mini-batch size of 64 and a learning rate of 0.001 with a
lower bound of 0.000001, in which the learning rate reduces by a factor of 0.3. In this aspect,
extensive experiments have been conducted on Intel image classification, CIFAR-10, and
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100 Sports image classification datasets to evaluate the performance of our proposed model.
As shown in Table 1, the images in these datasets are classified into 6, 10, and 100 classes,
respectively. In these three datasets, our proposed model is trained on 14,034, 50,000, and
13,572 training images, evaluated on 7301, 5000, and 500 validation images, and tested
on 3000, 5000, and 500 testing images. We use these datasets to provide robust evidence
that our proposed network has a significant ability to improve the classification results,
regardless of the datasets’ features. On the other hand, the comparisons in this section are
conducted to verify the effectiveness of utilizing NMAF and activating the negative inputs
on the classification performance of our proposed model.

From Tables 2–7 and Figures 4–6, we can notice that the classification accuracy of
the six models differs with databases. However, in most cases, our proposed model
consistently offers the highest classification accuracy among all models, which provides
strong evidence that adopting the modified inception technique and NMAF in our model
contributed to making significant enhancements to the classification performance. The
information in Tables 2–7 and Figures 4–6 also provide strong evidence supporting the fact
that our proposed network is not only effective for a particular dataset but is also applicable
to different datasets. From these tables, we can also infer that our proposed algorithm
consistently outperforms the state-of-the-art classification algorithms by a large margin.

From Tables 2 and 3, it is obvious to see that the Xception, VGG16, InceptionV3,
and DenseNet201 models distinctly underperform compared to ResNet50. Contrary to
these four models, our proposed model shows improved performance and achieves high
classification accuracy with a remarkable boost of 1.3% and 4.6% over the ResNet50 model.
On the other hand, as shown in Table 2, our proposed model achieves 1.3%, 13.5%, and
9.2% higher accuracy over the ResNet50, Xception, and DenseNet201 models, respectively.

The runtime of ResNet and our proposed models are detailed in Tables 8–10. These ta-
bles show that the training procedure of the ResNet model is notably more time-consuming
than our proposed model. From Table 9, we can observe that the runtime of the ResNet50
model is longer by about 23 min compared to our proposed model.

To show the extent of the influence of the noise on the classification accuracy of the six
models, we propose to add Gaussian noise to the Intel images classification dataset, CIFAR-
10 dataset, and 100 Sports image classification dataset. As described in Tables 5–7, our
proposed model shows to be adaptable and accomplishes brilliant classification accuracy
with challenging noisy datasets and a large number of classes. On the other hand, the
results in these tables give solid evidence that the classification performance of the proposed
algorithm is not affected deeply by real-world natural influences such as noise. From these
tables, we can observe that our proposed model achieves pleasant classification accuracy of
88.37%, 84.66%, and 75% and outperforms the state-of-the-art models.

As shown in Tables 6 and 7, ResNet50 offers a higher classification accuracy than
Inception V3 and Vgg16 models. Nevertheless, ResNet50 classification accuracy is less
impressive compared with our proposed model.

In Table 5, our proposed model produces impressive classification accuracy of 5%,
15%, and 5% over ResNet50, Xception, and DenseNet201 models, respectively.

Based on Tables 2–4, our proposed model yields classification accuracy of 0.9020,
0.7820, and 0.9200 for Intel images classification, 100 sports image classification, and
CIFAR-10 datasets, respectively. From these results, we deduce that adopting the proposed
non-monotonic activation function (NMAF) enables our network to adapt and change
smoothly in various datasets and significantly enhances classification accuracy. These
tables also report the number of parameters (weights) of six models. The main observation
in these tables is that the numbers of parameters of Xception [36], DenseNet201 [22], and
Vgg16 [20] models are so high compared with ResNet50 [2]. Nevertheless, the number of
parameters of ResNet50 is still higher by a large margin (about 6M weights) compared with
our proposed model. It is noteworthy that increasing the number of weights maximizes
the likelihood of the network being exposed to overfitting, especially when the sample size
of the training set is relatively limited.
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As can be seen in Figure 3, the residual network part of our neural network contains
three 3-layer blocks with 64 and 256 filters and four 3-layer blocks with 128 and 256 filters.
Each convolution layer in these blocks is followed by batch normalization and our proposed
non-monotonic activation function (NMAF), respectively. In contrast, in the inception
network part, we repeat Inception block I three times and two times for Inception blocks II
and III, while both reduction blocks I and II are applied only once.

Training and testing labels visualization of the Intel image classification and CIFAR-10
datasets are depicted in Figures A5 and A6.

The percentage of each class of the Intel image classification dataset is displayed in
Figure A7.

Figures 1, 2 and A1–A3 depict the block diagrams of Inception blocks I-III and Reduc-
tion blocks I and II.

Figure A8 shows 36 random predicted images (from the Intel classification images
dataset) plus their predicted labels produced by applying our proposed model.

