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Abstract
Background

The tumor immunological microenvironment (TIME) has a prominent impact on prognosis and
immunotherapy. However, the heterogeneous TIME and the mechanisms by which TIME affects
immunotherapy have not been elucidated in hepatocellular carcinoma (HCC).

Methods

A total of 2195 eligible HCC patients from TCGA and GEO database were collected. We comprehensively
explored the different heterogeneous TIME phenotypes and its clinical signi�cance. The potential
immune escape mechanisms and what genomic alterations may drive the formation of different
phenotypes were further investigated.

Results

We identi�ed three phenotypes in HCC: TIME-1, the “immune-de�ciency” phenotype, with immune cell
depletion and proliferation; TIME-2, the “immune-suppressed” phenotype, with being in
immunosuppressive states; TIME-3, the “immune-activated phenotype”, with abundant leukocytes
in�ltration and immune activation. The prognosis and sensitivity to both sorafenib and immunotherapy
differed among the three phenotypes. We also underlined the potential immune escape mechanisms: lack
of leukocytes and defective tumor antigen presentation capacity in TIME-1, increased
immunosuppressive cells in TIME-2, and rich in immunoinhibitory molecules in TIME-3. The different
phenotypes also demonstrated speci�c genomic events: TIME-1 characterized by TP53, CDKN2A,
CTNNB1, AXIN1 and FOXD4 alterations; TIME-2 characterized by signi�cant alteration patterns in the
PI3K pathway; TIME-3 characterized by ARID1A mutation. Besides, the TIME index (TI) was proposed to
quantify TIME in�ltration pattern, and it was a superior prognostic and immunotherapy predictor.

Conclusions

We identi�ed three TIME phenotypes with different clinical outcomes, immune escape mechanisms and
genomic alterations in HCC, which could present strategies for improving the e�cacy of immunotherapy.
TI as a novel prognostic and immunotherapeutic signature that could guide personalized immunotherapy
and clinical management of HCC.

Background
Hepatocellular carcinoma (HCC) is the dominant histologic type of primary liver cancer, with a high
incidence and mortality rate [1]. Although there are various therapeutic modalities for HCC, including
surgical resection, chemotherapy, radiofrequency ablation and liver transplantation, its recurrence rate
and prognosis remains unsatisfactory[2,3]. Recently, immunotherapy has made great progress as a new
treatment method in HCC. However, to date, this only bene�ted a subset of patients[4,5]. The insu�cient
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understanding of the tumor immunological microenvironment (TIME) may be the main reason for
disappointing results. At the individual level, HCC has signi�cant TIME heterogeneity, and the
comprehensive understanding of the heterogeneity was crucial for clinical diagnosis, personalized
treatment and prognosis prediction in HCC[6].

HCC is a typical in�ammation-driven tumor, which is mainly derived from viral infections and liver
�brosis[7]. The transition from chronic hepatitis to HCC is accompanied by changes in local TIME [8].
Immune cells are the main components of TIME, and their number and status play a critical role in the
progression of tumor development, invasion and metastasis. Previous researches have mainly focused
on one or several immune cell types[9-12], which may bias the understanding of TIME due to the intensive
cellular interaction between different cells. Hence, it is essential to be considered as a whole.

The rapid development of genomics and transcriptomics has made it possible to systematically explore
the TIME heterogeneity in HCC. In the present study, we collected a total of 2,175 eligible samples from 15
cohorts, and combined with multi-omics data, hoping to explore different heterogeneous TIME
phenotypes, further investigate the potential immune escape mechanisms of each TIME phenotype and
what genomic alterations may lead to the formation of these different phenotypes. As a result, we
successfully identi�ed and validated three heterogeneous phenotypes based on the broad-spectrum
immune cells in TIME. These three phenotypes exhibited different clinical outcomes, immune escape
mechanisms and speci�c genomic alterations. In addition, the TIME index (TI) was developed to quantify
TIME in�ltration pattern, and it was a superior prognostic and immunotherapy predictor.

Methods
Data collecting and processing

The present work�ow was shown in Figure S1. For the discovery cohorts, the HCC microarray datasets
were recruited from the Gene Expression Ominibus (GEO) database with the following criteria: (1) only
from Affymetrix platform; (2) primary liver cancer; (3) untreated patients; (4) the number of patients was≥50; (5) with more than 12,000 protein coding genes. Finally, 14 eligible datasets containing 1,821
patients were retrieved (Table S1). For the TCGA validation cohort, the TCGA-LIHC RNA-seq data was
obtained from the UCSC Xena Portal. Please refer to Supplementary Materials and Methods for the data
processing details. The corresponding clinical and sample information were obtained from the GEO and
UCSC databases. For the TCGA-LIHC project, the somatic mutation data, copy number variation data, and
DNA methylation data were obtained from the TCGA portal. In addition, we also downloaded the RNA-seq
data and clinical information of the 32 other cancer types from the UCSC databases.

Integrated assessment of the TIME immune cell composition

In order to quantify the relative abundance of each immune cell population in TIME, we applied the single
sample gene set enrichment analysis (ssGSEA) algorithm [13]. The gene sets for marking 24 immune cell
types was recruited from Bindea et al. study [14]. In order to ensure the rationality and robustness of the
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ssGSEA results, two different algorithms were utilized to further validate: CIBERSORT [15] and MCP-
counter [16]. The details were described in Supplementary Materials and Methods.

