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Featured Application: In this article, an encryption algorithm is proposed that can be used for
remote identity authentication. The specific application method is described in the third section
of this article. Initially, the user’s voice information is extracted as data, which is subsequently
used as the key for image encryption. The encrypted image can be successfully decrypted during
identity verification only when the user’s voice data are correct, which leads to successful iden-
tity verification. This is a new application scheme, and no similar application method has been
described in the existing literature, to the best of our knowledge.

Abstract: This paper proposes a new image encryption algorithm. First, time-domain and frequency-
domain features of the user’s voice are extracted to generate a voice key. Second, the key is iterated
through a chaotic map multiple times to map the key data to the chaotic oscillation region, and,
subsequently, the parameters of the oscillation area are used to encrypt the user’s image. Third, at
the time of decryption, the user’s latest voice data are re-extracted to generate a new voice key and
decrypt the encrypted image. The encrypted image cannot be successfully decrypted if there are
differences between the two extracted voices in the time or frequency domain. Finally, the experiments
are performed using 80 groups of face images and voice data, all of which pass the encryption and
decryption experiments. In addition, various safety tests have been carried out on the algorithm. The
key sensitivity of the algorithm is verified by the normalized cross-correlation parameter Cncc. The
effective anti-attack ability of the algorithm is verified by measuring the correlation between adjacent
pixels, the number of changing pixel rate (NPCR) and the unified averaged changed intensity (UACI).
The key space of the proposed algorithm is greater than 2100, and it has good anti-cracking ability.

Keywords: chaotic map; image encryption; voice key; authentication

1. Introduction

The purpose of this work is to propose a novel image encryption algorithm that can be
used to improve the reliability of remote identification. There are four major contributions
of this work. First, a method for generating keys based on speech processing technology
is proposed. Second, a method for image encryption based on chaotic maps is proposed.
Third, a new set of image encryption equations are constructed. Finally, a scheme for
applying image encryption technology to remote identity authentication is proposed. This
work aims to present an identity authentication scheme for the elderly to receive social
security funds while residing in different places. In our region (China), the elderly are
required to confirm their identity on the internet before receiving pensions. The scheme
proposed in this work can prevent someone from using virtual dynamic portrait technology
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to defraud the social security funds. The above work is realized based on experiments and
compared with the experimental results presented in other works.

1.1. Analysis of Common Identity Authentication Methods

Broadly, biometric systems can be divided into two main types: unimodal and mul-
timodal biometric systems. Unimodal systems are based on using a single source of
information to establish the person’s identity, for example, iris, retina, face, speech, finger-
print, finger-vein, signature, etc. The former six methods are based on biometrics, i.e., the
use of various biological characteristics of the human body to achieve identity authenti-
cation. The last method, i.e., signature recognition, is a kind of behavior authentication
method [1].

Many methods have been presented for identification and verification based on any of
the above information sources, where every method employs a different strategy. A review
of some prominent solutions is now presented.

Lim et al. in [2] proposed an efficient method for personal identification by analyzing
iris patterns, which have a high level of stability and distinctiveness. To improve the
efficiency and accuracy of the proposed system, they presented a new approach to making
a feature vector compact and efficient by using wavelet transform, and two straightforward
but efficient mechanisms for a competitive learning method, utilizing a weight vector
initialization and winner selection.

A method for human identification based on retinal images is presented in [3]. The
proposed system is composed of two main parts: a feature-extraction component and a
decision-making component. In the feature-extraction component, blood vessels are first
extracted and then thinned by a morphological algorithm. Then, two feature vectors are
constructed for each image, by utilizing angular and radial partitioning. In the article, a
fuzzy system with Manhattan distances of two feature vectors as the input and a similarity
measure as the output was added to the decision-making component.

An exhaustive multifactor face authentication system using a neuro-fuzzy approach
is described in [4]. During the enrollment process, facial region of a still image of the
authorized user is captured and features are extracted using a local tetra pattern (LTrP)
technique. The features are given as the input to the neural network, namely a fuzzy adap-
tive learning control network (FALCON), for training and classification of features. During
the authentication process, an image that can vary with expression, pose, illumination and
occlusion factors is taken as a test image and the test image is inputted to the LTrP and
FALCON to train the system based on the features of the test image. Then, these trained
features are compared with an existing feature set using the newly proposed multifactor
face authentication algorithm to authenticate a person.

Hyun Park and Tae Guen Kim, in [5], develop a voice-based authentication model
that learns and discriminates each user’s voice data using a deep neural network. In
addition, they also present a synthesis speech detection method that is used to prevent a
masquerading attack using synthetic voices. The proposed method can be divided into
two modules: an MFCC based user authentication module and a Mel-Spectrogram-based
synthetic speech detection module.

A method for signature verification and recognition is presented in [6], which repre-
sents signature verification and recognition using zone wise statistical features. During
the first phase, a knowledge base is constructed by training samples using the zone wise
statistical features. During the second stage, i.e., the testing phase, the processed image is
obtained with zoning wise statistical features and the signature is recognized using neural
network classifiers. MATLAB was used to design this signature recognition and verification
system.

