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Content-based image retrieval (CBIR) provides a sustainable solution to retrieve similar images from an image archive. In the last
few years, the Bag-of-Visual-Words (BoVW)model gained attention and signi	cantly improved the performance of image retrieval.
In the standard BoVW model, an image is represented as an orderless global histogram of visual words by ignoring the spatial
layout. �e spatial layout of an image carries signi	cant information that can enhance the performance of CBIR. In this paper, we
are presenting a novel image representation that is based on a combination of local and global histograms of visual words. �e
global histogram of visual words is constructed over the whole image, while the local histogram of visual words is constructed
over the local rectangular region of the image. �e local histogram contains the spatial information about the salient objects.
Extensive experiments and comparisons conducted on Corel-A, Caltech-256, and Ground Truth image datasets demonstrate that
the proposed image representation increases the performance of image retrieval.

1. Introduction

CBIR is used to search the images from an image archive
that are in a semantic relationship with the query image
[1–3]. Occlusion, overlapping objects, spatial layout, image
resolution, variations in illumination, semantic gap, and
exponential growth in multimedia contents make CBIR a
challenging problem [1–3]. In CBIR, the feature vector is
used to represent the image in the form of low-level visual
features [1, 2].�e feature vector of a query image is computed
and compared with the feature vectors of the images placed
in an image archive [4]. �e closeness of the feature vector
values determines the output. �e appearance of a similar
view in the images belonging to the di�erent classes result
in the closeness of the feature vector values and it decreases
the performance of image retrieval [4]. �e main focus of
the research in CBIR is to retrieve the images that are in a
semantic relationship with the query image [3, 5].

In the standard BoVWmodel [6], an image is represented
as an orderless global histogram of visual words by ignoring
the spatial layout of 2D image space. �e spatial attributes of
an image carry information that enhances the performance of
image retrieval [7].�e approaches based on query expansion
[8], large vocabulary size [7], and so� quantization [9]
are applied to enhance the performance of CBIR. All of
these approaches ignore the spatial layout that provides the
discriminating details [7]. According to Anwar et al. [10],
two approaches add the spatial information to the inverted
index of the BoVW based image representation. �e 	rst
approach deals with the visual words cooccurrence and
requires computational cost with the larger size vocabulary
[11]. �e second approach divides an image into subregions
and construct histograms from each of the subregions [12].
Various types of image representations are proposed by
selecting di�erent semantic regions from the images [12–
16].
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Figure 1: Images from four di�erent classes of Corel-A image benchmark.

Keeping in view the robust performance of the second
approach [12, 14], the proposed research is constructing two
histograms from a single image. �e global histogram of
visual words is constructed over the whole image, while
the local histogram of visual words is constructed over the
local rectangular region of the image. �e details about the
selection of the local rectangular area for the construction
of local histogram are mentioned in Section 3. Figure 1 is
representing the images from four di�erent classes (Africa,
Beach, Elephants, and Horses) of Corel-A image benchmark.
Grass, sky, and trees are in the global appearance of all
these images, while the objects of interest or salient objects
lie in the central region of the images (like people, beach,
elephant, and horses). �ere is no semantic relationship
between these images, as they belong to the di�erent classes.
�e discriminating information is likely to be available in
the central region of an image. �e second row of Figure 1 is
representing the extracted local rectangular regions of these
images (area of the image that is selected for the construction
of local histogram of visual words). �e extracted local
rectangular regions of all of these images are discriminating,
as they contain the information about the salient objects
of the image. Figure 2 is representing an image from the
semantic class Elephant of the Corel-A image benchmark.
�e global appearance of the image contains sky, trees, and
grass, while the main object of interest in the image is
elephant. �e construction of a local histogram from the
image central area adds the spatial attributes of the salient
object to the inverted index of the BoVW representation.

Keeping these facts in view, dense features are extracted
from a set of training and test images; the feature space
is quantized to construct a visual vocabulary. Images are
represented as histograms of visual words (by using a com-
bination of local and global histograms of visual words). �e
local histogram that is constructed over the local rectangular
region of an image contains the spatial information about
the salient objects. �e global and local histograms of visual
words are concatenated and this information is added to
the inverted index of the BoVW representation. �e main
contributions of this paper are

(1) image representation as a combination of local and
global histograms of visual words;

(2) the addition of spatial information from the central
area of the image to the inverted index of BoVW
representation;

(3) reduction of semantic gap between the low-level fea-
tures of an image and high-level semantic concepts.