Identi�cation and validation of the TIME phenotypes

We used the ConsensusClusterPlus package to determine the optimum number of clusters in the GEO
cohort [17]. The results were further detected using the cumulative distribution function (CDF) curve,
proportion of ambiguous clustering (PAC) score, and Nbclust [18]. To evaluate the reproducibility of the
clusters generated from consensus clustering in the GEO cohort, the in-group proportion (IGP) statistical
analysis was employed to further validate the existence of these clusters in the TCGA validation cohort
[19]. The details were described in Supplementary Materials and Methods.

Gene set variation analysis (GSVA)

To further explore the potential biological function and progress variations of each phenotype, we
conducted the GSVA analysis via GSVA package[20]. The gene sets, including the Hallmark and KEGG
gene sets, were derived from the Molecular Signatures Database (MSigDB). The limma package was
implemented to identify the signi�cantly altered pathways between each phenotype and the others with
the following threshold: log FC >0.2 and adjusted P-value <0.05. The resulting P-values from Benjamini-
Hochberg (BH) multi-test correction were adjusted for multiple comparisons using the false discovery rate
(FDR).

Analysis of immunogenomic features

We calculated or collected tumor mutation burden (TMB), SNV or Indel neoantigen load, aneuploidy
scores (AS), homologous recombination defects (HRD) score, microsatellite instability (MSI), TCR or BCR
diversity, cancer/testis-antigens (CTAs) level, antigen processing and presenting machinery scores (APS),
and MHC-related molecules, in order to investigate the tumor immunogenicity of HCC. The details were
described in Supplementary Materials and Methods.

Multi-omics pro�ling of immunomodulators

A total of 62 immunomodulators (including 12 MHC class I genes, 11 MHC class II genes, 27 checkpoint
stimulator genes, and 12 checkpoint inhibitor genes) were recruited [21]. We investigated the multi-omics
regulation landscape (including genes expression, somatic mutation, copy number variation (CNV), DNA
methylation and miRNA expression) of 62 immunomodulators in three phenotypes. The Kruskal-Wallis
test was performed for the mRNA expression, and Fisher’s test was performed for the somatic mutation
and CNV of immunomodulators. The adjusted P-values were acquired using the BH multi-test correction.
To survey the correlation between DNA methylation and gene expression of immunomodulators, each
methylation site was matched to the corresponding gene. Most of the single genes had multiple
methylation sites. In each phenotype, we assessed the Spearman’s correlation between each
immunomodulator expression and all the corresponding methylation sites. Subsequently, we obtained a
single correlation value for every gene by averaging the corresponding correlation coe�cients. Next, we
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estimated the pattern that the miRNA modulated the immunomodulator expression. The signi�cant
inversely correlative pairs of miRNA and immunomodulator were included (Spearman correlation ≤ -0.2
and BH-corrected P <0.05) within each phenotype. Then, according to the predicted blinding targets for
miRNA, these were curated from the miRDB database.

Driver mutation genes and mutation signatures

We utilized MutSigCV (version 1.41) to identify the signi�cantly mutated genes (SMGs) for three
phenotypes of TCGA-LIHC cohort[22], and a q-value of <0.05 was considered as the threshold.
Subsequently, the MutationalPatterns R package was applied to extract the mutation signatures of each
phenotype[23]. The mutational signatures can be extracted from mutation count matrix using non-
negative matrix factorization (NMF). The optimal factorization rank, which was the number of mutational
signatures, can be determined using the NMF package. After calculating the pairwise cosine similarity
between the extracted mutation signatures and the 30 COSMIC signatures previously reported
(http://cancer.sanger.ac.uk/cosmic/signatures), these extracted mutation signatures were then named
based on the COSMIC signature.

Copy number variations

The TCGAbiolinks R package was used to download the CNV data based on the segment mean value
(log2(copy-number/2)) obtained from TCGA database. The ABSOLUTE algorithm was implemented to
estimate tumor ploidy for each sample [24]. To quantify the overall fraction of genomic alteration in three
phenotypes, we calculated the fraction of genome alteration (FGA), fraction of genome gained (FGG), and
fraction of genome lost (FGL). The FGA for a sample was de�ned as the ratio of the number of bases
with CNVs to the number of all bases. The FGG or FGL considered only CNVs that were gained or lost.
The GISTIC 2.0 was applied to de�ne the recurrently ampli�ed and deleted regions of each phenotype
[25].

Methylation pro�ling

We downloaded the HumanMethylation450 array for HCC in TCGA. The global methylation level (GML)
was estimated through averaged beta values of the speci�c probes, as described by Jung et al.[26]. The
CD8+ T cell in�ltrate status and proliferation score were both derived from Thorsson et al. study [21]. For
each phenotype, we identi�ed the epigenetically silenced genes (ESGs) using the following criteria: (1)
excluding the CpG sites methylated in normal tissues (mean β-value of >0.2) or less than 10% of the
tumor samples; (2) the DNA methylation data was divided into the methylation group and unmethylation
group, according to the cutoff (β-value = 0.3); (3) for each probe, if the difference between the
corresponding gene mean expression in the methylated group and that in the unmethylated group was
>1.64 standard deviations of the unmethylated group, the probe would be labeled as epigenetically
silenced; (4) when multiple probes were assigned to the same gene, the gene with more than half of the
corresponding probes were labeled as epigenetically silenced, and identi�ed as ESG.
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TIME index

We applied the limma package to identify the differentially expressed genes (DEGs) between each
phenotype and the others using the following thresholds: |log FC| >1.5 and adjusted P-value <0.05. Based
on these DEGs, ssGSEA was performed to obtain the TIME index (TI) for each patient. Then, we assessed
the prognostic value of TI in both the HCC and pancancer cohort. The performance of TI in predicting the
response to immunotherapy was further evaluated. Six pre-treatment melanoma cohorts with the gene
expression pro�le and immunotherapy information were collected (Supplementary Materials and
Methods). The immunotherapy response prediction accuracy of the TI was compared with 11 other
known biomarkers (CD274, PDCD1, CTLA4, CD8, TMB, T cell clonality, B cell clonality, TIDE, MSI Score,
cytolytic activity (CYT)and APS; the details were described in Supplementary Materials and Methods).
The area under the ROC curve was used as the quality metric of prediction.

