
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I , VOL. , NO. , MONTH. 2021 1

A Novel In-Memory Wallace Tree Multiplier
Architecture using Majority Logic

Vijaya Lakshmi, John Reuben, Member, IEEE, Vikramkumar Pudi

Abstract—In-memory computing using emerging technologies
such as resistive random-access memory (ReRAM) addresses the
‘von Neumann bottleneck’ and strengthens the present research
impetus to overcome the memory wall. While many methods
have been recently proposed to implement Boolean logic in
memory, the latency of arithmetic circuits (adders and conse-
quently multipliers) implemented as a sequence of such Boolean
operations increases greatly with bit-width. Existing in-memory
multipliers require O(n2) cycles which is inefficient both in terms
of latency and energy. In this work, we tackle this exorbitant
latency by adopting Wallace Tree multiplier architecture and
optimizing the addition operation in each phase of the Wallace
Tree. Majority logic primitive was used for addition since it is
better than NAND/NOR/IMPLY primitives. Furthermore, high
degree of gate-level parallelism is employed at the array level by
executing multiple majority gates in the columns of the array. In
this manner, an in-memory multiplier of O(n.log(n)) latency is
achieved which outperforms all reported in-memory multipliers.
Furthermore, the proposed multiplier can be implemented in
a regular transistor-accessed memory array without any major
modifications to its peripheral circuitry and is also energy-
efficient.

Index Terms—Memristor, resistive random-access memory
(ReRAM), majority logic, 1Transistor-1Resistor (1T–1R), von
Neumann bottleneck, in-memory computing, sense amplifier,
processing-in-memory, parallel-prefix adder, Wallace Tree multi-
plier, read-out circuit.

I. INTRODUCTION

The conventional von Neumann systems use separate units
for storing data (memory) and processing data. The data move-
ment between the memory and processing units is the major
cause for the degraded performance of present day computing
systems, often referred to as the “von Neumann bottleneck”
or “memory wall.” Memory wall will eventually result in
enhanced processor speed being masked by the relatively slow
improvements to DRAM speed [1]. “Computation energy”
is dominated by “data movement energy” since the energy
required for memory access grows exponentially along the

Vijaya Lakshmi and Vikramkumar Pudi are with the Department of Elec-
trical Engineering, Indian Institute of Technology Tirupati, Tirupati 517619,
India. (e-mail:ee20d001@iittp.ac.in & vikram@iittp.ac.in)

John Reuben is with Chair of Computer Architecture, Friedrich-
Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany.
(email:johnreuben.prabahar@fau.de)

Manuscript received August 2, 2021; revised October 28, 2021; accepted
November 12, 2021.
© 2021 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future me-
dia,including reprinting/republishing this material for advertising or promo-
tional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other
works.
Digital Object Identifier 10.1109/TCASI.2021.3129827

memory hierarchy, i.e. from cache to off-chip DRAM [2].
A quantitative example is provided in [3] where it is pointed
out that the DRAM access energy is 3556× the energy for
16-bit addition in a 45-nm CMOS technology. In the last two
decades, several efforts were made to solve the memory wall
problem by bringing the processor and memory unit closer
together. Earlier efforts include 3-D stacking of DRAM dies
over logic die (near-memory computing [4]) to reduce the
latency and energy of data movement between processor and
memory. More recently, significant efforts are being made to
enhance the memory with computational capabilities i.e. the
memory array which was conventionally used only to store
data is augmented with capabilities to also execute Boolean
logic operations. Research in this direction is being pursued
in conventional memories like DRAM [5] and SRAM [6] and
also emerging non-volatile memories like ReRAM [7] , PCM
[8], STT-MRAM [9] and Ferroelectric FET [10]. Classified as
“in-memory computing” or “processing-in-memory”, all these
works signify an important need to move computing to the
location of the data.

Resistive RAM (ReRAM) is one of memory technologies
from the memristor family which offers high density, non-
volatility, good scalability, low WRITE energy and good
resistance window [11]. The resistance of ReRAM cell can
be switched reversibly between a low-resistance state (LRS)
and a high-resistance state (HRS) by applying a suitable
voltage across the cell. This change of resistance is due to
the formation or rupture of a conductive filament between the
two electrodes of the cell. ReRAM cells can be configured
in a memory array using an access transistor for each cell,
commonly referred to as a 1Transistor–1Resistor (1T–1R)
array. The access transistor enables each cell of the array to be
selected individually (thus avoiding sneak path currents) and
also serves to limit the current through the ReRAM cell.

