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Abstract

In this article, a novel image de-noising method is proposed. This method is based on spherical coordinates

system. First, spherical transform is re-defined in wavelet domain, and the properties of the spherical transform in

wavelet domain are listed. Then, a new adaptive threshold in spherical coordinate system is presented. It has been

proved based on Besov space norm theory. After that, a novel curve shrinkage function is proposed to overcome

the limitation of the traditional shrinkage functions. The new function can reach and exceed the true value and

enhance the edge of the image. Finally, the multi-scale product in wavelet domain is introduced to spherical

coordinates system. This article names the multi-scale product in spherical coordinates system as Multi-Scale Norm

Product. The experimental results compared the improved algorithm with other methods from the peak signal-to-

noise ratio, mean square error, and running time. The results indicate that improved algorithm is simple and

effective.
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1. Introduction
Noise produced in image acquisition and transmission

will cause image quality decline. Therefore, image de-

noising is an important problem in the field of image

processing [1-4]. The goal of image de-noising is to

recover the original image from such a noisy copy. The

traditional de-noising methods cause details blurring of

the reconstructed image. Discrete wavelet transform

(DWT) provides a fast, local, sparse, and decorrelates

multi-resolution analysis of signals. It can reconstruct

high-quality images [5]. In recent years, wavelet shrink-

age algorithm for image de-noising has widely been

used in different fields [6-8].

The threshold and shrinkage function are the key fac-

tors in image de-noising. They will determine the effec-

tiveness of image de-noising. Donoho [9,10] presented a

method named wavelet shrinkage and showed its

obvious efficiency on signal de-noising. They proved

that wavelet shrinkage was nearly optimal over a wide

rage of function classes and error criterions. They also

provided an estimated function with smoothness not

less than the original. With these advantages, the

method began to be widely applied. However, the uni-

versal threshold T = σ
√

2 ln (N ∗ M) tended to set all

the coefficients of image details to zero, especially when

N approaches infinite. At the mean while, the standard

deviation of noise must be pre-estimated. Bias existed

between estimated value and real value will reduce the

effect of image de-noising. DeVore [11] and Feng et al.

[12] believe the image space belongs to Besov space. In

1998, Chambolle et al. [13] proposed a threshold in

Besov space.

The classic shrinkage functions are the hard and soft

threshold functions [9,10]. Many researchers have pro-

posed improved methods to optimize the classic algo-

rithm. Khare et al. [14] proposed a multi-scale adaptive

soft-threshold function and achieved a good de-noising

effect. However, in this method, the wavelet coefficients

were processed directly. It will cause distortion of the

reconstructed image. Wang [15] introduced a hyperbolic

shrinkage function. This function avoided processing the

wavelet coefficients directly. However, the hyperbolic

function could not achieve the true value of the coeffi-

cients and cause edge blurring. Li et al. [16] presented

an improved soft-threshold function. This function is

more flexible than the classic soft and hard thresholds.
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However, the starting point of this function is origin.

There will be some noise information mistakenly pro-

cessed as signal information.

Bao and Zhang [17] and Meng et al. [18] used multi-

scale products to control the shrinkage of the wavelet

coefficients. Multi-scale products can fully use the corre-

lation of wavelet coefficients in different scales. Inspired

by this idea, multi-scale norm product (MSNP) is

defined in this article to control the shrinkage of the

wavelet coefficients.

This article proposes a new threshold after analyzing

the relationship between wavelet coefficients norm,

Besov space norm, and radial component in the spheri-

cal coordinates, and a new curve shrinkage function is

proposed to achieve good de-noising effect. The coeffi-

cients estimated by new function can reach and exceed

the real value. It will avoid the edge blurring and

enhance the coefficients of contours. Experimental

results show that the improved method in this article

retains the advantage of spherical coordinates. This new

method cannot only be provided with effectively de-

noising, but also have better preserve image details and

enhance the image edge information.