Results
Immune cell in�ltration patterns of TIME

We applied the ssGSEA method to assess the in�ltration abundance of 24 immune cell types for 1,821
HCC samples. The correlation between these immune cells was presented in Figure S1A. It was observed
that several pairs strongly correlated with immune cells, such as T cell-cytotoxic cells, B cell-T cells and
macrophage-immature DC cells. Subsequently, we performed a consensus cluster analysis, in which all
HCC samples were initially grouped into different k (k = 2-9) clusters. The CDF curves of the consensus
score and PAC value suggested that the optimal division was achieved when k = 3 (Fig. 2A-C). The same
result was obtained from NbClust (Figure S1B). The three clusters of samples were separated from each
other on the two-dimensional principle component plot (Fig. 1D). Thus, based on the in�ltration pro�les of
24 immune cells in TIME, 1,821 HCC samples were �nally classi�ed into three TIME phenotypes (TIME-1
= 721, TIME-2 = 530, TIME-3 = 570). As shown in Figure 1E-F, TIME-1 presented as an immune de�ciency
phenotype due to the lowest in�ltration in almost all immune cells. On the contrary, it was found that
TIME-3 had a signi�cantly higher in�ltration level in the majority of immune cells, especially adaptive
immune cells (e.g. CD8+T cells and B cells), suggesting that TIME-3 was associated with immune
activation and superior cytotoxic potential. TIME-2 was in an intermediate status of immune in�ltration
between TIME-1 and TIME-3, and was characterized by higher in�ltration immunosuppressive cells that
contain Treg and TH17. In addition, it was also observed that there was a richer in�ltration in some innate
immune cells that contain DC and NK cells in TIME-2. Two other different algorithms were further applied:
CIBERSORT and MCP-counter. The results shared a consistent immune in�ltration pattern with the
ssGSEA method in HCC (Figure S1C–S1D).

In order to ensure the reproducibility and robustness of the TIME phenotypes derived from the GEO
cohort, we further conducted the IGP statistical method to validate the TIME phenotypes in the TCGA
cohort. The three phenotypes were highly consistent between the discovery and validation cohorts, with
the corresponding IGP values at 95.6%, 93.3% and 94.7%, respectively, and the three phenotypes were
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deemed to be of high-quality due to the statistically signi�cance (all, P<0.001). The immune cells
in�ltration patterns in the TCGA cohort exhibited a very similar pattern of immune in�ltration to the GEO
cohort (Figure S1E–S1F). Furthermore, the NbClust also indicated that the three clusters con�guration
was “optimal” in the TCGA cohort (Figure S1G).

Speci�c functional pathways of each TIME phenotype

We further explored the speci�c functional status and biological mechanisms of each phenotype in the
GEO cohort (Fig. 2G and Table S2). TIME-1 was prominently enriched in pathways, such as Myc targets,
G2M checkpoint, and DNA repair. These pathways were remarkably associated with MKI67, and thereby
with proliferation (Fig. 2H). Furthermore, it was observed that the immune-relevant pathways were
signi�cantly downregulated in TIME-1 (Table S2). Combined with the lack of immune cell in�ltration, we
inferred that TIME-1 may present an immune de�ciency phenotype. On the contrary, TIME-3 enriched
intensive pathways related to immune activation, and these pathways had a remarkably positive
association with the immune score assessed through the ESTIMATE algorithm [27] (Fig. 2I), suggesting
that TIME-3 may exhibit a state of immune activation. Notably, TIME-2 was signi�cantly upregulated in
metabolic-relevant pathways. It was observed that there was signi�cantly negative correlation between
the immune score and these speci�cally activated pathways in TIME-2 (Fig. 2I). Moreover, TIME-2 was
rich in immunosuppressive cells (e.g. TH17 cell and Treg), which is known from the previous descriptions.
Hence, it was concluded that TIME-2 may present as an immune-suppressed phenotype. The KEGG
results was in accordance with the above (Fig. 2J and Table S3), and similar results were achieved in the
TCGA cohort (Figure S2A–S2B and Table S4-S5). Overall, we identi�ed three TIME phenotypes in HCC
showing signi�cantly different immune cell in�ltration and biological functions, respectively. TIME-1 was
categorized as an immune-de�ciency phenotype, characterized by immune cell depletion and
proliferation; TIME-2 was categorized as an immune-suppressed phenotype, characterized by being in
immunosuppressive states; TIME-3 was categorized as an immune-activated phenotype, characterized by
abundant leukocytes in�ltration and immune activation.