Boucherit et al., in [7], present a new approach based on a deep learning model to
achieve personal identification through finger vein patterns. They employed an improved
deep network, named Merge Convolutional Neural Network (Merge CNN), which uses
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several CNNs with short paths. The scheme is based on the use of multiple identical CNNs
with different input image qualities, and unification of their outputs into a single layer.

Brain wave recognition is a new biometric authentication method. The scheme per-
forms authentication and identification by collecting EEG signals during behavioral and/or
mental activity. This scheme presents state-of-the art solutions and recommendations
for addressing security and privacy problems by proposing a novel, EEG-driven, secure
and reliable cognitive authentication system for an IoT-based healthcare system. Please
note that the brain wave authentication has wide application prospects, high reliability
and uniqueness. However, promotion of this technology is slow due to the high cost of
brain–computer interface devices and the complexity of the software algorithms [8].

A dynamic application-partitioning workload task-scheduling-secure (DAPWTS) al-
gorithm was proposed in 2021. It consists of different schemes, such as a min-cut algorithm,
a searching node, energy-enabled scheduling, failure scheduling and security schemes. The
goal of this methods is to minimize the energy consumption of the nodes and divide the ap-
plication between local nodes and edge nodes by applying the secure min-cut algorithm [9].
If the scheme proposed in this work were generalized, we could learn from its technical
framework to optimize the design of identity authentication methods.

Although these systems have been widely employed in government and civilian
sensitive applications with a high level of security, they often suffer from a number of
critical limitations and problems that can affect their reliability and performance. With the
exceptions of the fingerprint identification method and the brain waves method [10], these
biometric methods do not require any direct physical contact by the user, thus making them
convenient for the user. The iris recognition, retina recognition and finger-vein recognition
methods have high reliability and robustness against forgery [11]. However, they also
suffer from disadvantages, such as a high equipment cost, large volume, noise, intra-class
variations and inter-class similarities [12,13]. Moreover, retina recognition can even affect
the health of the user [14,15].

All these drawbacks of unimodal systems can be efficiently addressed by systems
combining evidence from multiple sources of information to identify a person’s identity;
these are referred to as multimodal systems. Multimodal systems can produce sufficient
population coverage by efficiently addressing problems related to the enrollment phase,
such as non-universality. Furthermore, these systems can provide higher accuracy and
a greater resistance to unauthorized access by an imposter than unimodal systems, due
to the difficulty of spoofing or forging multiple biometric traits of a legitimate user at
the same time. The most fundamental issue for the designer of the multimodal system
is choosing the most powerful biometric traits from multiple sources to be incorporated
within the system, and finding an efficient method of fusing them [16]. The following are
some representative multimodal system authentication schemes.

Wu et al. in [17] proposed an identity authentication framework, which can extract
and verify personal information through face verification and ID image recognition. The
identity authentication is realized using the proposed face verification model, which is
called Inception-ResNet Face Embedding (IRFE). IRFE uses an Inception-ResNet structure
to ensure a good feature extraction, aiming at accurate face verification. Moreover, a robust
ID card extraction method named Morphology Transformed Feature Mapping (MTFM) is
proposed to extract ID information.

Navya Saxena and Devina Varshney, in [18], propose a holistic solution for the im-
plementation of Smart Home Security, which helps in improving privacy and security by
using two independent and emerging technologies of facial authentication and speech
recognition. This method involves facial recognition by taking a real-time feed of the person
at the door; analysis of the live feed is then conducted, in which the face recognized is
authenticated by comparing it with data regarding owners in a database, thereby matching
the face to a name. Speech recognition was used to double check the output of facial
authentication. This entire process is carried out with the help of neural networks. If
there is an unauthorized person at the door, an alert is triggered, and the owner receives a
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notification of this unauthorized access; they can then choose whether they want to add
the person to their database or not. Face recognition is widely used in identity recognition
as it is a non-contact approach that uses compact equipment. It is the fastest growing
technology among all the relevant technologies. However, a few hidden loopholes have
emerged gradually. An audio-driven facial video synthesis, such as Motionface, can make
an arbitrarily selected face image correspond to a dynamic image of speech as long as you
input a piece of speech. By synthesizing face video from audio and facial images, these deep
fake technologies can realize a face swap function, i.e., one face in an image or video can
be replaced with another face. These technologies pose a significant threat to the network
and personal information security, as well as to the reliability of identity verification based
on facial recognition technology. Therefore, we chose to combine facial recognition with
speech recognition through the image encryption technology proposed in this article to
improve the reliability of identity recognition. The method proposed in this work is used
for personal identity authentication, without using any special authentication equipment.