Boolean logic primitives like IMPLY (Material Implication),
NOR, NAND, XOR, MAJORITY have been implemented in
ReRAM array. Arithmetic circuits like adders and multipliers
can be implemented as a sequence of Boolean operations.
A detailed review of in-memory arithmetic using ReRAM
technology is beyond the scope of this work. The reader
is referred to the following surveys– classification based on
state variable used for computation [12], logic primitives
used for computation [13], cascading methodology [14] and
latency for 1-bit addition [15]. Adders and multipliers are the
building blocks of any computing unit and the efficiency of
these circuits influence the efficiency of the entire computing
unit. Multipliers are computationally intensive than adders
and their computationally complexity grows quadratically with

This is the author's version of an article that has been published in this journal. Changes were made to this version by the
publisher prior to publication. The final version of record is available at http://dx.doi.org/10.1109/TCSI.2021.3129827

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I , VOL. , NO. , MONTH. 2021 2

bit-width i.e. O(n2). Consequently, existing in-memory mul-
tipliers require ≈ 1000 cycles for 32-bit multiplication. In
this work, we tackle this exorbitant latency of in-memory
multiplication.

The existing works on in-memory multiplication use Shift
and Add Multiplier [16], Array Multiplier [17], Dadda Mul-
tiplier [18], Multiplier Using Semi-Serial IMPLY-based adder
[19] and Carry-save-add-shift (CSAS) multiplier [20] architec-
tures. In this work, Wallace Tree architecture is selected for
our in-memory multiplier due to its reduced logical depth (less
latency) [21], [22]. The phases of Wallace Tree architecture
are partial product generation, stage by stage partial product
reduction phase followed by a final phase of addition. Except
the partial product generation phase (which is accomplished
by AND operation), all phases require some form of addition.
Conventionally, adders in CMOS technology were designed
using AND, OR and XOR gates. But recent research in logic
synthesis [23]–[26] indicates MAJORITY to be an efficient
logic primitive for certain arithmetic-intensive circuits. How-
ever, to be able to perform multiplication in memory using
majority gates, a viable method to execute a majority gate
in the memory array is needed. Recently, such a method
to implement a majority gate in a ReRAM array has been
proposed where the majority gate is executed as a READ
operation [7], [27].

A peculiar requirement for effective in-memory imple-
mentation is that the circuit must be as homogeneous as
possible in terms of the logic primitives used i.e. a full adder
expressed solely in terms of NOR gates is easier to implement
in memory than the one expressed in terms of AND, OR
and XOR gates. This is because, diverse logic primitives in
a circuit require different voltages at the terminals of the
memory array, thereby limiting parallelism and complicating
the peripheral circuitry. Given this peculiar requirement, a full
adder can be implemented with less logical depth (latency)
using majority gates than using NAND/NOR/IMPLY gates (as
elaborated later in Section III-A). For increasing bit-width (n-
bit adder), parallel-prefix adders synthesized using majority
gates were used to minimize latency. To summarize, wallace-
tree multiplier architecture was chosen since it has optimized
latency at architecture level [28], [29]. Furthermore, each
addition stage of wallace-tree multiplier is synthesised in terms
of majority gates and executed in memory. A significant re-
duction in latency compared to existing in-memory multipliers
was achieved by combining the strengths of MAJORITY logic
primitive and the Wallace Tree architecture.

The rest of this paper is organized as follows. In Section
II, we briefly explain the Wallace Tree multiplication process
and the reason for choosing it for in-memory multiplication.
In Section III, we explain the motivation to choose majority
gate as the logic primitive for in-memory multiplication and
the efficient implementation of majority gate in-memory. The
structure of the proposed in-memory computing system is
briefly explained in Section IV. Section V presents the
proposed 4× 4 in-memory Wallace Tree multiplier and elab-
orates how it is implemented in a 1T-1R array followed by
simulation results. In Section VI, we present the design of
8×8 in-memory Wallace Tree multiplier and observe how our

multiplier performs with increasing bit width. In this manner,
the latency and area for n× n multiplication are formulated.
We compare the proposed in-memory multiplication technique
with the existing works in Section VII, followed by conclu-
sions in Section VIII.

II. WALLACE TREE MULTIPLIER

 a3 a2 a1 a0 b3 b2 b1 b0 ⨯

Full

adder

Stage

 I

Stage

 II

Indicates parallel

additions in each

 stage

0 p03 p02 p01 p00

p13 p12 p11 p10

p23 p22 p21 p20 0

p33 p32 p31 p30

p23 s04 s03 s02 s01

c04 c03 c02 c01

p33 p32 p31 p30 0

p33 s14 s13 s12 s11

c14 c13 c12 c11

y7 y6 y5 y4 y3 y2 y1 y0

Phase - I

Phase - II

Phase-III

(PP generation)

(PP reduction)

(Critical addition
with carry prop-
agation)

Fig. 1: 4 × 4 Wallace Tree multiplier. Partial products are
computed as Pij=aj .bi

Wallace Tree Multiplier is the most extensively used multi-
plier architecture in memory units and processors [22]. The
Wallace Tree architecture for multiplication of two n-bit
numbers encompasses three phases:

1) partial product generation by multiplying every bit of
multiplier with multiplicand using n2 AND gates