2. Traditional wavelet shrinkage algorithm
Suppose that it is desired to recover an unknown signal

f(x, y) from a noise image f*(x, y),

f ∗ (

x, y
)

= f
(

x, y
)

+ σεi (1)

where εi is independent and identically distributed (i.i.

d) as N(0,1), s refers to the noise level.

The idea of the wavelet shrinkage de-noising is large

wavelet coefficients reserve the useful information of

image, while smaller coefficients contain the noise infor-

mation which should be abandoned. The steps of the

wavelet de-noising algorithm are

• To decompose noising image in wavelet domain;

• Use threshold T and shrinkage function to process

the high-frequency coefficients.

Hard-threshold function:

w∗ (

x, y
)

=

{

w
(

x, y
)

w
(

x, y
)

≥ T

0 w
(

x, y
)

< T
(2)

Soft-threshold function:

w∗ (

x, y
)

=

{

sign
(

w
(

x, y
))

∗ w
(

x, y
)

w
(

x, y
)

≥ T

0 w
(

x, y
)

< T
(3)

where w(x, y) denotes wavelet coefficients, w*(x, y) is

wavelet coefficients after processing, T is the threshold,

sign(·)is sign function.

• To process the low-frequency and high-frequency

coefficients by inverse wavelet transform and recon-

struct the image.

3. Spherical transform re-defined in wavelet
domain
Skowronski [19] firstly introduced spherical coordinates

system into wavelet domain. Wang [15] extended this

idea. However, he did not propose the properties of

spherical transform in wavelet domain, neither define a

proper threshold in spherical coordinates system.

This article re-defines the spherical transform in wave-

let domain and lists its properties. Set f denotes a two-

dimensional image, C
(i)
j,k , i = 1, 2, 3is the high-frequency

parts of the image f after wavelet decomposing.

Define 1: The spherical transform in wavelet domain

is defined as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

R =

√

(

C
(1)

j,k

)2

+
(

C
(2)

j,k

)2

+
(

C
(3)

j,k

)2

θ = tg−1
(

C
(2)

j,k

/

C
(1)

j,k

)

ϕ = cos−1

(

C
(3)

j,k

/
√

(

C
(1)

j,k

)2
+

(

C
(2)

j,k

)2
+

(

C
(3)

j,k

)2
)

(4)

where C
(1)

j,k , C
(2)

j,k , C
(3)

j,k , respectively, represent hori-

zontal, vertical, and diagonal components. R is the radial

component in spherical coordinate system, θ, � are the

phase angle components. Figure 1 shows the correspon-

dence relationship of the components between spherical

coordinate system and wavelet domain.

Skowronski [19] only expressed the Haar coefficients

in spherical coordinates and the radial component came

from the variance of a block. Compared with the define

of Skowronski, in this article, the wavelet coefficients

Table 1 De-noising effects evaluation of different

decomposing level

Level PSNR MSE Time

Lena 1 28.0877 100.9974 0.7438

2 29.6917 69.8088 0.8150

3 30.1217 63.2281 1.1094

4 30.1198 63.2558 1.8175

5 30.1198 63.2558 2.5694

6 27.2008 123.8798 3.8712

IOT 1 27.6682 111.2398 0.6987

2 28.4816 92.2402 0.8150

3 29.6977 69.1725 1.2526

4 29.6977 69.1725 1.8725

5 29.7011 69.6579 2.5694

6 25.5632 180.6177 4.0925
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are mapped to the components in spherical coordinate

system. This define is reversible and exactly establishes

one-to-one correspondence between wavelet coefficients

and components in spherical coordinate system. The

properties of spherical transform in wavelet domain lists

as follows:

Property 1: The image energy in the three high-fre-

quency parts is completely mapped to radial component

R of spherical coordinate system. The phase angle com-

ponents θ, � only contain the location information.

From Property 1, the energy in high-frequency parts is

completely mapped to radial component. Therefore, we

just need to process the radial component in spherical

coordinate system. This idea can avoid processing the

wavelet coefficients directly. It reduces the image distor-

tion in a certain extent.

Property 2: Radial component R and the phase angle

components θ, � are mutually independent. The small

angle does not always correspond to little energy.