1.2. Combination of Image Encryption and Identity Recognition Technologies

The image encryption utilized in the present study mainly includes encryption tech-
nology based on frequency and spatial domains. The encryption technology based on
the frequency domain is mainly used for image compression, such as JPEG compression
and compression technology based on the wavelet transform. The encryption technology
based on the spatial domain is often used in security applications. The use of chaotic maps
is common for spatial image encryption. Various existing image encryption algorithms
can encrypt face images to ensure the security and privacy of the images, but they cannot
be used to improve the reliability of facial image authentication. In order to deal with
this issue, an image encryption algorithm based on chaotic maps and an algorithm for
extracting human voice features into data are proposed in this article. The time-domain and
frequency-domain features from a human voice are extracted to generate keys, which are
used for image encryption. For identity recognition, the user’s specific voice information is
used to decrypt the encrypted image, and then the face recognition can be performed. This
encryption and decryption method increases the difficulty of cracking the authentication
scheme. The solution can also be applied in various other face recognition authentication
situations to improve authentication security.

2. Principles of the Proposed Method

The image encryption principle used here involves two aspects, including key extrac-
tion and encryption and calculation of the image. The key extraction adopts two methods
involving time-domain and frequency-domain processing of voice information. The key
information must not only reflect the user’s voice characteristics, but also conform to the
oscillation conditions of the chaotic maps so that the encryption result is sensitive enough
to the key information.

2.1. Voice Key Generation Process

The user’s voice-feature information should be extracted as the key for image encryp-
tion prior to encryption. The speech signal is a non-stationary time-varying signal, whose
characteristics can be analyzed and described in both the time and frequency domains.
Here, sets of time-domain and frequency-domain feature parameters are extracted to per-
form the image encryption operation. The time-domain analysis method is the simplest
and most intuitive analysis method. The time-domain speech parameters include short-
term average energy, short-term average zero-crossing rate and short-term autocorrelation
function. We take the number of peaks of a single-syllable single waveform as the extracted
time-domain parameter. It has a corresponding relationship with the average zero-crossing
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rate and reflects the difference between various dissimilar syllables. The relevant expression
is given in Equation (1). 

nw =
∑

La+Lb
m=La |sgn[z(m)]−sgn[z(m−1)]|

M×4

sgn[z(m)] =

{
1 z(m) ≥ 0
−1 z(m) < 0

(1)

In Equation (1), La and Lb are the starting and ending positions of a single syllable
in the time domain, respectively; z(m) is the amplitude of the audio position m; and M is
the number of single waveforms of a single syllable. A total of six nw values calculated
by Equation (1) are represented by nw1 to nw6, and these six values participate in the
subsequent chaotic encryption calculation.

The frequency-domain description of voice information is an important feature that
reflects the distribution of voice information over different frequencies. Different people
have different spectrum distributions of the same syllable. This can be used to distinguish
the difference between the pronunciations of various people. Here, discrete fourier trans-
form (DFT) is used to extract the user’s voice frequency-domain features. It is a simple and
practical method to analyze the voice frequency spectrum characteristics. Its formula is
given by Equation (2), as follows:

X(k) =
N−1

∑
n=0

x(n)e−j 2π
N kn(k = 0, 1, 2 . . . N − 1) (2)

In Equation (2), X(k) represents the data after DFT transformation; x(n) is the nth signal
sample; N is the total number of Fourier transform points; and k is the ordinal number
of the abscissa of the spectrum, which represents the kth spectrum position. One of the
peak frequency values can be selected to participate in the subsequent chaotic encryption
calculation. This selection can be based on either a sequential or a magnitude relationship.

As illustrated in Figure 1, in the first phase of the speech features extraction, the
characteristic single waveform corresponding to each single-syllable speech datum is
extracted. Subsequently, the single waveform is used to synthesize the repetitive long-term
signal waveform, such as a waveform with a synthetic duration of three seconds. The
waveform undergoes DFT transformation to extract its frequency-domain data, where
the frequency data corresponding to the peak amplitude are considered. In addition, the
time-domain feature data of the single-syllable characteristic single waveform are extracted,
where the number of crests of the single waveform and the total number of single syllables
are considered.
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Figure 1. Speech feature extraction. (a) Original voice. (b) Step1: Single-syllable audio; (c) Step2:
Single waveform of single-syllable audio; (d) Step3: Repetitive synthetic audio of a single waveform;
(e) Step4: DFT conversion of a single waveform repeatedly synthesized for three seconds of audio.

2.2. Proposed Image Encryption and Decryption Algorithm
2.2.1. Encryption Process

As shown in Figure 2, the image can be encrypted after obtaining the voice key
information used for encryption. Here we use the chaotic map for encryption. Chaotic
mapping has a wide range of applications in image encryption. The output of a chaotic
system that has iterated a certain number of times is sensitive to the initial value and exhibits
randomness. Image encryption can take advantage of this sensitivity and randomness. In
this paper, we use logistic chaotic mapping to iterate the chaotic system based on the voice
key as shown by Equation (3), which is used to calculate the two initial data sets required
by the image displacement formula [19].