2) reducing the sum of partial products using full-adders
3) generation of multiplication result by the final 2-input

addition (critical phase for latency)
The partial products generated in phase 1 are grouped in sets

of 3 rows each and added using full adders. Additional partial
products which are not a member of the group are transferred
to the next stage and get added along with the sum and carry
bits generated from the previous stage. The additions in these
intermediate phases (partial product reduction) are performed
in parallel with a maximum latency of a 1-bit full adder. This
process continues until only two rows remain for addition in
the final stage. The number of partial product reduction stages
for n × n Wallace Tree multiplier follows log2 n2

4 (i.e. from
4-bit to 32-bit multiplier, number of partial product reduction
stages increases from 2 to 8). The final stage addition is critical
in terms of latency as carry must be propagated quickly and
therefore requires an adder with optimum latency. The latency
of addition in the final stage determines the speed of the
multiplier. A n× n Wallace Tree multiplier requires an adder
of size 2(n−log2n) bit in its final phase. To optimize latency, a
parallel-prefix adder (Ladner-Fischer) can be used in the final
stage of Wallace Tree multiplier [28].

A 4×4 Wallace Tree multiplication process is shown in Fig.
1. To multiply two 4-bit numbers a3a2a1a0 and b3b2b1b0, first
all partial products (p00-p33) are generated using AND gates.
Next the partial products are grouped and added to produce
sums s01-s04 and carries c01-c04 as shown in Fig. 1. In stage
II, the non grouped partial products (p23,p30 − p32) of stage

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I , VOL. , NO. , MONTH. 2021 3

I are added with the sums s01-s04 and carries c01-c04. The
parallel additions in each stage are shown with a rectangular
yellow box and there exist four parallel additions in stages I
and II. The results of stage II, sums s11-s14 and carries c11-c14
are grouped with left out partial product p33 and can be added
using a conventional 4-bit adder in the final stage III. Using a
4-bit parallel-prefix (Ladner Fischer) adder in the final stage
accelerates the addition process and gives 8-bit result with
optimum latency. Similarly, different stages involved in the
8×8 Wallace Tree multiplication process are shown in Fig. 10.
From Fig. 10, it is clear that the parallel additions in stage I,
II, III and IV are 16, 16, 10 and 11 respectively. A 10-bit adder
is required in the final stage which can be implemented using
a parallel-prefix (Ladner Fischer) adder to minimize latency.
The number of parallel additions in each stage increases as
the bit-width of the Wallace Tree multiplier grows and they
can be implemented in the columns of the memory array,
as will be elaborated later. Finally, though Dadda multiplier
has marginally less latency than the Wallace Tree multiplier
[30], Wallace Tree multiplier architecture was preferred in this
work. This is because partial products in Dadda multiplier are
arranged such that results produced in one stage should replace
the contents of the memory array for the next stage of addition.
This overwriting of cells not only reduces the reliability of
ReRAM (endurance) but also increases latency.

III. MAJORITY LOGIC AS A LOGIC PRIMITIVE FOR
IN-MEMORY MULTIPLICATION

A. Boolean Logic Primitives Implemented in Memory

In the past, different logic primitives like NAND, NOR,
IMPLY, XOR have been implemented in memory [12]–[14].
Adders/multipliers can be implemented as a chain of Boolean
logic operations. As stated in Section I, homogeneous logic
primitive is preferred for in-memory implementation. It must
be noted that, in literature, there are works which implement
diverse logic primitives like AND, OR, XOR in the same
memory array [31], [32]. But gate-level parallelism cannot be
exploited using such logic primitives because different logic
primitives require different voltages/currents to be applied at
word line (WL) and bit line (BL). For an arithmetic intensive
circuit like multiplier, gate-level parallelism is of paramount
importance to minimize latency. Therefore majority logic
primitive was preferred since a circuit synthesized in terms
of a single logic primitive can enable gate-level parallelism.

As elaborated in Section II, Wallace Tree multiplier is
implemented in three phases namely, partial product gener-
ation, full adders phase and a parallel-prefix adder in the last
phase. Partial product, Pij=aj .bi = M(aj , bi, 0) (M denotes
majority) and can be implemented in one memory cycle. A
1-bit full adder implemented in memory using IMPLY [33],
NOR [34] and MAJORITY are compared in Fig. 2. Using
majority logic, full adder can be implemented in memory in
6 cycles (assuming majority and its complement are available
at the sense amplifier output) which is significantly less com-
pared to the adders using IMPLY/NOR. Furthermore, since
majority gate is the fundamental logic primitive for many
emerging nanotechnologies, recent research [23], [26] have

(7 Logic levels & 10 Cycles in-memory)

abcin

a
b

cin

co

Sum

to Memory (3 Levels & 6 Cycles)

Full Adder using NOR Gates

Mapping Full Adder using Majority Gates

a
b

cin

Sum

Carry

VG

nor

Vcond

 a b

Vset

Rg

In-memory Logic

 Primitives

a. IMPLY Gate

 b. NOR Gate

c. Majority Gate (as a READ Operation)

 Implementation of

Full Adder In-memory

17 Cycles

10 Cycles

6 Cycles

SA
EN Q

Q

IREAD M(a,b,c)