�e rest of the paper is organized as follows. Section 2 is
about the related research. Section 3 describes the proposed
research methodology. Section 4 is about the experimental
details and results conducted on three image benchmarks.
Section 5 concludes our researchwork and points towards the
future directions.

2. Related Work

Query by Image Content (QBIC) is the 	rst system launched
by IBM for image search [2]. A�er that, a variety of image
retrieval techniques are proposed that are based on color,
texture, and shape [1–3, 5]. Interest points detectors like His-
togram of Oriented Gradients (HOG) [22], Scale-Invariant
Feature Transform (SIFT) [23], Maximally Stable Extremal
Regions (MSER) [24], Speeded-Up Robust Features (SURF)
[25], and BRISK features [26] are used for robust content-
based image matching [27]. Ashraf et al. [28] proposed an
image retrieval by using a combination of color features and
bandlet transformation. �e bandlet transformation-based
representation was selected to extract the salient objects
from the images. Arti	cial Neural Networks (ANN) with an
inverted index was selected for an e�cient image retrieval.
Zeng et al. [29] proposed an image representation based
on spatiogram that was generalized histogram of quantized
colors. In the 	rst step, the color space was quantized
by applying the Gaussian Mixture Models (GMM) and
Expectation-Maximization (EM) algorithm. �e number of
quantized color bins was determined on the basis of Bayesian
Information Criterion (BIC). A spatiogram was based on a
histogram with a spatial distribution of color and each bin
represents the weighted distribution of pixels. �e similarity
between the two images was determined on the basis of
the similarity between the respective spatiograms. Walia and
Pal [30] proposed a framework for color image retrieval
by using a combination of low-level features. �e Color
Di�erence Histogram (CDH) was used to extract the color
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(a) (b)

Figure 2: (a) is presenting the procedure for computation of global histogram, while (b) is presenting the procedure for the extraction of
local histogram.

and texture.�e shape features were extracted by applying an
Angular Radial Transform (ART). �e retrieval e�ectiveness
of the proposed framework was enhanced by modifying
the CDH algorithm. Irtaza and Ja�ar [31] proposed a com-
bination of Genetic Algorithm (GA) and Support Vector
Machines (SVM) to reduce the semantic gap. Images were
represented as a combination of curvelet, wavelet, and Gabor
features. Relevance Feedback (RF) was applied to enhance
the accuracy of the proposed work. Tian et al. [19] proposed
a rotation-invariant and scale-invariant Edge Orientation
Di�erenceHistogram (EODH) descriptor. Steerable 	lter and
vector sumwere applied to obtain themain orientation of the
pixels.�e e�ectiveness of the feature space was improved by
selecting a combination of Color SIFT and EODH.Codebook
was constructed by applying the weighted average of Color
SIFT and EODH. Yu et al. [32] proposed an image retrieval by
using a combination of Local Binary Pattern (LBP)withHOG
and SIFT. �e midlevel features’ combination was selected
to achieve high performance for the complex background.
Visual features were separately extracted from the images by
using SIFT and LBP.Weighted average clustering was applied
for the codebook construction to obtain the integration
of two midlevel features. According to the experimental
results [32], the best performance of image retrieval was
obtained by applying the feature integration of SIFT and LBP.
Wang et al. [15] proposed Spatial Weighting Bag-of-Features
(SWBOF) framework and extracted spatial information from
the subblocks of the images. Local entropy, local variance,
and adjacent blocks distance were selected to calculate the
spatial information. According to experimental results [15],
SWBOF with spatial information performs better than the
traditional BoF representation. Yildizer et al. [33] proposed
CBIR by using multiple Support Vector Machines ensemble.
SVM is used for regression and Support Vector Regression
(SVR) ensemble is selected for classi	cation. According to
the experimental results, the proposed technique improves
the accuracy of image retrieval. Cardoso et al. [20] proposed
iterative technique for CBIR that is based on Multiple SVM
Ensembles. Discrete Cosine Transform (DCT) is selected for
feature extraction and multi-SVM is used for classi	cation.
Yildizer et al. [21] integrated wavelets for an e�ective content-
based image retrieval. k-means with B+-tree data structure is
used for clustering with Daubechies wavelet transform that
has excellent spatial and spectral locality properties, which
make it very useful for CBIR; it is applied to partitioning the
images into di�erent levels. Youssef [17] proposed a novel