LnL1+1 = LnL1 × µ1 × (1− LnL1)
LnL1 = nw1/k1
µ1 = k2 + nw3/k3
LnL2+1 = LnL2 × µ2 × (1− LnL2)
LnL2 = nw2/k4
µ2 = k5 + nw4/k6

(3)
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In Equation (3), LnL is the generated chaotic data; µ1 and µ2 are the logistic map
parameters; and k1 to k6 are the preset parameters. According to the chaotic mapping
conditions, the initial values of LnL1 and LnL2 should be between zero and one, and µ1 and
µ2 can be between 3.5699456 and 4. In addition, the number of iterations for the chaotic
map must be sufficient to allow the output data to enter the random oscillation region as
shown in Figure 3.
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In Figure 3, µ is set to 3.9; the initial values of the two oscillations are selected as
0.100001 and 0.100002; the ordinate represents the difference between the two chaotic data
sets; and the abscissa is the number of iterations of the chaotic map. It can be observed from
the output that when the number of iterations is greater than 20, the chaotic map enters a
random oscillation zone. When performing image encryption, we set the values of k1 to k6
and the number of iterations after determining the voice key to ensure that the output data
are in the random oscillation area. Next, it is necessary to map the iteratively calculated
value in Equation (3) to the value range corresponding to the encryption formula. The
mapping relationship is shown in Equation (4).{

m1 = round((LnL1(nw5 + k9× fm + k7) + 1)/2× s)
b = round((LnL2(nw6 + k9× fm + k8) + 1)/2× s)

(4)

In Equation (4), LnL1 and LnL2 are the vectors generated by the iterative Equation
(3); round(.) is the rounding function; fm is the peak frequency obtained after the DFT
transformation of the synthesized speech waveform; s is the number of lines of the image
to be encrypted; and k7 and k8 are two adjustable parameters. A slight change in the values
of k7 and k8 will cause a significant change in the encryption result. After each identity
authentication, the k7 and k8 can be reset to strengthen the system security. The parameter
k9 is an integer multiple of either one or ten. The capacity of the key space can be increased
by increasing the resolution of fm and adjusting k9. Algorithm 1 describes the process of
image encryption.

f (i1) = f (j1) i1 = 1, 2, . . . m1 j1 = n1 −m + 1, . . . , n1 − 1, n1
f (i1) = f (j1) i1 = m1 + 1, . . . , n1 − 1, n1 j1 = 1, 2, . . . , n1 −m1
m1m+1 = m1m + b

(5)
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Equation (5) is the formula for vector right shift and down shift scrambling of the image
data: m1 is the number of shifted bits and b is the step length that the next row or column
shift number should accumulate after each shift. When the image is encrypted, LnL1 and
LnL2 perform multiple iterative calculations, and the calculation results are subsequently
mapped to obtain the two parameters m1 and b required by the scrambling formula. In
the calculation, the numbers of single-waveform peaks nw1 and nw2 corresponding to the
first and second single syllables of the speech signal, respectively, are correlated with the
initial value of the chaotic map. The parameters nw3 and nw4 are correlated with the logistic
mapping parameter µ, and the peak frequencies of nw5, nw6 and audio DFT transformation
are used to map the value calculated by chaotic map to the range of m1 and b. In this
way, the image encryption can be completed. Algorithm 2 describes the process of image
matrix scrambling.
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2.2.2. Decryption Process

As shown in Figure 4, the image decryption is the reverse process of image encryption.
The chaotic mapping formula in the decryption process is exactly the same as that in
the encryption process. The shift formula for image decryption is shown in Equation
(6). Furthermore, the code execution sequence for shifting image rows and columns in a
decryption program is the opposite of that in the image encryption.

f (i1) = f (j1) i1 = n1 −m + 1, . . . , n1 − 1, n1 j1 = 1, 2, . . . m1
f (i1) = f (j1) i1 = 1, 2, . . . , n1 −m1 j1 = m1 + 1, . . . , n1 − 1, n1

m1m+1 = m1m − b
(6)
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3. Application of the Proposed Image Encryption Algorithm in Identification Technology

A novel application scheme is proposed in this paper. To the best of our knowledge,
no similar application scheme has been proposed in the existing literature. The process
of identity recognition can be designed on the basis of the encryption and decryption
algorithms described in Section 2. As shown in Figure 5, it consists of several steps: (1) In
the first step, the facial image of the user is obtained as the initial image. The frequency and
time-domain features of the user’s voice are extracted simultaneously. The voice features
are used to encrypt the initial image, and the encrypted image is saved as the original
comparison image. (2) In the second step, dual authentication of speech recognition and
facial recognition is performed. If it is necessary to verify the identity of the user after
a certain period of time, the latest voice data and face image data of the user must be
extracted for the second time. The extracted second speech frequency-domain and time-
domain features are used to decrypt the original encrypted contrast image. The voice
authentication is passed if the decryption is successful. At this point, the decrypted initial
face image is used to perform face recognition on the face image extracted for the second
time. If the recognition is successful, the face authentication is passed. At this time, the dual
speech and facial recognition authentication is passed, and subsequently it is judged that
the user is successfully authenticated. (3) The third step consists of encrypting and saving
the facial image that passed the second authentication based on the speech frequency and
time-domain features extracted the second time. If a third authentication is required, the
image encrypted for the second time will be used as the latest comparison image. The first
and second steps are repeated to obtain the certification result.