The clinical value of TIME phenotypes

We explored the prognostic value in the two independent cohorts (TCGA-LIHC and NCI cohort), which
contained the complete overall survival (OS) and relapse free survival (RFS) information. The Kaplan-
Meier analysis of both OS and RFS exhibited that HCC patients had an increasingly favorable prognosis
from TIME-1 to TIME-3 (Fig. 3A-D). Furthermore, we assessed the sensitivity to sorafenib in TIME
phenotypes by the pRRophetic package. TIME-1 was found to be more sensitive to sorafenib than the
other phenotypes (Fig. 3E and Figure S3A). Notably, TIME-1 exhibited the highest expression in sorafenib
related target genes (Fig. 3F). Therefore, this suggested that patients in TIME-1 may bene�t from
sorafenib the most. As formerly mentioned, TIME-3 had higher levels of immune cell in�ltration
abundance (e.g. CD8+ T cells). Hence, we speculated that patients in TIME-3 might be more responsive to
immunotherapy. The TIDE algorithm was applied to infer the response to immunotherapy. As respected,
TIME-3 had a higher response rate than the other phenotypes (Fisher’s exact test: P=0.009) in the GEO
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cohort (Fig. 3G), and consistent results was found in the TCGA cohort (Fisher’s exact test: P=0.048)
(Figure S3B). We also utilized the submap algorithm to compare the similarity of the expression pro�les
between the three TIME phenotypes and 47 previous melanoma patients with detailed
immunotherapeutic information, and revealed that patients in TIME-3 were more responsive to anti-PD1
treatment (Bonferroni corrected P=0.008)[28] (Fig. 3H). The submap analysis on the TCGA cohort also
achieved similar results (Figure S3C).

Potential extrinsic immune escape mechanism

To further research the regulatory mechanisms of the TIME phenotypes, we focused on the TCGA cohort,
which possessed multiple omics data and comprehensive clinical data.

We �rstly investigated the extrinsic immune escape mechanisms. Previous studies indicated that
extrinsic immune escape may include three major aspects: absence of leukocytes, presence of
immunosuppressive cells, and release of abundant immunosuppressive cytokines [29,30]. As described
above, TIME-1 was characterized by de�cient immune cell in�ltration and then lack of immune mediated
elimination. TIME-2 was characterized by higher levels of immunosuppressive cells (e.g. TH17 cell and
Treg; Figure S4A–S4B), which indicated a role of immunosuppressive cells in immune escape. In
addition, TIME-2 lacked immune active cells (e.g. CD8+T cells). Therefore, it was speculated that TIME-1
and TIME-2 probably re�ect the absence of recruitment or activation of innate immune cells, inducing
failure of adaptive anti-tumor immune responses. The low expression of molecules in TIME-1 and TIME-2,
such as AIM2, TLR7 and TLR8, was potentially involved in priming of innate immunity, which further
con�rmed our speculation (Fig. 4A). TIME-3 was characterized by the presence of abundant innate and
adaptive immune cells. In addition, TIME-3 had a higher expression of both immunostimulatory and
immunoinhibitory cytokines, while these cytokines were all relatively low in TIME-1 and TIME-2 (Figure
S4C). These results implied that high concentrations of immunoinhibitory cytokines might contribute to
the immune escape in TIME-3. It was noteworthy that the differential expression of cytokines in these
three phenotypes could not be explained by the CNV and mutation frequency (all, P>0.05; Table S6).
Overall, our analysis revealed that the extrinsic immune escape mechanisms of three phenotypes were
lack of tumor-in�ltrating leukocytes, increased immunosuppressive cells, and rich in immunoinhibitory
cytokines, respectively.

Potential intrinsic immune escape mechanism

We further explored the potential intrinsic immune escape mechanisms in two major facets: tumor
immunogenicity and the expression level of immune checkpoint molecules [31]. First, a series of elements
associated with tumor immunogenicity were estimated: genomic instability degree, neoantigen burden,
genomic viral content, CTA level, and tumor antigen presentation competence [32]. The �rst four elements
were the main source of tumor-speci�c antigens. It was found that the genomic instability degree
presented a decreasing trend from TIME-1 to TIME-3 (HRD, AS and MSI; all, P<0.05; Fig. 4B-D). Similarly,
TIME-3 had a lower TMB, when compared to TIME-2 (P<0.05, Fig. 4E). In terms of genomic viral content,
TIME-3 had more HBV read counts than TIME-1 (mean viral read counts, 44.365 vs. 20.907, P<0.05;
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Figure S4D), in contrast to the HCV read counts (mean viral read counts, 12.931 vs. 16.111, P<0.1; Figure
S4E). Of note, the neoantigen burden was relatively lower in TIME-3, although the statistical difference
among the three phenotypes in SNV or indel neoantigens was not reached (Figure S4F–S4G). There was
also not distinct variation among the CTAs overall expression of the three phenotypes (Figure S4H).
Overall, these above indicators had little difference in the TIME phenotypes. We further investigated the
tumor antigen presentation capacity of the three phenotypes, and observed that TIME-3 had the highest
APS and MHC-related molecules expression level, as opposed to TIME-1 (all, P<0.01; Figure S4I and Fig.
4F), which was consistent with the CYT value and BCR/TCR diversity (all, P<0.05; Fig. 4G-I and Figure
S4J-S4K). This indicated that defective tumor antigen presentation capacity may be an intrinsic immune
escape mechanism for TIME-1.