Integrating Curvelet Transform with Enhanced Dominant
Colors extraction and Texture (ICTEDCT) analysis for e�-
cientCBIR.Curveletmultiscale ridgeletswere integratedwith
region-based vector codebook subband clustering to enhance
dominant colors extraction and texture analysis.

3. Proposed Methodology

�e lack of spatial information is the main problem in
the standard BoVW representation [7, 15]. Visual words
are represented in a histogram without considering their
locations in the 2D image plane. �e spatial information
carries discriminating details that enhance the performance
of CBIR [7, 15]. �e block diagram of proposed research
methodology is presented in Figure 3.

(1) In the BoVW representation, a raw image � is repre-
sented as

� = (��,�) , (1)

where ��,� is the pixel at the position (�, �).
(2) Dense SIFT features are extracted from the image and

an image � is represented as

� = {	1, 	2, . . . , 	�} , (2)

where 	1 to 	� are image descriptors.

(3) Quantization algorithms like k-means clustering is
applied to construct a visual vocabulary (codebook)
consisting of � visual words, represented as

voc = {�1, �2, . . . , ��} , (3)

where �1 to �� are visual words.
(4) For the construction of global histogram of visual

words, mapping of each visual word is done over the
whole image. For the construction of local histogram
of visual words, mapping of each visual word is done
by extracting the image central area by using (5). �e
nearest visual words are assigned to the quantized
descriptors by using the following equation:

� (	�) = argmin
�∈voc

Dist (�, 	�) , (4)

where �(	�) is representing the visual word assigned
to the kth descriptor 	�, while Dist(�, 	�) is the
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Figure 3: Block diagram of proposed research based on a combination of local and global histograms of visual words.

distance between the descriptor 	� and visual word
�. Each image is represented as a collection of patches
and each patch is represented by visual words.

(5) Two histograms of � visual words are extracted
from a single image. �e computed local and global
histograms are concatenated and this information is
added to the inverted index of BoVW representation.
�e visual words of the local histogram aremapped to
a rectangular area that is de	ned by image width (W)
and height (H). Four points are de	ned to extract the
optimized local rectangular area as follows:

�1 = � × �,
�2 = (� × �) + �1 = (� × �) + (� × �)
= � × (� + �) ,
�3 = � × �,
�4 = (� × �) + �3 = (� × �) + (� × �)
= � × (� + �) ,

(5)

where � is the normalized starting point and � is the
ending point of the local rectangular area.

(6) Consider � as the number of visual words of the
vocabulary. Let �� be the set of the descriptors that
are mapped to the visual word ��; then the �th bin of
the histogram of visual words �� is the cardinality of
the set��:

�� = Card (��) ,
�� = {	�, � ∈ (1, . . . , �) | � (	�) = ��} .

(6)

3.1. Image Classi
cation. SVM is a state-of-the-art supervised
learning classi	cation algorithm [5]. �e linear SVM sepa-
rates two classes by using a hyperplane. �e dataset with two
classes is represented as

{(��, ��)}	�=1 �� = {+1, −1} , (7)

where �� and �� are input datasets and +1 and −1 are the corre-
spondence labels of the classes, respectively. �e hyperplanes
are generated by 	nding the values of the coe�cients:

�
 ⋅ � + � = 0, (8)

where� is weight vector and � is bias.�emaximummargin
is determined by 2/‖�‖ hyperplanes and the two classes
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are separable from each other according to the following
equations:

�
 ⋅ �� + � = 1,

�
 ⋅ �� + � = −1.
(9)

�is can be expressed equivalently as

�� (�
 ⋅ �� + �) ≥ 1. (10)