When associating the speech feature information with the chaotic encryption algo-
rithm, it is necessary to design the parameter mapping relationship in order to meet the
operational needs of Equation (5). Using the solution presented in this article, developers
can design their own chaotic parameter mapping relationship and input voice features
information into the algorithm. For example, when selecting the peak number of a single
waveform, the following can be varied: single-syllable orders; the value range of logistic
mapping parameter µ; initial chaotic mapping values; and the output index values of
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different chaotic output vectors. The changes in these mapping relations can significantly
impact the encryption result of the image without affecting the sensitivity of the input
data to decryption. In addition, when selecting the voice features, other frequency or
time-domain voice features can be chosen, such as the discrete cosine transform (DCT)
or discrete wavelet transform (DWT) used in the frequency-domain feature analysis. The
DCT transformation is simple and practical and can be calculated quickly. The DWT
transformation is a multi-resolution analysis method that increases the concealment of
the algorithm. The time-domain features can use short-term average energy, short-term
average amplitude, short-term average zero-crossing rate and short-term autocorrelation
analysis. Other chaotic maps can also be used in the encryption algorithm, such as singer
map, sine map, tent map, Chebyshev map, circle map, cubic map, sinusoidal map, etc.
These methods can be used to expand and design a unique authentication scheme [20–22].
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4. Experimental Results and Security Analysis
4.1. Experimental Results

In the experiment, Python was used for facial recognition, and Matlab for voice
features extraction and image encryption and decryption. The Haar classification detector
and LBPH recognizer of the OpenCV library were used for facial recognition. The initial
value of a chaotic map should be between zero and one. Therefore, it was selected as 1/10th
of the number of single-syllable and single-waveform peaks. The logistic map parameter µ
was selected as 3.85 plus 1/100th of the number of single-syllable and single-waveform
peaks. This ensures the data generated during the iterative process are in the chaotic region.
The number of iterations of the scrambling formula was the sum of the number of rows
and the number of columns of an image. The number of iterations of the chaotic map was
chosen as 3000, and the index values of LnL1 and LnL2 were determined by Equation (4). An
integer above 400 was used as the index value for the selection of the chaotic data vector,
so that it could contain enough chaotic output data. The experiments were performed on
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80 groups of face images and voice data, all of which passed the encryption and decryption
tests. Figure 6 shows the effects of image recognition, encryption and decryption.
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Table 1 shows the accuracy rate of the method proposed in this paper compared with
other schemes reported in the literature.

Table 1. Comparison of recognition results.

Scheme Year Accuracy Rate (%)

Ref. [2] Iris Recognition 2001 98.4
Ref. [3] Retina Identification 2011 99.75
Ref. [4] Face Authentication 2019 96
Ref. [6] Signature Recognition 2020 97.5
Ref. [7] Finger vein Recognition 2020 99.56
Ref. [17] Face Verification + ID Image Recognition 2019 97.5

Ref. [18] Facial Authentication + Speaker
Recognition 2021 82.71

Proposed (Tolerance
100 Hz) Facial Authentication + Voice Recognition 2022 100

Proposed (Tolerance
60 Hz) Facial Authentication + Voice Recognition 2022 91.3

Proposed (Tolerance
30 Hz) Facial Authentication + Voice Recognition 2022 61.3

Proposed (Tolerance
10 Hz) Facial Authentication + Voice Recognition 2022 23.8



Appl. Sci. 2022, 12, 5452 12 of 19

4.2. Security Analysis

The identity recognition method used in this article utilizes encryption and decryption
methods and compares and authenticates both voice and image. No identity authentication
scheme similar to the one proposed in this article is found in the various existing refer-
ences. Other identity authentication schemes only collect a single biometric feature of the
user for identity authentication, such as fingerprint authentication, face recognition, etc.
Therefore, this article only analyzes the key sensitivity, the correlation between adjacent
pixels, the resistance to differential attack and the size of the key space from the perspective
of encryption.

4.2.1. Key Sensitivity Analysis

The applied system is a completely closed system and the key image is not visible
from the outside. Therefore, the key sensitivity is the most important item for verifying
the scheme [23–25]. Lena image and various voice data samples are used in the scheme
verification. When comparing images, the normalized cross-correlation parameter Cncc
shown in Equation (7) is used in addition to the visual observation to measure the changes
in the image.