M(a,b,c)

 a b

 b

 a

 c

VG

col. row

6

a 5

b 4

cin 3

2

1

co ,co

co 6

a 5

b 4

cin 3

co 2

1

m1

co 6

a 5

b 4

cin 3

co 2

m1 1

Sum

READ

WRITE Co

m1

co

WRITE Co

READ

WRITE m1
READ

Operation Mem. arrayCircuit (6x1)

Fig. 2: In-memory logic primitives and latency of a full
adder using each logic primitive (IMPLY [33], NOR [34] and
MAJORITY). A full adder implemented using majority gates
incurs less latency and gates.

synthesized parallel-prefix adders solely using majority gates1.
Research in majority logic synthesis revealed that arithmetic
circuits synthesised using majority logic could achieve 14–
33% reduction in logical depth when compared to conventional
AND/NOT logic primitives [24], [35]. An 8-bit parallel-prefix
adder synthesized in majority logic has 7 logic levels while
the same adder synthesized using AND, OR, XOR gates
has 8 logic levels [15]. In essence, majority logic primitive
outperforms other logic primitives in terms of latency for both
1-bit addition and n-bit addition. As stated in Section II, the
Wallace Tree multiplier is essentially composed of 1-bit and
n-bit adders and all the three stages can be expressed in terms
of majority gates and its inversion. Therefore, majority gate
was chosen as the fundamental logic primitive in this work
for in-memory multiplication.

B. In-Memory Implementation of a Majority Gate

In [7], [27], an efficient method to implement a majority
gate in a transistor-accessed ReRAM array has been presented
recently. In this method, majority is computed while reading
from a 1T–1R array (Fig.3). It is type of non-stateful logic2

i.e. inputs to the majority gate are resistances and the output
is sensed as a voltage. When three rows of a 1T–1R array are
activated simultaneously, the resistance of the ReRAM cells
in a column will be in parallel during the READ operation
(Fig. 3). A sense Amplifier (SA) which can accurately sense
the effective resistance Reff ≈ Ra||Rb||Rc implements an
‘in-memory’ majority gate. Ra, Rb, Rc denotes the inputs of
the majority gate with each of them being HRS (logic ‘1’) or
LRS (logic ‘0’). Consider the eight possibilities of (a,b,c),

1conventionally synthesized in terms of AND, OR and XOR gates
2In memristive logic, a logic family is said to be stateful if both the input

and the output of a gate are represented as the resistance of the memristor

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I , VOL. , NO. , MONTH. 2021 4

WL

BL

SL

Sense EN
Q Q

IREAD
M(a,b,c)

VBL

M(a,b,c)

ca b

M(a,b,c)

HRS : Logic '1' : 200k�

LRS : Logic '0' : 10.5k�

3.5k 5.1k 9.5k 66.7k

000 001

100

010

011

110

101

111

Resistance (Reff)

Input

Combination

 (abc) } }
M(a,b,c) = 0 M(a,b,c) = 1

 SA should differentiate b/w

Reff < 5.1k & Reff > 9.5k

Amplifier (SA)

edca b g hf

1 2 3

4 5

a

b

c

c

d

e

e

f

g

m1 m2
 m3

h

a

b

c

c

d

e

e

f

gm1

 m2

 m3 m3

m4 m5

Column Row

1 2 3 4 5 6 7 8 9 10

1

2

3

4

1

2

3

4

READ

WRITE m1 at column 2 of row 3

h

 m2

WRITE (m2, m2) at column (2, 8) of row 2
WRITE (m3, m3) at column (2, 8) of row 1

READ

1 2 3 4 5 6 7 8 9 10

SA

Eg: Mapping a majority circuit to memory array

m1 m2
 m3

m4
m5

} SA SA

SA SA

Fig. 3: Majority gate implemented in memory as a READ opera-
tion. During READ, if three rows are activated simultaneously, the
ReRAM cells will be in parallel (Reff ≈ Ra||Rb||Rc) and a SA can
be used to precisely sense Reff [7].

the three binary inputs of the majority gate (Fig. 3, top).
Let us consider a ReRAM technology with HRS of 200 kΩ
and LRS of 10.5 kΩ [36]. Consequently, Reff ≤ 5.1 kΩ
if two or more ReRAM cells are in LRS and Reff ≥ 9.5
kΩ if two or more ReRAM cells are in HRS. To output
M(a,b,c), the SA should be able to differentiate between R001

eff

(two LRS and one HRS) and R011
eff (two HRS and one

LRS). A robust time-based SA is used to achieve this [7].
This gate enables parallelism (multiple majority gates can be
executed in parallel in different columns). Hence it is well
suited for our in-memory multiplier where multiple majority
gates have to be executed in parallel. Multiple levels of logic
can be cascaded by writing the data back to the memory, as
illustrated in Fig. 3 (bottom). In fact, any arithmetic circuit
can thus be executed as a sequence of READ (i.e. majority)
and WRITE operations. Therefore, the proposed gate does not
require any major modifications to the peripheral circuitry of
a regular ReRAM memory. The gate is also energy-efficient
(both reading and writing is energy-efficient in 1T–1R when
compared to 1S–1R due to the absence of sneak paths).