�e kernel method [34] is used in SVM to compute the
dot product in the high-dimensional feature space that pro-
vides the ability to generate nonlinear decision boundaries.
�e kernel function permits using the data with no obvious
	xed dimensions.�ehistograms of visual words constructed
over the local and global areas of the image are normalized
and SVM Hellinger kernel [35] is applied on the normalized
histograms by using following equation:

�(ℎ, ℎ�) = ∑
�
√ℎ (�) ℎ� (�), (11)

where ℎ and ℎ� are the normalized histograms.
�e SVM Hellinger kernel is selected because of its low

computational cost and instead of computing the kernel
values, it explicitly computes the featuremap and the classi	er
remains linear. �e one-versus-one rule is applied for �
number of classes; � ⋅ (� − 1)/2 classi	ers are constructed and
each classi	er trains the data by using two classes.

4. Experiments and Results

�is section is about the details of experiments conducted for
the evaluation of the proposed image representation based
on a combination of local and global histograms of visual
words. �e proposed research is evaluated on Corel-A image
benchmark, Caltech-256, and Ground Truth image datasets.
�e images are randomly divided into training and test
datasets. �e visual vocabulary (codebook) is constructed
from the training images and retrieval precision is calculated
by using the test dataset. Keeping in view the unsupervised
nature of clustering by applying k-means, each experiment
is repeated 10 times and average values of precision are
reported. In order to evaluate the performance of proposed
research, we determined the relevant images retrieved in
response to a query image. A computer simulation is used to
select images randomly from test dataset and use them as a
query image.�e response to the query image is evaluated on
the basis of relevant images retrieved. Precision determines
the number of relevant images retrieved in response to a
query image and it shows the speci	city of the image retrieval
system:

Precision = Number of relevant images retrieved

Total number of images retrieved
. (12)

Recall measures the sensitivity of the image retrieval
system. Recall is calculated by the ratio of correct images

retrieved to the total number of images of that class in the
image benchmark:

Recall = Number of relevant images retrieved

Total number of relevant images
. (13)

�e details about experimental parameters are given
below.

(1) Vocabulary Size. �e size of visual vocabulary is a
major parameter that a�ects the performance of content-
based image matching [36, 37], increasing the size of visual
vocabulary at certain level, and increases the performance
and larger size visual vocabulary tends to over	t. Di�erent
sizes of visual vocabulary are constructed for the Corel-A (20,
50, 100, 200, and 400), Caltech-256 (20, 50, 100, 200, 400,
and 600), and Ground Truth (10, 20, 30, 40, and 50) image
benchmarks in order to evaluate the best performance of the
proposed image representation.

(2) Dense Pixel Stride. �e dense SIFT features are extracted
from the training and test images. For a precise content-
based image matching, we extracted dense features using
three di�erent scales. �e dense pixel stride or the step size
is used to control the spatial resolution of the dense grid. A
smaller pixel stride results in a 	ner grid, while a larger pixel
stride makes the grid coarser. With a pixel stride of 5, 15, and
25, we considered every 5th, 15th, and 25th pixel, respectively,
as a features to calculate the SIFT descriptor from local and
global regions of each image.

(3) Feature Percentage for the Vocabulary Construction. �e
feature percentage to construct a visual vocabulary from
a training dataset is one of the parameters that a�ect the
performance of image retrieval. According to [36], increasing
the percentage of features for visual vocabulary construction
increases the performance of content-based image matching
and vice versa. In experiments, di�erent percentages (10%,
25%, 50%, 75%, and 100%) of dense features per image are
used to construct visual vocabulary.

(4) Value of � and y. x and � are used for the extraction of
local rectangular area. A�er a number of experiments, the
optimized normalized starting value of � = 0.22 and ending
value of � = 0.60 are selected for training and test images.