Cncc =
∑N−1

xc=0 ∑N−1
yc=0 gc(xc, yc) fc(xc, yc)

∑N−1
xc=0 ∑N−1

yc=0 fc2(xc, yc)
(7)

In Equation (7), fc and gc are the two images to be compared, and xc and yc are the
index values of the image matrix. The experimental data shown in Tables 2–7 were obtained
after various experimental comparisons. In the tables, Fp is the peak frequency of the speech
spectrum; nw1 to nw6 are the number of single-waveform peaks of six single syllables; and
Cnccr, Cnccg and Cnccb are the normalized cross-correlation parameters of the red, green and
blue channels of the image.

Table 2. The normalized cross-correlation when fine-tuning the number of crests.

Fp (Hz) nw1~nw6 |Cnccr − 1|min |Cnccg − 1|min |Cnccb − 1|min

55 5, 4, 2, 3, 2, 4 0.0675 0.4152 0.5422
650 5, 3, 5, 2, 5, 3 0.0625 0.4150 0.5421

1220 3, 2, 4, 3, 5, 2 0.0682 0.4141 0.5472

Table 3. The normalized cross-correlation when fine-tuning the peak frequency.

Fp (Hz) nw1~nw6 |Cnccr − 1|min |Cnccg − 1|min |Cnccb − 1|min

30~35 4, 3, 5, 2, 3, 2 0.0689 0.4138 0.5469
660~665 3, 5, 2, 4, 2, 3 0.0685 0.4156 0.5479

1220~1205 2, 3, 5, 3, 4, 2 0.0689 0.4152 0.5479

Table 4. The correlation coefficients between adjacent pixels in the plain and cipher images.

Fp
(Hz)

nw1~nw6
Horizontal Vertical Diagonal

R G B R G B R G B

55 5, 4, 2, 3,
2, 4 −0.0772 −0.0213 −0.0028 0.1237 0.0857 0.1114 −0.0389 0.0517 0.0770

1200 2, 3, 5, 3,
4, 2 0.1764 0.1109 0.0494 −0.0536 −0.0542 −0.0432 0.0043 0.0324 0.0037

Original image 0.9798 0.9690 0.9329 0.9894 0.9824 0.9578 0.9696 0.9552 0.9181

Table 2 shows the experimental results of the normalized cross-correlation calcu-
lated by adding one to the number of single-syllable waveforms of the voice key without
changing the peak frequency. Table 3 shows the experimental results of the normalized
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cross-correlation calculated after the number of single waveforms remained unchanged
and the peak frequency was fine-tuned. The parameters Cnccr (red channel), Cnccg (green
channel) and Cnccb (blue channel) are normalized cross-correlations between the encrypted
image before fine-tuning and the encrypted image after fine-tuning of a parameter. It can be
observed from the experimental data provided in these two tables that when the encrypted
input data undergo a small change, the encrypted image changes significantly in the green
and blue channels. As the overall tone of the image is reddish, the red channel changes
slightly. Figures 6 and 7 are used to intuitively illustrate this remarkable change.
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cannot be recognized at all. 

This sensitivity has advantages and disadvantages. On the one hand, it effectively 
satisfies the system operation requirements and significantly improves the safety and res-
olution of the system. On the other hand, when the verifier performs information authen-
tication every other year, there can be a slight change in the voice characteristics. This kind 
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are 5, 4, 5, 2, 5, 3; (c) Decrypted image that fails after fine-tuning the parameters.

Figure 7 shows that when Fp is 650 Hz, nw1~nw6 are set to 5, 4, 5, 2, 5, 3 to decrypt the
encrypted image of nw1~nw6 (5, 3, 5, 2, 5, 3). Figure 8 shows that when nw1~nw6 are 3, 5, 2, 4,
2, 3, the encrypted image with Fp of 662 Hz is used to decrypt the encrypted image with Fp
of 661 Hz. From the experimental data samples presented in the table and the experimental
images shown in Figures 7 and 8, it can be observed that after the fine-tuning of the number
of crests and peak frequency, the image decryption cannot be performed normally, and it is
very sensitive to the input parameters. The decrypted image is completely unrecognizable
as long as there is a slight input change, indicating that the chaotic characteristics of the
encryption algorithm have been included in the encryption process.
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Figure 8. Unchanged nw1~nw6, image decryption with fine-tuned voice peak frequency. (a) Encrypted
image when Fp is equal to 661 Hz; (b) Encrypted image when Fp is equal to 662 Hz; (c) Decrypted
image that fails after fine-tuning the parameters.

It can be concluded from the experimental process that the algorithm is suitable for
remote identification. The authentication scheme is a completely closed system where the
encrypted image information is completely invisible to the outside. Therefore, it does not
involve the anti-attack and crack verification of the encrypted information and only the
sensitivity of the algorithm should be verified. It can be gathered through experimental
verification and data analysis that the scheme is feasible. The image decoding is very
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sensitive to the input information. If the features of the input voice information are slightly
different from those of the voice information input provided last time, the decoded image
cannot be recognized at all.