Property 3: Spherical transform can further reduce

the correlation among coefficients in the same scale.

Property 4: Spherical transform does not change the

correlation among coefficients in different scales.

Figure 2 demonstrates Properties 3 and 4.

4. A novel threshold in spherical coordinates
DeVore [11] and Feng et al. [12] have proved the image

space belong to Besov space. Chambolle et al. [13] pro-

posed a threshold in Besov space. Based on Chambolle

threshold, this article presents a novel shrinkage thresh-

old which is optimal in spherical coordinates. The new

threshold does not require pre-estimated noise intensity.

It avoids the incomplete de-noising problem caused by

inaccurate estimates.

Theorem 1: The threshold in spherical coordinates

system is

T =
√

6 |R|
/

N (5)

where N denotes image pixel, R is radial component in

spherical coordinates.

Proof: Chambolle et al. [13] proposed a better shrink-

age threshold in Besov space as follows:

N ≤ T−q ‖F‖q

B
β
q (Lp(�)) (6)

where N is the number of image pixel, R is radial

component in spherical coordinates system. The equiva-

lent relationship between Besov space norm

‖F‖B
β
q (Lp(�)) and radial component norm is established

in three steps.

(a) First, to establish equivalent relationship between

Besov space norm ‖F‖B
β
q (Lp(�)) and wavelet coeffi-

cients norm
∣

∣

∣
C

(i)
j,k

∣

∣

∣
, i = 1, 2, 3 .

Suppose f is a noise image in the interval Ω = [0, 1)2.

It is proper to use Besov space norm to describe the

regularity of image [11,12]. First, the image f is decom-

posed by compactly supported orthogonal wavelet Dau-

bechies (db2) in this article. Suppose �j, k = 1 denotes a

cycle scaling function. Ψ = {ψ(1), ψ(2), ψ(3)} is a set of

Figure 1 Spherical transformation in wavelet domain.

Figure 2 Multi-scale spherical transformation.
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orthogonal wavelet bases in the space W2
j , where

ψ
(1)

j,k (x1, x2) = ψ (x1) ϕ (x2)

ψ
(2)

j,k (x1, x2) = ϕ (x1)ψ (x2)

ψ3
j,k (x1, x2) = ψ (x1)ψ (x2)

(7)

the 2D-DWT of image f is

f =
∑

j∈Z2,k∈K

C
(i)
j,k	j,k +

∑

j∈Z2,k∈K

dj,Kϕj,K i = 1, 2, 3 (8)

where C
(i)
j,k =< f , ψ

(i)
j,k >, dj,k =< f , ϕj,k > , for �j, k = 1,

the formula (8) can be rewritten as

f =
∑

j∈Z2,k∈K

C
(i)
j,k	j,k+ < f , 1 > i = 1, 2, 3 (9)

Use wavelet coefficients norm to represent the norm

in the space Lp (Ω).

∥

∥f
∥

∥

p

Lp(�)
=

∑

j∈Z2,k∈K

∣

∣

∣
C

(i)
j,k

∣

∣

∣

p

+
∣

∣< f , 1 >
∣

∣

p

(10)

If wavelet coefficients ψ
(i)
j,k (i = 1, 2, 3) belong to the

space B
β
p

(

Lp (�)
)

, b >a

∥

∥f
∥

∥

Bα
p (Lp(�))

≈

⎛

⎝

∑

j∈Z2,k∈K

2αkp2k(p−2)
∣

∣

∣
C

(i)
j,k

∣

∣

∣

p

⎞

⎠

1/p

(11)

As a general rule, we just need to consider the space

Bα
1 (L1 (�)) , here p = 1, a ≤ 1, k ≥ 0, then

∥

∥f
∥

∥

Bα
1 (L1(�))

≈
∑

k∈K,j∈Z2

2k(α−1)
∣

∣

∣
C

(i)
j,k

∣

∣

∣ (12)

Thus, the equivalent relationship between Besov space

norm and wavelet coefficients norm has been estab-

lished.