4.1. Retrieval Performance on Corel-A Image Benchmark. �e
Corel-A image benchmark (http://wang.ist.psu.edu/docs/
related/) is selected for the evaluation of the proposed
image representation and results are compared with the
standard BoVW representation [6] and the state-of-the-art
CBIR research [4, 15, 17–19]. �e Corel-A image benchmark
contains 1000 images that are divided into ten semantic cat-
egories, namely, Africa, Buildings, Beach, Dinosaurs, Buses,
Elephants, Horses, Flowers, Mountains, and Food. Each
semantic category consists of 100 images with a resolution of
256 × 384 pixels or 384 × 256 pixels. Figure 4 is representing
the images from all the semantic classes of Corel-A image
benchmark.
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Figure 4: Samples of images from each category of Corel-A image benchmark.

Table 1: MAP of the proposed image representation on a vocabulary size of 200 visual words and pixel stride of 5.

Vocabulary size &
features% used

20 50 100 200 400

10% 77.40 80.27 81.98 84.01 82.57

25% 77.74 80.92 82.02 84.12 83.16

50% 77.85 81.06 82.53 84.25 83.01

75% 78.08 81.16 83.07 84.33 83.24

100% 78.36 81.32 83.27 84.38 83.29

MAP 77.88 80.95 82.57 84.21 83.05

Standard deviation 0.3609 0.4050 0.5899 0.1522 0.2905

Con	dence interval 77.43–78.33 80.44–81.44 81.84–83.30 84.02–84.40 82.69–83.41

Standard error 0.1614 0.1811 0.2638 0.0680 0.1299

In order to maintain a balance, 50% images are used for
the training and the remaining 50% images are used for the
testing. Di�erent sizes of visual vocabulary (20, 50, 100, 200,
and 400) are constructed from a set of training images. Mean
Average Precision (MAP) is calculated by a random selection
of 500 images from the test dataset. MAP for top-20 image
retrievals as a function of vocabulary size and percentage of
dense features per image used in vocabulary construction are
presented in Table 1.

�e additional statistical investigation in Table 1 rein-
forces our described results. We have calculated standard
error as description and estimated 95% con	dence interval
as inferential results. From these results, we can easily
conclude that both the lower and the upper bounds at 5%
level of signi	cance exceed 84% of MAP and the smaller
value of standard error further enhances the fact that the
visual vocabulary of size 200 visual words shows precise
and consistent result as compared to other sizes of visual

vocabulary on di�erent features percentages (10%, 25%, 50%,
75%, and 100%).

�e MAP obtained by using proposed image representa-
tion based on a combination of local and global histograms
of visual words (by using a vocabulary size of 200 visual
words) on the pixel strides of 5, 15, and 25 is 84.21%,
82.12%, and 78.29%, respectively. �e MAP of the proposed

image representation is compared with the standard BoVW
representation (without considering the spatial information

of local histogram). �e MAP comparison of the proposed

research and standard BoVWas a function of vocabulary size

on the pixel strides of 5, 15, and 25 is graphically represented

in Figure 5. �e proposed image representation outperforms

the standard BoVW representation on all vocabulary sizes

(pixel strides of 5, 15, and 25). According to the experimental

results, the MAP for all vocabulary sizes on a pixel stride of 5

is greater than pixel strides of 15 and 25.
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Table 2: Comparison of MAP for top-20 image retrievals on Corel-A image benchmark.

Class & method Proposed research Youssef [17] Irtaza et al. [4] Poursistani et al. [18] Tian et al. [19] Wang et al. [15]

Africa 73.03 63.5 65 70.24 74.6 64

Beach 74.58 64.2 60 44.44 37.8 54

Buildings 80.24 69.8 62 70.8 53.9 53

Buses 95.84 91.5 85 76.3 96.7 94

Dinosaurs 97.95 99.2 93 100 99 98

Elephants 87.64 78.1 65 63.8 66 78

Flowers 85.13 94.8 94 92.4 92 71

Horses 86.29 95.2 77 94.7 87 93

Mountains 82.43 73.8 73 56.2 58.5 42

Food 78.96 80.6 81 74.5 62.2 50

Table 3: Comparison of recall for top-20 image retrievals on Corel-A image benchmark.