IV. STRUCTURE OF IN-MEMORY COMPUTING SYSTEM

The in-memory computing system consists of a READ
circuit (SA), WRITE circuit, circuits for row and column
selection and the memory controller logic, as depicted in Fig.
4. Each column in the array has a dedicated sense amplifier.
Since multiplication is performed using MAJORITY gates
(Fig.7), which are executed as a series of READ and WRITE
operations, we elaborate on the READ and WRITE circuits.
We briefly describe the other parts of the peripheral circuitry
and the reader is referred to [7] for more detailed description.

A. READ circuit (Sense Amplifier)

Fig. 5 depicts the design of the SA used to execute the
majority gate during READ operation in memory. The circuit
was designed in CMOS 45 nm node. A ReRAM device from
IHP foundry has average resistance levels of HRS = 200 kΩ

RRAM Cell

1T-1R 1T-1R 1T-1R

1T-1R 1T-1R 1T-1R

1T-1R 1T-1R 1T-1R

1T-1R 1T-1R 1T-1R

SA SA SA

WL1

WL2

WL3

WLn

BL1 BL2 BLnSL1 SL2 SLn

Column Selection Logic

Write Circuit

EN

EN EN

READ

WRITE

SET/RESET

Q Q Q Q Q Q

M
em

o
ry

 C
o
n

tr
o
ll

er

Row

Column

T
r
ip

p
le

 r
o
w

 d
e
c
o
d

e
r

add.

add.

MAJ

EN

Fig. 4: Architecture of the in-memory computing system. Each
column has a dedicated SA for READ operation (Fig. 5). Eight
columns of the array share a WRITE circuit (Fig. 6). A triple-row
decoder is used which uses MAJ as control signal to switch between
majority operation (three rows selected) and normal READ/WRITE
operation (single row is selected).

D Q

Q

DoutEN

VBL

tdelay

IFF

ENdelay

Vdd

M1

M3

M4

M5

M6

M7

Voltage-to-time converter

M2

Dout

5/2

2.5/2

10/3 10/3

2/1

7/2

2/2

ENdelay

IFF LRS (VBL = 138 mV)

Dout

138 or 250 mV

IREAD = 25 uA

HRS (VBL = 250 mV)

EN

VBL

IFF

Dout = 1 for HRS

 = 0 for LRS
THRS TDM TLRS

(a) (b)

IREAD

SL

BL

WL
1T-1R

1T-1R

1T-1R

Fig. 5: (a) Schematic of the SA used for majority operation. The
aspect ratio of transistors denoted m

n
implies a transistor of size

m·Wmin
n·Lmin

. (b) Wave forms of TBSA circuit showing the switching
of output for HRS and LRS.

and LRS = 10.5 kΩ [36]. For such a device, the sensing
window for majority gate = R001

eff −R011
eff = 9.5 k - 5.1 kΩ =

4.4 kΩ (see Section III-B). To accurately sense this resistance
window in the presence of ReRAM variations, a robust time-
based sense amplifier (TBSA) proposed in [37] was chosen
and adapted to our requirement in 45nm node. In time-based
sensing, voltage to be sensed (Bit line voltage) is converted
into a time delay and discriminated in time domain. The
current-starved inverter (formed by transistors M1−4) achieves
voltage-to-time conversion by either allowing more current or
less current depending on the voltage at gate of M1,2. A small
current IREAD = 25 µA injected into the ReRAM cell converts
the cell’s resistance into a voltage, which is fed to the voltage-
to-time converter. Although the threshold voltage, Vth−M1,M2

is 420 mV, due to sub-threshold conduction of the transistor
at 45 nm, transistors M1 and M2 start conducting even at
250 mV. To account for this, IREAD of 25 µA was used so
that VBL = 138 mV and 250 mV for R001

eff and R011
eff cases,

respectively. For R011
eff case, bit-line voltage VBL ≥ 250mV ,

which turns on M1,2 sharply and introduces less delay in
IFF signal and IFF rises at THRS (Fig.5-(b)). Whereas for
R001

eff case, bit-line voltage VBL ≤ 250mV so that it limits
the inverter current and more delay is introduced in IFF

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I , VOL. , NO. , MONTH. 2021 5

signal and IFF rises at TLRS , as shown in Fig. 5-(b). The
delayed EN signal (denoted as ENdelay) is generated using a
chain of inverters designed such that ENdelay rises at decision
moment, TDM (THRS < TDM < TLRS). At the rising edge of
ENdelay, flip-flop input IFF and its complement are available
at the sense amplifier output as M(a, b, c) and M(a, b, c). The
SA will output M(a, b, c) correctly for all the eight cases
(000 to 111) if it is designed to differentiate between 001
case and 011 case. The correct functioning for all the eight
cases was verified by simulation in Cadence Spectre. The sense
amplifier was simulated with temperature variation (27±10◦C)
across process corners and the correct output was verified.
The resilience of this SA to ReRAM variations and CMOS
process variations were evaluated by extensive Monte Carlo
simulations in [7].