This sensitivity has advantages and disadvantages. On the one hand, it effectively
satisfies the system operation requirements and significantly improves the safety and
resolution of the system. On the other hand, when the verifier performs information
authentication every other year, there can be a slight change in the voice characteristics.
This kind of change is mainly related to the small feature changes in the audio domain,
and even a 1 Hz input difference will cause the authentication to fail. As long as the
verifier’s single-syllable voice remains unchanged, the number of single peaks of a single
waveform in the time domain will not change. However, a person with the same voice
frequency characteristics may still have very small changes between two authentications.
This shortcoming can be solved by setting the tolerance of the peak frequency during the
programming process and decoding the encrypted image within the tolerance range. This
overcomes the misjudgment caused by the high sensitivity of the algorithm.

4.2.2. Correlation between Adjacent Pixels

The correlation between adjacent pixels is strong for plaintext images, and it can be
easily cracked by the attackers. Therefore, in order to increase the difficulty of decryption
and improve the security for ciphertext images, the correlation between adjacent pixels
should be reduced [26,27]. In this article, the horizontal, vertical and diagonal adjacent
pixels of the plaintext and ciphertext images of Lena from red, green and blue channels are
analyzed for correlation under different Fp conditions. The correlation calculation formula
is as follows: 

rxy = cov(x,y)√
D(x)
√

D(y)

cov(x, y) = 1
N

N
∑

i=1
(xi − E(x))(yi − E(y))

E(x) = 1
N

N
∑

i=1
xi

E(y) = 1
N

N
∑

i=1
yi

D(x) = 1
N

N
∑

i=1
(xi − E(x))2

D(y) = 1
N

N
∑

i=1
(yi − E(y))2

(8)

where, xi and yi (i = 1, 2, . . . , N) are the brightness values of two adjacent pixels from
each color channel, and rxy is the correlation coefficient of two adjacent pixels. The size of
the pixel sample set selected in the image is denoted by N, where all pixels are selected.
The expectation and variance of the variable x are denoted by E(x) and D(x), respectively,
while E(y) and D(y) denote the expectation and variance of variable y, respectively. Table 4
shows the coefficients of two adjacent pixels of the encrypted ciphertext image under
different Fp conditions, different color channels and different directions. These coefficients
are significantly reduced and are all close to zero. Table 5 shows a comparison with other
algorithms.

Table 5. The comparison of image correlation coefficients.

Image
Horizontal Vertical Diagonal

Ref. [28] Ref. [29] Ref. [30] Ref. [28] Ref. [29] Ref. [30] Ref. [28] Ref. [29] Ref. [30]

Lena 0.01534 0.0214 −0.038118 0.01391 0.0465 −0.029142 0.01399 0.009 0.002736
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4.2.3. Ability of Resisting Differential Attack

The image encryption algorithm should effectively resist differential attacks. Therefore,
it should be very sensitive to subtle changes in the original image. The number of changing
pixel rate (NPCR) and the unified averaged changed intensity (UACI) are the two most
common quantitative methods used to evaluate the robustness of an image encryption
algorithm against differential attacks. The ideal values of NPCR and UACI are 99.6094% and
33.4635% [31–34], respectively. These two metrics are defined by the following expressions:

NPCR(C1, C2) =
j=N

∑
j=1

i=M

∑
i=1

D(i, j)
M× N

× 100% (9)

UACI = (C1, C2) =
j=N

∑
j=1

i=M

∑
i=1

|c1(i, j)− c2(i, j)|
M× N × 255

× 100% (10)

D(i, j) =
{

0, C1(i, j) = C2(i, j)
1, C1(i, j) 6= C2(i, j)

(11)

where, C1 and C2 represent two different encrypted images, and their corresponding
plaintext images only differ in pixel values at one position. Let C1(i, j) and C2(i, j) be the ith
row and jth column pixels of two cipher images C1 and C2, respectively. The size of the
image is M × N and D(i, j) represents whether the corresponding pixel values C1(i, j) and
C2(i, j) of the two images are equal or not. Table 6 shows the NPCR and UACI values of the
red, green and blue channels of Lena image for varying values of nw1~nw6 while keeping
Fp as constant, and varying values of Fp while keeping nw1~nw6 constant. Table 7 shows
the comparison with other algorithms. The experiments show that the NPCR value of Lena
ciphertext image fine-tuned by Fp or nw1~nw6 is very close to the ideal value of 99.6094%.

Table 6. The NPCR and UACI for the cipher images.

Fp (Hz) nw1~nw6
R G B

NPCR UACI NPCR UACI NPCR UACI

55 5, 4, 2, 3, 2, 4
0.9938 0.2271 0.9951 0.2411 0.9916 0.152155 5, 4, 3, 3, 2, 4

55 5, 4, 2, 3, 2, 4
0.9920 0.2139 0.9946 0.2377 0.9908 0.149756 5, 4, 2, 3, 2, 4

1200 3, 2, 4, 3, 5, 2
0.9893 0.2105 0.9940 0.2287 0.9891 0.13761200 3, 2, 5, 3, 5, 2

1200 3, 2, 4, 3, 5, 2
0.9925 0.2138 0.9943 0.2375 0.9909 0.14961201 3, 2, 4, 3, 5, 2

Table 7. The comparison results of NPCR and UACI.