Subsequently, the genomic alterations of 62 immunomodulators were further summarized within the
three TIME phenotypes (Fig. 4F). It was found that TIME-3 had higher costimulatory and coinhibitory
molecules than the other phenotypes. This suggested that TIME-3 may overexpress the immune
checkpoint molecules (such as CTLA4, CD274 and PDCD1; all BH-adjusted P<0.001) to evade the
immune elimination after immune activation. All somatic mutations and CNVs did not signi�cantly differ
among the three phenotypes, and most of immunomodulators exhibited rare somatic mutations and
CNVs, which indicated that the mutations and CNVs in the immunomodulators had little effect on TIME.
Of note, DNA methylation negatively regulated many immunomodulators, such as CD27, CD226 and
TNFSF8, implying epigenetic silencing. The associations were shown between miRNAs and
immunomodulators for each TIME phenotype (BH corrected P-value <0.05; Fig. 4J), such as miR-17
negative correlated with CD274 and PDCD1LG2. It was also observed that the three phenotypes shared a
common TNFSF4 negative regulator: miR-204. Compared with the mutation and CNV, methylation
modi�cation and miRNA sponges played leading roles in regulating the immunomodulators, indicating a
new perspective for the development of immune checkpoint inhibitors.

Genomic alterations of the three TIME phenotypes

The investigators separately determined the SMGs among the three phenotypes using MutSigCV (Fig.
5A). All SMGs had mutation rates greater than 5% in three phenotypes. Among these three TIME
phenotypes, the common SMGs (including TP53, CTNNB1 and ALB) had the top three signi�cant
MutSigCV q-value and frequent mutation rates, indicating that the mutation of TP53, CTNNB1 and ALB
was broad in HCC. Additionally, the three phenotypes also displayed distinct SMGs, such as RB1, ACVR2A
and CREB3L3 were SMGs of the three phenotypes, respectively. Besides, two newly identi�ed SMGs,
namely, BRD7 and RASA1, were classi�ed as tumor suppressor genes, and these were associated with
chromosome remodeling and cell proliferation[33,34]. Based on the NMF, we isolated the mutation
signatures of each phenotype. The age-related mutational processes (spontaneous deamination of 5-
methylcytosine for signature 1 and unknow aetiology for signature 5) were prevalent in three phenotypes
(Fig. 5B). TIME-1 had the least proportion than the other phenotypes (Fig. 5C). In addition, the three
phenotypes also shared a common mutation pro�le (signature 22) associated with exposures to
aristolochic acid. This may be associated with high-proportioned Asian patients in three phenotypes
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(Figure S5A), and the aristolochic acid was mainly derived from herbal drugs of traditional Asian
medicine[35]. Notably, signature 24, which represented the mutational pattern related with a�atoxin, was
identi�ed only in TIME-1, and possessed the maximum proportion (40.4%) (Fig. 5C). This implied that
HCC patients in TIME-1 were more likely to be exposed to a�atoxin. 

Tumor ploidy was estimated by ABSOLUTE, suggesting that a larger scale of HCC presented genome
doubling, and that the doubling pattern was more frequent in TIME-1 compared with the other phenotypes
(P=0.018, Figure S5B). As shown in Figure 4D-F, the FGA, FGG and FGL in TIME-1 were signi�cantly higher
than the other phenotypes, which might promote the cell proliferation and immune escape[36]. We further
applied GISTIC 2.0 to delineate the signi�cant focal copy number alterations of each phenotype (Fig. 5G
and Table S7). CNVs that were recurrent in TIME-1 contained the focal ampli�cation of 8q24.21 (MYC,
ANXA13) and 13q34 (CDC16, TFDP1), and the focal loss of 14q22.1 (SAV1). Recurring focal arms CNVs
in TIME-2 included the only ampli�cation of 6p21.1 (VEGFA), and the loss of 13q13.3 (CCNV1). The
genes on the focal loss arms of TIME-1 and TIME-2 were mainly associated with chemokines and
cytokine through the GO annotation. Hence, the loss of these genes may contribute to the low immune
in�ltration of TIME-1 and TIME-2. TIME-3 exhibited the focal ampli�cation that involved 8q24.12 (MTBP)
and the focal deletion that involved 5q13.2 (TERT) and 10q23.31 (PTEN). These phenotype-special CNVs
may play a crucial role in the biological features of the three phenotypes.

Furthermore, the combination of mutation and CNV data revealed the frequent alterations in different
pathways (Fig. 5H). It was found that some genome alterations distributed evenly in these three
phenotypes, such as TP53, CTNNB1 and ALB. In addition to these common alterations, we also observed
the diverse alteration patterns in the pathways among three phenotypes. In TIME-1, cell cycle regulatory
factor CDKN2A mutated in 12% of the cases. In TIME-2, VEGFA and its downstream genes PIC3KA and
PTEN were frequently altered, and all of which were known to activate the PI3K pathway. APOB
consumes an abundant cellular energy to facilitate very low-density lipoprotein (VLDL) secretion, and we
found that APOB was frequently altered in 19% of the cases for TIME-2. Overall, the diverse genomic
alteration preferences in three phenotypes might contribute to shape the TIME, and lead to differences in
immune cell in�ltration.