(b) Second, to establish equivalent relationship

between the threshold T in Besov space and wavelet

coefficients norm
∣

∣

∣
C

(i)
j,k

∣

∣

∣ , i = 1,2,3.

Set q = 1, shrinkage threshold formula (6) can be

rewritten as follows:

T ≤ ‖F‖Bα
1 (L1(�))

/

N (13)

Therefore,

T ≤
∑

k∈K,j∈Z2

2k(α−1)
∣

∣

∣
C

(i)
j,k

∣

∣

∣

/

N (14)

Generally, dyadic wavelet is used to deal with discrete

image signal, for a ≤ 1, set α =
1

2
, the formula (14) can

be rewritten as follows

T ≤
∑

k∈K,j∈Z2

2−k/2
∣

∣

∣
C

(i)
j,k

∣

∣

∣

/

N (15)

According to the property of inner product

2−k/2C
(i)
j,k = 2−k/2 < f , ψ

(i)
j,k >=< f , 2−k/2ψ

(i)
j,k > (16)

Based on double scaling equation of wavelet, the fol-

lowing formula will be established:

2−k/2ψ
(i)
j,k = 2−k/2ψ

(

2−kx − k
)

= 2−k/2
√

2
∑

n∈Z

gnϕ

(

2−k+1x − 2j − n
)

=
∑

n∈Z

gnϕj−1,2k+n (x) =
∑

n∈Z

gn−2kϕj−1,n (x)

= ψ
(i)
j−1,k

(17)

Therefore,

2−k/2C
(i)
j,k = 2−k/2 < f , ψ

(i)
j,k >=< f , ψ

(i)
j−1,k >= C

(i)
j−1,k(18)

From the formulas (15) and (18), shrinkage threshold

in wavelet field is

T ≤
∑

k∈Z,j∈Z2

∣

∣

∣
C

(i)
j−1,k

∣

∣

∣

/

N i = 1, 2, 3 (19)

(c) Finally, to establish equivalent relationship

between wavelet coefficients norm
∣

∣

∣
C

(i)
j−1,k

∣

∣

∣ and

radial component norm |R| in spherical coordinates

system.

The noise image f is decomposed on multi-scale wave-

let in this article. The high-frequency parts

C
(i)
j−1,k, i = 1, 2, 3 are mapped to θ, � and radial com-

ponent R in spherical coordinates system. Based on
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Properties 1 and 2, threshold T just needs to process

radial component R. So, the equivalent relationship

between radial component R and high-frequency C
(i)
j−1,k

needs to be established.

Based on the spherical transform in wavelet domain

(formula 4), the following inequality will be established:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

R2 > min

{

(

C
(i)
j−1,k

)2
}

+ max

{

(

C
(i)
j−1,k

)2
}

R2 ≥ 3 min

{

(

C
(i)
j−1,k

)2
} (20)

Therefore,

2

3
R2 ≥ max

{

(

C
(i)
j−1,k

)2
}

≥
(

C
(i)
j−1,k

)2

(21)

where i = 1,2,3 k ≥ 0, j Î {0,1,....2k-1}2.

Thence, the following relationship will be established

between wavelet coefficients norm and radial compo-

nent norm.

∣

∣

∣
C

(i)
j−1,k

∣

∣

∣
≤

√

2
/

3 |R| (22)

The interval of shrinkage threshold will be

T ≤
√

6 |R|
/

N (23)

The least upper bound of T is chosen in this article as

the final shrinkage threshold:

T =
√

6 |R|
/

N (24)

where N denotes the number of image pixel.

Many studies have demonstrated that different wavelet-

decomposed scales play an important role in image pro-

cess. The de-noising effect will be improved if we choose

the proper decomposed scales. As everyone knows, noise

information is especially rich in high-frequency region.