B. WRITE Circuit

To accelerate in-memory computation, it is required to be
able to write multiple cells of a row simultaneously. This was
accomplished by using an op-amp as a driver, as shown in Fig.
6. Each 1T-1R cell requires ≈ 240µA to switch, and the op-
amp is designed to drive eight 1T-1R cells simultaneously. To
write into more than eight cells, multiple op-amps should be
used. Fig. 6 illustrates the SET (HRS → LRS) and RESET
(LRS → HRS) operation. The RESET operation in ReRAM
is accomplished by applying a positive voltage to the SL,
while BL is grounded, and SET operation is accomplished by
applying a positive voltage to BL, while SL grounded. This is
because Resistive RAM requires a voltage of opposite polarity
to break the filament. The circuit of Fig. 6 was simulated in 45
nm technology to verify the WRITE circuit. VWRITE of 1.2 V
was used during SET and RESET operation and VWL of 1.1 V
was applied at the gate of the access transistor. Simultaneous
writing into 8 cells of a row was verified by simulation. As
will be explained in Section V-B, this aids in accelerating in-
memory multiplication.

_
+

WL

BL1 BLn

SL1 SLn

WRITE '0'

 (SET)
VWRITE

_
+

WL

BL1 BLn

SL1 SLn

WRITE '1'

 (RESET)

VWRITE

Fig. 6: The operational amplifier regulates the voltage while driving
enough current to switch the cell. The op-amp is connected to BL/SL
of the ReRAM cells and SL/BL is grounded for WRITE ‘0’/‘1’
operation.

C. Row Decoder, Column Selection Logic and Memory con-
troller

Conventional decoder in memory array can select only one
row at a time but we need to select three rows simultaneously
during majority operation. Furthermore, single-row decoding
is needed during normal memory READ/WRITE operation.

p01 p10

0

p02 p20p03 p12 p21p13 p22

 0 p10p11p12

c01c02c03c04

m1m2m3m4

s02s03s04

s02

p30

s03s04

c11c12c13

m5m6m7

s12s13

0

p30

0a0 b0

y0

y1

y2

y0y1y2y3y4y5y6

Cout

0a0 b10a1 b00a0 b20a2 b00a1 b20a2 b10a3 b00a2 b20a3 b1 0a0 b30a1 b30a3 b20a2 b30a3 b3

p11

0a1 b1

p31p23p32p33

c14

m8

s14

0

p01

p20

p02

p21

p03

p220

p13

0

p31p32

p23

0c11p33c13

0

s14c13

p33c13 s14c13 s13c12 s12

0c1c2c3

c1m_3m_4m_1m_2

c2

c3c4

m_5m_6m_7m_8

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

(4-bit Parallel-

Prefix Adder)

 Stage

 I

 Stage

 II

Phase - III

Phase - I

(PP generation)

Phase

 II

(PP re-

duction

Full

adder

y7

Fig. 7: The three phases of a 4× 4 Wallace Tree multiplier (Fig. 1)
expressed as 12 levels of majority logic gates. Levels 8-12 are the 4-
bit parallel-prefix adder (Ladner Fischer) used to accelerate addition
in Phase-III.

The triple-row decoder presented in [7] was used to accom-
plish this since it can switch between single-row and triple-
row activation seamlessly. An additional control signal, MAJ is
used, which when set to ‘1’ selects three rows simultaneously
(Majority operation) and when set to ‘0’ selects a single row
(normal memory READ/WRITE operation). Column Selection
logic is responsible for selecting the appropriate columns (to
be written to or read from) and connecting them to the READ
or WRITE circuit. The memory controller coordinates the
READ and WRITE operations by supplying control signals
to the peripheral circuitry. More details of these circuits can
be found in [7].

D. Energy for In-Memory Operations

The energy for multiplication can be computed by summing
the energy for various logic operations. Multiplication is
carried out as a sequence of READ (majority) and WRITE
operations. Energy for a single READ operation is calculated
as EREAD = VDD

∫ tREAD

0
IREAD dt + VDD

∫ tREAD

0
ISA dt,

where IREAD is the current fed to the 1T-1R cell (see Fig.
5), ISA is the current ingested by the TBSA, and tREAD is
the duration of READ cycle. In this work, tREAD was 20 ns
and IREAD was 25 µA for our simulations in 45-nm CMOS
process. The energy for a single majority operation, EREAD

= 2.2 pJ/operation. The energy to write a single bit to 1T-
1R array is EWRITE = VWRITE

∫ tWRITE

0
IWRITE dt, where

tWRITE was 50 ns in our simulation and EWRITE = 8.2
pJ/bit.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I , VOL. , NO. , MONTH. 2021 6