Ref. [35] Ref. [36] Ref. [37] Ref. [38] Ref. [39]

NPCR (%) 99.54 99.6146 99.6048 99.4602 99.655
UACI (%) 28.27 33.5113 33.2966 33.2161 33.516

It can be seen from the experimental data that there is a certain gap between the
UACI value obtained using the proposed method and the values provided in the existing
literature. This is caused by the uneven gray-scale distribution of the experimental images.
Histogram equalization could be added to the experiment to optimize the UACI. Table 8
shows the optimized UACI, which is close to the ideal value and is equivalent to the UACI
values given in other references. Figure 9 shows the optimized images and Figure 10 depicts
the histogram of the original image and the decrypted image before and after equalization.
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Table 8. The optimized UACI.

Fp (Hz) nw1~nw6 R
UACI

G
UACI

B
UACI

55 5, 4, 2, 3, 2, 4
0.3559 0.3422 0.341755 5, 4, 3, 3, 2, 4

55 5, 4, 2, 3, 2, 4
0.3383 0.3394 0.338756 5, 4, 2, 3, 2, 4

1200 3, 2, 4, 3, 5, 2
0.3336 0.3284 0.31771200 3, 2, 5, 3, 5, 2

1200 3, 2, 4, 3, 5, 2
0.3380 0.3392 0.33851201 3, 2, 4, 3, 5, 2
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Figure 10. Histograms of original and encrypted images. (a) Histogram of the red channel of
the original image before equalization; (b) Histogram of the green channel of the original image
before equalization; (c) Histogram of the blue channel of the original image before equalization;
(d) Histogram of the red channel of the decrypted image after equalization; (e) Histogram of the
green channel of the decrypted image after equalization; (f) Histogram of the blue channel of the
decrypted image after equalization.
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4.2.4. Key Space Analysis

The size of the key space directly influences the quality of the encryption algorithm,
and also determines the probability of its being successfully cracked. Generally, an encryp-
tion algorithm with a small key space is likely to be cracked by brute force without the use
of any particular decryption skills. Research shows that the key space of the algorithm
should be greater than 2100 to prevent the possibility of being cracked [40–42].

When counting the key space, a 6-digit voice password is considered. The value range
of fm is 50–2000 Hz and the value interval is 1 Hz. The value range of k1, k2, k3 and k6
is 20–1000 and the value interval is 10−7. The value range of k7 and k8 is 103–1010, the
value interval is 1, and the calculated key space is 2232. If the number of voice cipher bits is
increased, the capacity of the key space can be further increased.

In addition, the commonly used analytical methods of encryption algorithms also
include histogram and information entropy analysis [43–46]. The encryption method
proposed in this article is used for face recognition. Therefore, the gray distribution of
the image can be arbitrarily changed while keeping the facial characteristics unchanged
to construct the required histogram distribution and information entropy value without
affecting the application of the algorithm.

5. Conclusions

This paper proposed an image encryption and decryption algorithm based on a voice
data key. The remote identification scheme designed using this algorithm improves the
robustness of the traditional face recognition verification method. The experiments show
that the encryption and decryption algorithms are highly sensitive to the key and the
sensitivity is adjustable. If the time-domain waveform of the user’s voice differed by
a single peak, or the peak frequency differs by 1 Hz, the encrypted image cannot be
decrypted. The algorithm key space 2232 has sufficient resistance to exhaustive attacks.
On the basis of this algorithm, the key space can be further increased by adjusting the
parameters. The correlation experiment between adjacent pixels showed that the maximum
value of correlation coefficients is 0.1764, which appeared in the horizontal direction of
the encrypted red channel at a peak frequency of 1200 Hz. The analysis of the differential
attack experiment revealed that the minimum value of NPCR was 0.9891, which appeared
in the encrypted blue channel at the peak frequency of 1200 Hz, and the UACI value was
also close to the ideal value. The experiments showed that this scheme is feasible and has
strong scalability. It can be extended by selecting different voice features of the users, by
selecting different chaotic map, and by selecting different parameters of Equation (4) (k7,
k8 and k9).

The highlights of this scheme are as follows. First, it uses two kinds of feature infor-
mation of the user for authentication. Second, it uses the voice feature as a key. Third,
it is suitable for large-scale promotion and application, i.e., the client only needs a com-
puter or a mobile phone as an input device, and no other hardware devices are required
to perform remote authentication from different places. The limitation of this scheme is
that the identity authentication cannot be performed for deaf and mute individuals. One
possible solution is that deaf and mute individuals may manually enter a key, but this will
reduce the security of the system. In addition, the scheme can currently only authenticate
one targeted individual, and only people can be authenticated. If the scheme is applied to
other goals, the key extraction problem and the image recognition problem should also be
solved. The next step would be to integrate artificial intelligence into the system to solve
the problem of image recognition for authentication of different targets.
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