At different scales, noise information has different distri-

bution characteristics. Therefore, different shrinkage

thresholds need to be chosen at different scales. After

analyzing wavelet multi-scale characteristics, the thresh-

old at different scales is multiplied by scaling factor hk =

1/4k-1. Therefore, the shrinkage threshold under different

scales is finally determined as follows:

Tk = ηk

(√
6 |Rk|

/

N
)

, k = 1, 2, 3, . . . (25)

Based on the above proof, the new threshold has the

following advantages:

(1) After the third or more decomposition of wavelet

transform, the scaling factor is ηk ≤
1

16
, therefore, it

can simplify the process and advance the operation

speed.

(2) Do not need to estimate the standard deviation of

noise before image de-noising, which will avoid the

error existed between estimated value and real value

and reduce the complexity of the algorithm.

5. MSNP in spherical coordinates system
In the wavelet domain, there is a correlation among the

coefficients in different scales. If the amplitude of coeffi-

cients in small scales is large, at a big probability, the

amplitude of coefficients in corresponding big scales is

large too. Multi-scale product is based on this property

of wavelet transform. Inspired by the idea of multi-scale

product used in image de-noising [15,16], this article

defines an MSNP which is based on the following

premises.

(1) In the wavelet domain, with the increase of

decomposition level, the wavelet coefficients of effective

signal will increase or remain unchanged. While the

wavelet coefficients of noise signal will decrease.

(2) Spherical transform reduces the relevance of scal-

ing interior. However, it does not change the correlation

of wavelet coefficients in different scales (Figure 2).

Define 2: The MSNP at the point (x, y) in spherical

coordinates system is defined as follows:

p2k

(

x, y
)

=
K
�
j=1

Rj

(

x, y
)

(26)

where K is the decomposing scales. The MSNP has

the following properties:

Property 5: The MSNP in spherical coordinates must

be positive value.

Property 6: “The larger (effective signal) the greater,

the smaller (noise signal) the smaller”. With the increase

of the decomposition level K, we will get the conclusion

p2k

(

signal
)

>> p2k (noise) .

The MSNP is controlled by the new threshold pro-

posed in Section 4 in the image de-noising. It can

enlarge the distance between effective signal and noise

signal. It avoids the disadvantage of the traditional

methods that smaller wavelet coefficients are wrongly

removed. Therefore, MSNP will effectively remove the

additive noise without loss of the important features of

the original image.

6. A new curve shrinkage function in spherical
coordinates system
From the promise 1 mentioned in Section 5, the maxi-

mum amplitude wavelet coefficients must be the effec-

tive signal.

At present, the improve algorithms about shrinkage

function are infinitely close to the true value. However,
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they cannot reach the true value, which will cause the

edge blurry of reconstructed image.

In order to gain better de-noising effect, this article

constructs a new curve shrinkage function. It can ensure

that the estimated signal is continuous at the threshold,

and with the signal amplitude increases, the estimated

value can reach and exceed the true value. It not only

avoids the edge blurry, but also enhances the critical

information. The new curve shrinkage function is

R∗ (

i, j
)

=

{

ρ ·
(

∣

∣R
(

i, j
)
∣

∣ −
(

1 + log
(

1 +
∣

∣R
(

i, j
)
∣

∣ − T
))−1 · T

)

R
(

i, j
)

≥ T

0 R
(

i, j
)

< T
(27)

where ρ = 1 +
1

5π

∣

∣arctan
(
∣

∣R
(

i, j
)
∣

∣ − T
)
∣

∣ is the adjust

factor of the curve shrinkage function, N, M are the

image dimensions, i = 1,2,....,N, j = 1,2,....,M.

The advantages of the improved curve shrinkage func-

tion are listed below.

(a) When R (i, j) = T, it is easy to verify R*(i, j) = 0.

So, the new function is continues at T.

(b) When R (i, j) >T, the proposed function meets

the following inequality:

R
(

i, j
)

− T ≤
∣

∣R
(

i, j
)
∣

∣ −
(

1 + log
(

1 +
∣

∣R
(

i, j
)
∣

∣ − T
))−1 · T ≤ R

(

i, j
)

(28)

Therefore, the radial component R*(i, j) estimated by

the new curve function is located between hard and soft

thresholds.