Methylation modi�cation and regulation of the TIME phenotypes

As tumor cells divide, the loss of global methylation levels (GMLs) can result in chromosomal instability,
and affect immune cell in�ltration [37-39]. The GMLs in TIME-3 was signi�cantly higher than the other
phenotypes (P<0.001, Fig. 6A). Furthermore, there was a positive correlation between tumor-in�ltrating
CD8+ T cells and GMLs (Fig. 6B). In contrast, the decrease in GML might promote tumor cell proliferation
(Fig. 6C). Subsequently, we identi�ed 31, 25 and 39 ESGs in TIME-1, TIME-2 and TIME-3, respectively
(Table S8 and Fig. 6D-E). It was noted that CPS1, FURIN and PHYHD1 were shared by the three
phenotypes. As a liver-speci�c enzyme, CPS1 can facilitate cell division by instituting the pyrimidine
synthesis pathway[40]. In TIME-1, FOXD4 was marked as epigenetically silenced in 85% of the cases, and
its methylation silencing may lead to immune system dysfunction and tumor proliferation[41] (Fig. 6F).
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Tumor suppressors L1TD1 and PARP6, also the speci�c ESGs of TIME-1, and their methylation may
promote tumor proliferation and low immune in�ltration [42,43] (Fig. 6G-H). SEMA3B belonged to the ESG
of TIME-2, and its methylation can accelerate the progression of HCC[44]. FER1L is an another ESG of
TIME-2, which can activate the PI3K/AKT pathway, further leading to the formation of the
immunosuppressive microenvironment[45]. These results suggested that ESGs exhibit diversity among
the three phenotypes, which may be involved in shaping the TIME, and these speci�c ESGs may also be
potential therapeutic targets.

A robust prognostic and immunotherapy signature: TIME index

We identi�ed 98 phenotype-related DEGs (Table S9). These genes, which signi�cantly varied within the
three phenotypes, possibly contributed to form the heterogenous TIME of HCC. In addition, many genes
have been reported to be critical in immune response, such as CD27, CD8A, GZMA and IL7R [46-49]. The
GO and KEGG annotation also displayed intensive immune phenotypes (Figure S6A-S6B, Table S10-S11).
Based on these DEGs, the ssGSEA was performed to obtain the TI of each patient. The TI presented a
gradual increase from TIME1 to TIME3 (Fig. 7A-B). HCC patients with low TI were mainly distributed in
TIME-1 (Fig. 7C). According to the optimal cut-off determined by the survminer package, we classi�ed
HCC patients into high and low TI groups. As expected, patients in the high TI group exhibited a tendency
to better outcomes in the two independent cohort (Log-rank P<0.001, Fig. 7D-E). Besides, the multivariable
Cox regression revealed that the TI was an independently prognostic factor in HCC (P=0.018, Table S12).
We further assessed the TI of 10,121 patients that involved 33 differing types of cancers. Obvious TI
diversity was observed in different cancers (Fig. 7F), which indicated that heterogeneous immune
in�ltration existed not only within the tumor, but also between tumors. The survival analysis for
pancancer indicated that patients with a higher TI had a better prognosis (Log-rank P<0.001, Fig. 7G) and
that the TI could independently affect the prognosis in the multivariable Cox regression (P=0.006, Table
S12). Furthermore, it was found that 24 of 33 cancers presented a statistical signi�cance in the Kaplan-
Meier analysis (Figure S7), and univariate Cox’s regression indicated that the TI was a protective factor in
many different tumors (Fig. 7H).

We further explored the predictive ability of the TI for immunotherapy. In order to determine the predictive
power, we also computed the response prediction of 11 other known biomarkers. The area under the ROC
curve (AUC) was used as the quality metric of prediction. We found that the TI exhibited robust
predictions in the six cohorts (Fig. 7I). Especially in the Riaz et al. cohort, the TI reached the highest
prediction accuracy with AUC = 0.955. It was also observed that although the AUC value of TI in the Liu et
al. cohort was less than 0.7, this was still the highest, when compared to the other markers. In addition,
the TI displayed the highest mean AUC value compared with the other biomarkers (Fig. 7J). Hence, the
present work strongly suggests that the TI was a potential and robust biomarker for the prognosis and
clinical response assessment of immunotherapy.

Discussion
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The hepatocellular carcinoma (HCC) ecosystem is diverse, complex and dynamic in nature, and is mainly
composed of tumor cells and immune cells[50]. Immune cells are the main components of TIME, and
their number and status play a crucial role in the progression of tumor development, invasion and
metastasis. To the best of our knowledge, the present study is the �rst to systematically investigate the
heterogeneity of TIME from the dimension of broad-spectrum immune cells, and comprehensively explore
the potential immune escape mechanisms and speci�c genomic alterations of different TIME
phenotypes. In addition, the TI was proposed to quantify TIME in�ltration pattern, and it was also a
superior prognostic and immunotherapy predictor. These results can enhance the understanding of TIME,
and guide more effective personalized immunotherapies.

As described, TIME-1 was characterized by immune cell depletion and proliferation, corresponding to the
immune-de�ciency phenotype, TIME-2 was characterized by being in immunosuppressive states,
corresponding to the immune-suppressed phenotype, and TIME-3 was characterized by abundant
immune cell in�ltration and immune activation, corresponding to immune-activated phenotype. We
underlined the potential immune escape mechanism of each phenotype: lack of leukocytes and defective
tumor antigen presentation capacity in TIME-1, increased immunosuppressive cells in TIME-2, and rich in
immunoinhibitory molecules in TIME-3. The distinct immune escape mechanism among TIME
phenotypes could provide strategies for improving the e�cacy of HCC immunotherapy. In addition, it was
also found that methylation modi�cation and miRNA sponges may play leading roles in regulating the
immunomodulator expression, when compared to mutations and CNVs, suggesting that the development
of ICIs should consider the methylation modi�cation and miRNA regulation of immunomodulators.