Class & method Proposed research Youssef [17] Irtaza et al. [4] Poursistani et al. [18] Tian et al. [19] Wang et al. [15]

Africa 14.61 12.70 13.00 14.05 14.92 12.80

Beach 14.92 12.84 12.00 8.89 7.56 10.80

Buildings 16.05 13.96 12.40 14.16 10.78 10.60

Buses 19.17 18.30 17.00 15.26 19.34 18.80

Dinosaurs 19.59 19.84 18.60 20.00 19.80 19.60

Elephants 17.53 15.62 13.00 12.76 13.20 15.60

Flowers 17.03 18.96 18.80 18.48 18.40 14.20

Horses 17.26 19.04 15.40 18.94 17.40 18.60

Mountains 16.49 14.76 14.60 11.24 11.70 8.40

Food 15.79 16.12 16.20 14.90 12.44 10.00

Mean 16.84 16.21 15.10 14.57 14.55 13.94
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Figure 5: MAP as a function of vocabulary size.

In order to present a sustainable performance of the
proposed research, the image retrieval precision and recall
for the top-20 image retrievals are compared with the state-
of-the-art research of CBIR [4, 15, 17–19]. Tables 2 and 3 are
presenting the classwise comparison of average precision and
recall of the proposed research (with a vocabulary size of 200
words on a pixel stride of 5 and by using 100% features per
image) with the existing state-of-the-art techniques of CBIR.
�e MAP comparison is shown in Figure 6, while precision-
recall curve is shown in Figure 7.

�e experimental results conducted on Corel-A image
benchmark prove the robustness of the proposed image
representation. �e MAP of the proposed research is higher
than the existing state-of-the-art research [4, 15, 17–19]. �e
MAP obtained from the proposed image representation is
84.21% (with a vocabulary size of 200 visual words on a pixel
stride of 5 and by using 100% features per image).

�e image retrieval results obtained by using proposed
image representation for the semantic class “Buses” and
“Beach” are shown in Figures 8 and 9, respectively, in res-
ponse to the query images that shows reduction of semantic
gap in terms of classi	er decision value (score). �e classi	er
decision label determines the class of the image, while
classi	er decision value (score) is used to 	nd the similar
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Figure 6: Comparison of MAP with the state-of-the-art methods
on Corel-A image benchmark.
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Figure 7: Precision-recall curve for Corel-A image benchmark.

images. �e real values shown at the top of each image are
the classi	er decision value (score) of the respective image,
computed by applying the Euclidean distance between score
of the query image and scores of the retrieved images. Top-20
retrieved images, whose score is close to the score of the query
image aremore similar to the query image and vice versa (due
to limited space, the retrieval results in response to the query
images are shown for two semantic classes only).

4.2. Performance on Caltech-256 Image Benchmark. Caltech-
256 image benchmark (http://www.vision.caltech.edu/) con-
sists of 256 semantic classes and each semantic class contains
80 to 827 images. For the simplicity, we randomly selected
10 classes from the Caltech-256 image benchmark. �e
selected classes are Motorbike, Faceeasy, Fireworks, Bonsai,
Butter�y, Leopard, Airplanes, Ketch, and Hibiscus as shown
in Figure 10.

Di�erent sizes of visual vocabulary (20, 50, 100, 200, 400,
and 600) are constructed from a set of training images. 50%
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Figure 8: Image retrieval result shows reduction of semantic gap for
the semantic class “Buses.”
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Figure 9: Image retrieval result shows reduction of semantic gap for
the semantic class “Beach.”

images are used for the training and the remaining 50%
images are used for the testing. �e MAP of the proposed
research is compared with standard BoVW representation
(without considering the spatial information) on di�erent
pixel strides (5, 15, and 25), vocabulary sizes (20, 50, 100,
200, 400, and 600), and feature percentages (10%, 25%,
50%, 75%, and 100%) for vocabulary construction. �e MAP
obtained from the proposed image representation and the
standard BoVW representation by using di�erent parameters
is graphically presented in Figure 11.
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Figure 10: Samples of images from 10 semantic classes of Caltech-256 image benchmark.

100 200 300 400 500 6000

Size of vocabulary

75

80

85

M
A

P

Proposed research with pixel stride of 5

BoVW with pixel stride of 5

Proposed research with pixel stride of 15

BoVW with pixel stride of 15

Proposed research with pixel stride of 25

BoVW with pixel stride of 25

Figure 11: MAP as a function of vocabulary size for the Caltech-256
image benchmark.