V. PROPOSED 4× 4 IN-MEMORY WALLACE TREE
MULTIPLIER

A. 4× 4 Wallace Tree Multiplier using Majority Logic

The majority gate based implementation of a 4× 4 Wallace
Tree multiplier of Fig. 1 is shown in Fig. 7. All partial
products (PPs) are generated in the first step using majority
gates with ‘0’ as the third input, i.e. pab = a·b = M(a, b, 0). In
the partial product reduction phase (Stages I and II), majority
logic based full adders are used for addition and the addition
process is carried out in parallel. The generated sums and
carries are used as the inputs for addition in the next stage. A
full adder needs three majority gates and can be implemented
in memory in six cycles (3 READ and 3 WRITE cycles) (Fig.
2). The latency for addition in each stage except the last stage
is equivalent to the latency of 1-bit full adder, i.e. 6 cycles
in-memory. As discussed in the Section II, final stage is the
critical stage involving carry propagation. A majority based
4-bit parallel-prefix adder (Ladner Fischer) formulated using
the procedure followed in [7] is used in the final phase to
accelerate the addition. A 4×4 Wallace Tree multiplier circuit
using majority logic given in Fig. 7 has 12 levels of majority
gates where levels 8-12 is the 4-bit parallel-prefix adder.

B. Mapping of the 4 × 4 Wallace Tree Multiplier to 1T-1R
Array

In this section, mapping of the 4×4 Wallace Tree multiplier
structure of Fig. 7 to a 1T-1R array using majority logic and
the sequence of operations are addressed. Since the majority
gates are not stateful, the output of the majority gate (voltage)
needs to be written to the array as inputs to the next logic
level. The outputs of a logic level are written in contiguous
rows of the array so that they can be the inputs to the majority
gates in the next logic level. All the cells in the memory
array are initialized to logic ‘0’(LRS). The two numbers to
be multiplied (a3a2a1a0 and b3b2b1b0) are arranged in the
memory array as shown in Fig. 8. For optimized latency, the
multiplier is mapped in such a way that all the majority gates in
a particular logic level are executed simultaneously in a READ
operation. Furthermore, considering the limited endurance of
ReRAM devices [38], we write each cell in the processing area
only once during the entire operation of 4× 4 multiplication.
All the intermediate results of multiplication after each stage
of computation are written in different memory locations and
not overwritten on the same location. Since ReRAM requires
voltage of opposite polarity to break the conductive filament,
SET and RESET operations cannot be performed on multiple
columns simultaneously. Therefore, writing multiple bits to
any row is usually done in two steps (writing all 1’s in
the sequence in one step followed by writing all 0’s in the
sequence in next step). In our mapping, a single cycle is
sufficient to write multiple bits in a row since all the cells are
initialized to ‘0’ i.e. it is enough to write 1’s in the desired
locations. The writing of 1’s is a RESET operation which is
accomplished by using the op-amp driver circuit (see Section
IV-B) to switch the multiple ReRAM cells at the locations
where ‘1’ has to be written.

The contents of the memory array during the execution of
the twelve logic levels are shown in Fig. 8. The description
of steps is given below:

1) Majority at col. (1 to 16);
2) Write (p33,p33,p32,p13,p31,p03,p30,p02,p01) at col.

(2,3,4,5,8,9,11,12,15) of row 5;
3) Write (p23,p22,p12,p11,p10,y0) at col. (4,5,9,12,15,16)

of row 6;
4) Write (p21,p20,1) at col. (9,12,16) of row 7;
5) Majority at col. (5,9,12,15);
6) Write (c04,c04,c03,c03,c02,c02,c01,c01) at col.

(4,5,8,9,11,12,14,15) of row 4;
7) Write (c04,c03,c02,c01) at col. (5,9,12,15) of row 8;
8) Majority at col. (5,9,12,15);
9) Write (m4,m3,m2,m1) at col. (5,9,12,15) of row 3;

10) Majority at col. (5,9,12,15);
11) Write (s04,y1,s03,s02) at col. (8,10,11,14) of row 6;
12) Majority at col. (4,8,11,14);
13) Write (c14,c14,c14,c13,c12, c12,c11,c11) at col.

(2,3,4,8,10,11,13,14) of row 3;
14) Write (c13,c11,c13,c12) at col. (2,6,7,13) of row 4;
15) Write (c14,c13,1,c12,c11) at col. (4,8,10,11,14) of row

7;
16) Majority at col. (4,8,11,14);
17) Write (m8,m7,m6,m5) at col. (4,8,11,14) of row 8;
18) Majority at col. (4,8,11,14);
19) Write (s14,s13) at col. (3,10) of row 4;
20) Write (s12,s14,s12,s13) at col. (6,7,10,13) of row 5;
21) Majority at col. (2,3,6,10,13);
22) Write (m 3,m 1) at col. (1,16) of row 5;
23) Write (m 4,m 2) at col. (1,16) of row 4;
24) Majority at col. (1);
25) Write c2 at col. (7,16) of row 3;
26) Majority at col. (7,16);
27) Write (c4,c4,c1,c3,c2) at col. (1,2,6,7,13) of row 6;
28) Write (1,c3,c2,c1) at col. (1,2,7,13) of row 7;
29) Majority at col. (1,2,6,7,13);
30) Write (m 8,m 5,m 7,m 6) at col. (2,6,7,13) of row 8;
31) Majority at col. (1,2,6,7,10,13,14,16);
32) Write (y7,y6,y5,y4,y3,y2,y1,y0) to the memory array.