Figures 4–6 show the behaviors of six different models. From these figures, we can
discover that our proposed algorithm converges faster than other models. As shown in
Figure 4 (left), from epoch zero to epoch 25, our proposed algorithm sometimes shows
slightly lower accuracy than ResNet50. However, from epoch 25 and above, our proposed al-
gorithm gradually achieves higher classification accuracy and convergence than ResNet50.

Figure 7 depicts 36 noisy random predicted images plus their predicted labels pro-
duced by applying our proposed model. As shown in this figure, most of the images’
features are corrupted by noise, which makes the classification mission quite hard. How-
ever, all images in this figure are correctly classified, except the first image (glacier image)
in the third row is misclassified as a mountain. We believe that the main reason for misclas-
sification is due to the close similarity between the features of mountain and glacier images.

Table 11 shows the validation accuracy of five different models. In this table, our
proposed model achieved the best result among all models.

Table 12 shows the result of our proposed model with the Gaussian linear error unit
(GeLU) activation function, exponential linear unit ELU, and our proposed activation
function (NMAF). From this table, we can see that our proposed model with NMAF
achieved better results with less runtime compared with New-Elu and New-Gelu.

From the above results and discussions, we can say that our experiments demonstrated
that our proposed convolutional neural network performs image classification with better
efficiency than the ResNet classification model. In addition to being less time-consuming, it
also contains fewer parameters.

Based on our experimental results, the CIFAR-10 dataset is more time-consuming than
Intel image classification and 100 sports image classification datasets. For the CIFAR-10
dataset, the most time-consuming epoch is the first epoch. This epoch consumes 166 s.
In contrast, the less time-consuming epoch is epoch number 27, which only consumes
141 s. For the Intel image classification dataset, the first epoch is the most time-consuming,
which consumes 102 s, while the less time-consuming one is epoch number 38, which
only consumes 82 s. In the 100 sports image classification dataset, epoch one is the most
time-consuming epoch, which consumes 100 s, whereas the less time-consuming epoch is
the 12th one, which only consumes 78 s.

For the CIFAR-10 dataset, there are 782 steps for each epoch. In the first epoch,
each step consumes 191 ms, and 180 ms for each step in epoch 27. For the Intel image
classification dataset, there are 220 steps per epoch. In the first epoch, each step takes 388 ms,
and 374 ms for each step in epoch number 38. For the 100 sports image classification dataset,
there are 213 steps per epoch. In the first epoch, each step takes 390 ms, and 365 ms per
step in epoch 12.
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Figure 4. From left to right: the validation accuracy of the trained models on the Intel Image
Classification and CIFAR-10 datasets.
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Figure 5. From left to right: the validation accuracy of the trained models on the 100 Sports Image
Classification dataset and noisy (Gaussian noise) Intel Image Classification dataset.
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Figure 6. From left to right: the validation accuracy of the trained models on the noisy (Gaussian
noise) CIFAR-10 dataset and noisy (Gaussian noise) 100 Sports image classification dataset.
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Figure 7. Noisy random predicted images with their labels predicted by our proposed model.

Table 1. Details of the utilized datasets in six different models.

Datasets Classes No. Training Test Validation

Intel Image 6 14,034 3000 7301
CIFAR-10 10 50,000 5000 5000
100 Sport 100 13,572 500 500

Table 2. Validation accuracy and the number of parameters of Intel images classification dataset
performed with four different classification models.

Model Parameters Validation Accuracy

ResNet50 model 23,636,870 0.8893
Xception model 73,301,550 0.7673

DenseNet201 model 49,790,534 0.8103
New model 17,665,670 0.9020
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Table 3. Validation accuracy and the number of parameters of 100 Sport classification images
performed with four different classification models.

Model Parameters Validation Accuracy

ResNet50 model 24,407,012 0.7360
VGG16 model 65,464,228 0.5731

InceptionV3 model 20,234,180 0.7240
New model 18,435,812 0.7820

Table 4. Validation accuracy and the number of parameters of CIFAR-10 images dataset performed
with four different classification models.

Model Parameters Validation Accuracy

ResNet50 model 23,608,202 0.8848
InceptionV3 model 20,049,770 0.8006

VGG16 model 50,415,434 0.7526
New model 17,637,002 0.9200

Table 5. Validation accuracy and the validation loss of noisy Intel image classification dataset
performed with four different classification models.

Model Validation Loss Validation Accuracy

ResNet50 model 0.5039 0.8343
Xception model 0.7155 0.7343

DenseNet201 model 0.4746 0.8347
New model 0.3144 0.8837

Table 6. Validation accuracy and the validation loss of noisy CIFAR-10 dataset performed with four
different classification models.

Model Validation Loss Validation Accuracy

ResNet50 model 0.5358 0.8294
Inception V3 model 0.9051 0.6852

VGG16 model 1.0064 0.6514
New model 0.4754 0.8466

Table 7. Validation accuracy and the validation loss of noisy 100 Sports Image Classification dataset
performed with four different classification models.