�e experimental results conducted on 10 semantic
classes of Caltech-256 image benchmark prove the robustness
of the proposed image representation. �e MAP obtained by
using the proposed image representation (with a vocabulary
size of 400 visualwords andby using 100% features per image)
on the pixel strides of 5, 15, and 25 is 86.50%, 83.98%, and
81.71%, respectively, while MAP obtained by using the same
experimental parameters for standard BoVW representation
is 85.45%, 83.05%, and 80.95%, respectively. According to
the experimental results, the MAP for all vocabulary sizes
decreases by increasing the pixel stride as shown in Figure 11,
while precision-recall curve is shown in Figure 12.
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Figure 12: Precision-recall curve for Caltech-256 image benchmark.

4.3. Performance on Ground Truth Image Benchmark.
Ground Truth image benchmark (http://imagedatabase.cs
.washington.edu/groundtruth/) is a publicly available image
benchmark and is used for the evaluation of CBIR research
[20, 21, 33]. �ere are a total of 1109 images that are divided
into 22 semantic classes. We manually selected all the images
from 5 di�erent semantic classes of Ground Truth image
benchmark. �e selected classes for the evaluation of the
proposed image representation are Abro green, Cherries,
Football, Green Lake, and Swiss Mountains as shown in
Figure 13. �e 5 classes are selected in order to compare
the performance of the proposed image representation with
existing state-of-the-art research [20, 21, 33] because these
researchers also reported their results on the same number
of classes of Ground Truth image benchmark.

50% images are used for the training and the remaining
50% images are used for the testing. Di�erent sizes (10, 20,
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Figure 13: Samples of images from 5 semantic classes of Ground Truth image benchmark.
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Figure 14: Comparison of MAP with the state-of-the-art methods
on Ground Truth image benchmark.

Table 4: Classwise comparison of average precision.

Class & method Proposed method [20] [21]

Abro green 75.25 80 66.67

Cherries 71.94 80 50

Football 90.18 100 75

Green Lake 84.23 80 50

Swiss Mountains 92.63 60.67 50

30, 40, and 50) of visual vocabulary are constructed and
MAP on the vocabulary of these di�erent sizes is calculated.
According to the experimental results, the MAP of 82.84% is
obtained by using the proposed image representation (with a
vocabulary size of 40 visual words on pixel stride of 5 and
by using 100% features per image). �e classwise average
precision obtained from the proposed image representation
is presented in Table 4, while MAP is graphically presented
in Figure 14.

Table 5: Computational cost (in seconds) of the proposed algo-
rithm.

Number of images retrieved Proposed research

Top-5 0.2872

Top-10 0.3972

Top-15 0.6470

Top-20 0.7837

Top-25 0.9184

Top-30 1.1103

Experimental results and comparisons conducted on the
Ground Truth image benchmark prove the robustness of the
proposed research based on a combination of local and global
histograms of visual words. �e MAP obtained from the
proposed image representation is higher than the existing
state-of-the-art research [20, 21, 33].

4.4. Complexity Performance. �e computational cost of the
proposed algorithm is calculated using Intel(R) Core i3
(fourth generation) 1.7 Ghz CPU with 4GB RAM (DDR3),
3MB L3 cache, and Windows 7 operating system. �e
proposed algorithm is implemented in MATLAB and visual
vocabulary is constructed o�ine using a training dataset and
tested at run time using a test dataset. �e average CPU
time (in seconds) required from features extraction to image
retrieval is presented in Table 5.

5. Conclusion and Future Directions

In this paper, we proposed a novel image representation
based on a combination of local and global histograms of
visual words. �e local histogram of visual words adds the
spatial information of the central area to the inverted index of
BoVW representation. �e combination of local and global
histograms of visual words is a possible solution to capture
the semantic information from the image. �e performance
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of the proposed image representation is evaluated on three
challenging image datasets. �e proposed image represen-
tation outperforms the state-of-the-art research including
the standard BoVW representation. For the future work, we
plan to replace the BoVW model with either Fisher kernel
framework or the Vector of Locally Aggregated Descriptors
(VLAD) model to evaluate a large-scale image retrieval.
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