(c) As |R (i, j)|-(1+ log(1+|R(i, j)|-T))-1·T is nonli-

nearity function, and log(·)is a monotone increasing

function, when R(i, j)®∞, the conclusion R*(i, j)® R

(i, j) will be established. Therefore, with the increase

of R (i, j), the new curve function will infinite

approximate to true value.

(d) The adjust factor

ρ = 1 +
1

5π

∣

∣arc tan
(
∣

∣R
(

i, j
)
∣

∣ − T
)
∣

∣ , rÎ[1, 1.1] in the

new function will raise the approach speed of the for-

mula R*(i, j)® R(i, j). Arctan(·) is a monotone continu-

ous function, which can ensure R*(i, j) smooth

approach to R (i, j). rÎ[1, 1.1], as the signal amplitude

increases, the estimated signal can reach and exceed

the real value. Large radial component has a certain

enhancement, and this increase is limited to < 110% of

the original energy. Therefore, it can effectively pre-

serve the edge of the signal, and avoid the local

enhancement caused by the unexpected.

Figure 3 shows the contrast between different shrink-

age functions. In Figure 3, soft and hard thresholds were

presented by Donoho [9,10], MATS Method was pro-

posed by Khare et al. [14], Hyperbolic shrinkage was

used by Wang [15]. Li et al [16] presented the improved

soft-threshold function.

7. Algorithm design
Suppose f is the observed noise image. The steps of the

improved algorithm:

Step 1. First, the image f is decomposed by wavelet

transform.

Step 2. The high frequencies C
(i)
j,k , i = 1, 2, 3 of the

image at different scales are transformed to spherical

coordinates system by formula (4).

Step 3. Calculate the MSNP p2k

Step 4. Process the radial components Rk at different

scales

(a) At the first decomposition, the interference

brought by noise is strong, the improved curve

shrinkage function proposed in this article is used to

process the radial components:

R∗ (

i, j
)

=

⎧

⎨

⎩

ρ ·
(

∣

∣R
(

i, j
)
∣

∣ −
(

1 + log
(

1 +
∣

∣R
(

i, j
)
∣

∣ − Tk

))−1 · Tk

)

R
(

i, j
)

≥ Tk

0 R
(

i, j
)

< Tk

(29)

(b) At the second or more decomposition of wavelet

transform, the new threshold proposed in this article

controls the MSNP for image de-noising.

R∗ (

i, j
)

=

⎧

⎨

⎩

ρ ·
(

∣

∣R
(

i, j
)
∣

∣ −
(

1 + log
(

1 +
∣

∣R
(

i, j
)
∣

∣ − Tk

))−1 · Tk

)

p2k

(

i, j
)

≥ Tk

0 p2k

(

i, j
)

< Tk

(30)

Step 5. If the estimated radial components are R*(i, j)

= 0, set the angle θ, � equal to zero.

Step 6. The components θ, �, R* in spherical coordi-

nates do inverse spherical transform as follows:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(

C
(1)

j,k

)∗
= R∗ sin ϕ cos θ

(

C
(2)

j,k

)∗
= R∗ sin ϕ sin θ

(

C
(3)

j,k

)∗
= R∗ cos ϕ

(31)

Figure 3 Different shrinkage function contrast diagram.
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Figure 4 Image lena and experimental results. (a) Original image lena. (b) Gaussian white noising image. (c) Hyperbolic shrinkage in [15]. (d)

MATS method in [14]. (e) Improved soft-threshold in [16]. (f) AdpMpMHard in [18]. (g) This article.

Figure 5 Image IOT and experimental results. (a) Original image IOT. (b) Gaussian white noising image. (c) Hyperbolic shrinkage in [15]. (d)

MATS method in [14]. (e) Improved soft-threshold in [16]. (f) AdpMpMHard in [18]. (g) This article.
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where
(

C
(1)

j,k

)∗
,

(

C
(2)

j,k

)∗
,

(

C
(3)

j,k

)∗
are estimated hori-

zontal high frequency, vertical high frequency, and diag-

onal high frequency, respectively.

Step 7. Finally, to realize de-noising and reconstruct

the image.