Model Validation Loss Validation Accuracy

ResNet50 model 1.0969 0.7180
Inception V3 model 1.0712 0.7040

VGG16 model 2.2648 0.4000
New model 0.9549 0.7500

Table 8. Computational cost of the ResNet50 model and proposed model for the 100 sports image
classification dataset.

Model Total Time Time/Epoch Time/Tep

New model 3967 s 79 s 368 ms
ResNet50 4012 s 80 s 380 ms
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Table 9. Computational cost of the ResNet50 model and proposed model for the Intel image classifi-
cation dataset.

Model Total Time Time/Epoch Time/Tep

New model 4210 s 84 s 380 ms
ResNet50 5563 s 113 s 500 ms

Table 10. Computational cost of the ResNet50 model and proposed model for the CIFAR-10 dataset.

Model Total Time Time/Epoch Time/Tep

New model 7239 s 145 s 185 ms
ResNet50 7594 s 152 s 195 ms

Table 11. Validation accuracy of CIFAR-10 dataset performed with five different classification models.

Model [45] [46] [47] [48] New

Val_accuracy 89.28% 91.10% 71.66% 87.57% 92.00%

Table 12. Validation accuracy and run time of Intel images classification dataset performed with our
proposed model with ELU, GELU, and our NMAF activation functions.

Model Time/Epoch Validation Acccuracy

New-ELU 99 s 0.9012
New-GELU 108 s 0.8957
New-NMAF 84 s 0.9020

4. Conclusions

In this paper, accuracy degradation, time complexity, and increasing the used weights
(parameters) during the training process have been addressed carefully. By replacing the
deeper branches of the residual networks with the adjusted inception blocks and the Relu
activation function with our proposed non-monotonic activation function (NMAF), our
proposed model managed to decrease the number of training parameters, improve training
stability, save more time, and gain better classification accuracy. Utilizing fewer parameters
reduces the likelihood of the network being exposed to overfitting and improves the rate of
convergence. In our proposed non-monotonic activation function (NMAF), the negative
part gives the NMAF non-monotonicity property, activates the negative values, and outputs
small negative numbers instead of zero in Relu. In this case, the network continues to
process the negative inputs, and we use γ to control the saturation degree of the negative
inputs. To decrease the number of weights and prevent exploding gradients, symmetric
factorization, and 1× 1 convolutions are created and utilized to avoid stacking the outputs
resulting from aggregating the values from layer to layer. Based on experimental results,
our proposed algorithm shows a significant ability to adapt and change over different
datasets and achieve impressive enhancements in classifying clean and noisy datasets.
To evaluate the performance of our proposed model on the noisy datasets, we propose
adding an additive Gaussian noise to Intel image classification, CIFAR, and 100 Sports
Image Classification datasets. Our proposed model achieves state-of-the-art results, with
classification accuracies of 88.37%, 84.66%, and 75.00%. Moreover, our proposed model
produces remarkable results with accuracies of 90.20%, 78.20%, and 92.00% for the same
non-noisy datasets. When classifying the noisy datasets, our proposed model performs
impressively, achieving classification accuracy of 5%, 15%, and 5% over other models, while
achieving accuracies of 21%, 6%, and 5% for the non-noisy datasets. In addition to the
accuracy gains, our proposed model has successfully reduced the number of parameters
by 6 million compared to the ResNet50 model. We believe that our proposed method is
inclusive and generalizable to other types of classification. In future work, we will address
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how to overcome the slow convergence in the starting epochs and manage the dependency
on batch normalization. To achieve better classification accuracy, we will consider taking
the learnable parameter (γ) into account.
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Appendix A

Preceding layer

1x1 Convolutional1x1 Convolutional 3x3 Average pooling

3x3 Convolutional

3x3 Convolutional

Filter concatenation
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5x5 Convolutional1x1 Convolutional

Figure A1. Block diagram of Inception I.
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Preceding layer

1x1 Convolutional1x1 Convolutional 1x1 Convolutional 3x3 Average pooling

1x3 Convolutional

3x1 Convolutional

3x3 Convolutional

1x3 Convolutional

1x1 Convolutional

Filter concatenation

3x1 Convolutional

Figure A2. Block diagram of Inception III.

Preceding layer

3x3 Convolutional, s=21x1 Convolutional 3x3 Max pooling, s=2

3x3 Convolutional, s=2

3x3 Convolutional, s=1

Filter concatenation

Figure A3. Block diagram of Reduction I.



Sensors 2023, 23, 2976 17 of 20

Figure A4. Graph of the proposed non-monotonic activation function (NMAF).

Figure A5. Training and testing labels visualization of Intel image classification dataset.

Figure A6. Training and testing labels (airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
truck) visualization of CIFAR-10 dataset.
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Figure A7. Percentage of each class of Intel image classification dataset.

Figure A8. Random predicted images with their labels predicted by our proposed model.
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