The TIME phenotypes also exhibited a signi�cant heterogeneity at the genomic level, which may drive the
formation of different phenotypes. TIME-1 was dominated by the alterations of TP53, CDKN2A, CTNNB1
and AXIN1. CDKN2A could inhibit the tumor-promoting behavior of CDK4/6, and given that the CDKN2A
alteration is frequent in HCC, CDK4/6 inhibitors are presently being tested in advanced HCC[51]. Thus, it
was suspected that TIME-1 may be more sensitive to CDK4/6 inhibitors. Previous studies showed that the
mutations of CTNNB1 and AXIN1 might be characteristic of immune exclusion, and represent the
biomarkers of innate resistance to immunotherapy[52,53]. Besides, the FOXD4 methylation was also
associated with the immune dysfunction and cell proliferation. These genomic events might contribute to
the immunode�ciency and proliferation of TIME-1. TIME-2 was characterized by signi�cant alteration
patterns in the PI3K pathway, such as PIK3CA, VEGFA and PTEN. The mutation of PIK3CA may serve as a
reliable biomarker for relatively poor response to immunotherapies, such as PD-L1 antibodies [54].
VEGFA, as a tumor angiogenic factor, also plays a pivotal role in the formation of the tumor
immunosuppressive microenvironment. Its alterations induce the proliferation of TH17 and Treg, and
inhibit CD8+ T cell function, resulting in immune escape[55-57], which in line with the immune cell
in�ltration characteristic of TIME-2. Of note, TIME-2 might be more sensitive to the VEGFA-targeting
monoclonal antibody Bevacizumab due to its signi�cant VEGFA ampli�cation[58]. ARID1A was the SMG
of TIME-3, and its inactivating mutations can lead to remarkable increases in CD8 and PD-L1, and tumors
with ARID1A de�ciency were also more sensitive to PD-L1 antibodies[59]. Overall, these results suggested
that distinct genomic alterations might not only lead to different immune cell in�ltration and functional



Page 14/46

status, but also explain the potential reasons for the sensitivity or resistance of different phenotypes to
immunotherapy, which provide references for the precise treatment of HCC.

The TIME phenotypes have signi�cant clinical value. Consistent with the immune in�ltration of three
phenotypes, TIME-1 indicated the worst prognosis, while TIME-3 had the most favorable prognosis. TIME-
1 was predicted to be most sensitive to sorafenib, which was consistent with higher expression of drug
targets. Unsurprisingly, in line with the higher level of immune cells in�ltration and immune checkpoint
molecule expression, TIME-3 exhibited a superior response to immunotherapy. In addition, we proposed a
scoring scheme to quantify the TIME in�ltration pattern termed TIME index (TI). The TI was not only an
independent prognostic biomarker for both HCC and pancancer, but also performed well in predicting the
response to immunotherapy. Hence, the TI could guide clinical management and personalized
immunotherapy of HCC.

The present study also had some limitations. First, we only considered the inter-individual heterogeneity
due to the lack of data, but did not consider the intra-tumor heterogeneity, which is common in multifocal
HCC[60]. Second, although machine learning algorithms were applied to predict the sensitivity of the
TIME phenotypes to sorafenib and immunotherapy, further clinical validation is need. Finally, potential
genomic drivers require further functional veri�cation. Clinical studies and related experiments are
ongoing in our hospitals and laboratories.

Conclusions
In summary, our research revealed the three heterogeneous TIME phenotypes with different clinical
outcomes, immune escape mechanisms, and genomic alterations in HCC, which could present strategies
for improving the e�cacy of immunotherapy. The TI as a novel prognostic and immunotherapeutic
signature that could guide clinical management and personalized immunotherapy.
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Figure 2

The immune cells in�ltration and biological function landscape of the TIME phenotypes. A The
consensus score matrix of all samples when k = 3. A higher consensus score between two samples
indicates they are more likely to be grouped into the same cluster in different iterations. B The cumulative
distribution functions of consensus matrix for each k (indicated by colors). C The proportion of
ambiguous clustering (PAC) score, a low value of PAC implies a �at middle segment, allowing conjecture
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of the optimal k (k = 3) by the lowest PAC. D two-dimensional principle component plot by in�ltration
pro�le of 24 immune cell subsets. Each point represents a single sample, with different colors indicating
the TIME phenotypes. E The in�ltration abundance of 24 immune cell subsets evaluated by ssGSEA
algorithm for three TIME phenotypes in the GEO cohort. F The differences of 24 immune cell subsets
in�ltration among three TIME phenotypes in the GEO cohort. G The activation states of Hallmark
pathways of distinct TIME phenotypes in the GEO cohort. H Spearman correlation of speci�c Hallmark
pathways in TIME-2 with MKI67 (*P < 0.05). I Spearman correlation between speci�c Hallmark pathways
in three TIME phenotypes and immune score assessed by ESTIMATE algorithm. J The activation states
of KEGG pathways of distinct TIME phenotypes in the GEO cohort. For the boxplot, the asterisks
represented the statistical p value (*P < 0.05, **P < 0.01, *** P < 0.001, **** P < 0.0001).
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Figure 3