8. Experiments
To illustrate the effectiveness of this improved method,

experimentation is done to use the image lena and the

Internet of things (IOT) which sizes are 256*256.

8.1. The evaluation criteria

This article evaluates the de-noising effect from the peak

signal-to-noise ratio (PSNR), mean square error (MSE),

and the runtime.

PSNR = 10 log 10(255∧2
/

MSE) (32)

MSE =
1

MN

M−1
∑

i=0

N−1
∑

j=0

(

f ∗
i,j − fi,j

)

(33)

8.2. The choice of decomposition level

First, we must determine the decomposition levels.

Table 1 shows the de-noising effects evaluation of differ-

ent decomposing level. In this simulation experimenta-

tion, the improved algorithm is used for image de-

noising and Gaussian white noise (the standard devia-

tion is 20) is added to image lena and IOT.

From Table 1, we can get the conclusion that the de-

noising effect is asymptotically stable after three levels.

When the scale is greater than six levels, turbulence will

generate in PSNR and MSE. Therefore, the best decom-

position level is 3-5.

8.3. The de-noising results adding Gaussian white noise

According to the above assessment, level 4 is an ideal

decomposition level. Here, level = 4, adding the Gaus-

sian white noise (the standard deviation is 20). The de-

noising results of different methods are shown in Fig-

ures 4 and 5. Figure 4 shows the visual results of image

lena. Figure 5 shows the visual results of image IOT.

The results show that this proposed algorithm visually

superior to other algorithms.

Figures 6 and 7 show the comparison of PSNR for

kinds of de-noising methods to images lena and IOT.

Figures 8 and 9 show the comparison of MSE for kinds

of de-noising methods to images lena and IOT. From

the comparisons of PSNR and MSE, we can get the con-

clusion that the proposed algorithm in this article has

better de-noising effect.

8.4. The comparison of running time

Figure 10 demonstrates the run time of different de-

noising methods. It shows that the proposed algorithm

retains the advantages of spherical coordinate system.

Figure 6 Comparison of PSNR for kinds of de-noising methods

to Gaussian white noising image lena.

Figure 7 Comparison of PSNR for kinds of de-noising methods

to Gaussian white noising image IOT.

Figure 8 Comparison of MSE for kinds of de-noising methods

to Gaussian white noising image lena.
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The running time is less than other algorithms. With

the scale increase, this advantage is more obvious.

8.5. The de-noising results adding salt&pepper noise

Gaussian white noise and salt&pepper noise are the

most common types of noise. Figure 11 shows the visual

de-noising results added in the salt&pepper noise.

According to Figure 11, the proposed method is also

effective to salt&pepper noising image.

Figures 12 and 13 demonstrate the comparison of

PSNR for kinds of de-noising methods to salt&pepper

noising images lena and IOT. Compared with other

Figure 9 Comparison of MSE for kinds of de-noising methods

to Gaussian white noising image IOT.

Figure 10 Run time evaluation for kinds of de-noising

methods.

Figure 11 Salt&pepper noising image and experimental results. (a) Salt&pepper noising image lena. (b) De-noising result of this paper. (c)

Salt&pepper noising image IOT. (d) De-noising result of this article.

Figure 12 Comparison of PSNR for kinds of de-noising

methods to salt&pepper noising image lena.

Figure 13 Comparison of PSNR for kinds of de-noising

methods to salt&pepper noising image lena.
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algorithms, the de-noising results of proposed method

have more advantages after adding salt&pepper noise.

9. Conclusion
In this article, we use spherical coordinates system to

remove the relevance of coefficients. Based on the Besov

space norm theory, this article derives a new threshold

in spherical coordinate system. MSNP is defined to

make full use of the correlation in different decomposi-

tion scales. A new adaptive curve shrinkage function is

constructed. This function can reach and exceed the

true value. It largely avoids the edge blurry during

image de-noising. The new threshold controls MSNP

for image de-noising. Experimental results show that the

proposed method visually superiors to other algorithms,

and it is more effective in PSNR, MSE, and runtime.
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