The clinical signi�cance of the TIME phenotypes. A-B Kaplan–Meier curves for OS (A) and RFS (B)
among three TIME phenotypes in the TCGA cohort. C-D Kaplan–Meier curves for OS (C) and RFS (D)
among three TIME phenotypes in the NCI cohort. E Distribution of the estimated IC50 of sorafenib among
three TIME phenotypes in GEO cohort. F The expression of sorafenib-related targets in three TIME
phenotypes. G Distribution of the immunotherapy response results predicted by TIDE algorithm among
three TIME phenotypes in the GEO cohort. H Submap analysis of the GEO cohort and 47 previous
melanoma patients with detailed immunotherapeutic information. For the boxplot, the asterisks
represented the statistical p value (*P < 0.05, **P < 0.01, *** P < 0.001, **** P < 0.0001).
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Figure 4

Potential immune escape mechanisms of each phenotype. A The mRNA expression of molecules
potentially involved in priming of innate immunity. B-E The distribution of HRD (B), AS (C), MSI score (D),
and TMB (E) in three TIME phenotypes. F, From left to right: mRNA expression (z-score), mutation
frequency, ampli�cation frequency, deletion frequency, and expression versus methylation (gene
expression correlation with DNA-methylation beta-value) for 62 immunomodulators in the TIME
phenotypes. G-I The distribution of CYT value (G), BCR diversity (H), and TCR diversity (I) in three TIME
phenotypes. J Regulation of immunomodulators by miRNA. Associations are shown between commonly
implicated miRNAs and immunomodulators for each TIME phenotype. All associations shown represent
BH-adjusted p-value<0.05 and Spearman correlation ≤ -0.2; each miRNA included is negatively correlated
with a gene for which it is predicted to bind in miRDB. For the boxplot, the asterisks represented the
statistical p value (nsP > 0.05, *P < 0.05, **P < 0.01, *** P < 0.001, **** P < 0.0001). For the heatmap, the
asterisks represented the statistical p value (*P < 0.05, **P < 0.01, *** P < 0.001).
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Figure 5

Genomic alterations of the TIME phenotypes. A Signi�cantly mutated genes (SMGs) in three TIME
phenotypes. B Mutation signatures extracted from three TIME phenotypes. C The pie chart shows the
proportion of mutation signatures in three TIME phenotypes. D-F The distribution of FGA (D), FGG (E) and
FGL (F) in three TIME phenotypes. G Gain (red) or loss (blue) frequencies of copy number variations
(CNVs) in the autosomes of HCC patients. H Integrated molecular comparison of genomic alterations in
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signaling pathways across the TIME phenotypes. Each gene box includes three percentages representing
the frequency of activation or inactivation in TIME-1, 2, and 3. All changes are tallied together in
calculating the percentages of altered cases within each TIME phenotype. Genomic alterations include
mutations and copy-number changes. Missense mutations are only counted if they have known
oncogenic function, have been reported in COSMIC, or occur at known mutational hotspots. Genes are
grouped by signaling pathways, with edges showing pairwise molecular interactions. For the boxplot, the
asterisks represented the statistical p value (nsP > 0.05, *P < 0.05, **P < 0.01, *** P < 0.001, **** P <
0.0001).
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Figure 6

Methylation modi�cation and regulation of the TIME phenotypes. A The distribution of global
methylation level in three TIME phenotypes. B-C Correlation of GML with CD8 T cells (B) and proliferation
score (C). D The epigenetically silenced genes (ESGs) in three TIME phenotypes. Correlation of global
methylation level (GML) with CD8 T cells and proliferation score. E The number of ESGs in three TIME
phenotypes. F Differences in CD8 T cells and proliferation scores between FOXD4 methylated and FOXD4
unmethylated groups. G Differences in CD8 T cells and proliferation scores between L1TD1 methylated
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and L1TD1 unmethylated groups. H Differences in CD8 T cells and proliferation scores between PARP6
methylated and PARP6 unmethylated groups. For the boxplot, the asterisks represented the statistical p
value (nsP > 0.05, *P < 0.05, **P < 0.01, *** P < 0.001, **** P < 0.0001).
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Figure 7

The distribution and clinical signi�cance of TIME index (TI). A-B The TI distribution of three TIME
phenotypes in the TCGA cohort (A) and NCI cohort (B). C Alluvial diagram showing the changes of TI and
the three TIME phenotypes. D-E Kaplan–Meier curves for OS of HCC patients in the TCGA cohort (D) and
NCI cohort (E). F The TI distribution in 33 cancer types. G Kaplan–Meier curves for OS of pancancer
patients. H The univariate Cox’s regression result of TI in 33 cancer types. I The accuracy of TI and 11



Page 43/46

other biomarkers in predicting immunotherapy, each cell represents the corresponding AUC value of one
biomarker in one cohort. J The mean AUC of TI and 11 other biomarkers. For the boxplot, the asterisks
represented the statistical p value (nsP > 0.05, *P < 0.05, **P < 0.01, *** P < 0.001, **** P < 0.0001).

Figure 7

The distribution and clinical signi�cance of TIME index (TI). A-B The TI distribution of three TIME
phenotypes in the TCGA cohort (A) and NCI cohort (B). C Alluvial diagram showing the changes of TI and



Page 44/46

the three TIME phenotypes. D-E Kaplan–Meier curves for OS of HCC patients in the TCGA cohort (D) and
NCI cohort (E). F The TI distribution in 33 cancer types. G Kaplan–Meier curves for OS of pancancer
patients. H The univariate Cox’s regression result of TI in 33 cancer types. I The accuracy of TI and 11
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biomarker in one cohort. J The mean AUC of TI and 11 other biomarkers. For the boxplot, the asterisks
represented the statistical p value (nsP > 0.05, *P < 0.05, **P < 0.01, *** P < 0.001, **** P < 0.0001).
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