C. Simulation of 4×4 Wallace Tree Multiplier in 1T-1R Array

Simulations were carried out using a 1T-1R array consisting
of a 45nm NMOS transistor in series with a ReRAM device as
the memory cell. The Stanford-PKU model which is a physics-
based model was used to model the filamentary switching
mechanism. The algorithm proposed in [39] was used to
exactly fit the model to the characteristics of IHP’s 1T–1R
cell [36] (HRS= 200 kΩ and LRS=10.5 kΩ, VSET = 0.8
V, VRESET = -1.1 V). Following the mapping described in
Section V-B, the functionality of a 4-bit in-memory multiplier
was verified by executing a sequence of READ (Majority),
and WRITE operations. The simulation was performed using
Cadence Virtuoso tool using SAs and WRITE circuit designed
in 45-nm CMOS technology. Multiple majority operations
were performed in parallel by using a dedicated SA for each
column in the 1T-1R array. As described in the Section

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I , VOL. , NO. , MONTH. 2021 7

8

0 p21 p20 0 1 7

p23 p22 p12 p11 p10 y0 6

p33 p33 p32 p13 p31 p03 p30 p02 p01 5

4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

a3 a2 a1 a0 a3 a2 a1 a0 a3 a2 a1 a0 a3 a2 a1 a0 2

b3 b3 b3 b3 b2 b2 b2 b2 b1 b1 b1 b1 b0 b0 b0 b0 1

c04 c03 c02 c01

c04_b c03_b c02_b c01_b

0 p21 p20 0 1

p23 p22 p12 p11 p10 y0

p33 p33 p32 p13 p31 p03 p30 p02 p01

c04 c04_b c03 c03_b c02 c02_b c01 c01_b

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a3 a2 a1 a0 a3 a2 a1 a0 a3 a2 a1 a0 a3 a2 a1 a0

b3 b3 b3 b3 b2 b2 b2 b2 b1 b1 b1 b1 b0 b0 b0 b0

m4 m3 m2 m1

8

7

6

5

4

3

2

1

c04_b c03_b c02_b c01_b 8

0 p21 p20 0 1 7

p23 p22 p12 p11 p10 y0 6

p33 p33 p32 p13 p31 p03 p30 p02 p01 5

c04 c04_b c03 c03_b c02 c02_b c01 c01_b 4

0 0 0 0 m4 0 0 0 m3 0 0 m2 0 0 m1 0 3

a3 a2 a1 a0 a3 a2 a1 a0 a3 a2 a1 a0 a3 a2 a1 a0 2

b3 b3 b3 b3 b2 b2 b2 b2 b1 b1 b1 b1 b0 b0 b0 b0 1

s04 s03 s02 y1

c04_b c03_b c02_b c01_b 8

0 p21 p20 0 1 7

p23 p22 s04 p12 y1 s03 p11 s02 p10 y0 6

p33 p33 p32 p13 p31 p03 p30 p02 0 p01 5

c04 c04_b c03 c03_b c02 c02_b c01 c01_b 4

0 0 0 0 m4 0 0 0 m3 0 0 m2 0 0 m1 0 3

a3 a2 a1 a0 a3 a2 a1 a0 a3 a2 a1 a0 a3 a2 a1 a0 2

b3 b3 b3 b3 b2 b2 b2 b2 b1 b1 b1 b1 b0 b0 b0 b0 1

c14 c13 c12 c11

c04_b c03_b c02_b c01_b 8

c14_b 0 c13_b p21 1 c12_b p20 c11_b 0 1 7

p23 p22 s04 p12 y1 s03 p11 s02 p10 y0 6

p33 p33 p32 p13 p31 p03 p30 p02 0 p01 5

c13 c04 c04_b c11 c13 c03 c03_b c02 c02_b c12 c01 c01_b 4

0 c14 c14 c14_b m4 0 0 c13_b m3 c12 c12_b m2 c11 c11_b m1 0 3

a3 a2 a1 a0 a3 a2 a1 a0 a3 a2 a1 a0 a3 a2 a1 a0 2

b3 b3 b3 b3 b2 b2 b2 b2 b1 b1 b1 b1 b0 b0 b0 b0 1

m8 m7 m6 m5

8

7

6

5

4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

a3 a2 a1 a0 a3 a2 a1 a0 a3 a2 a1 a0 a3 a2 a1 a0 2

b3 b3 b3 b3 b2 b2 b2 b2 b1 b1 b1 b1 b0 b0 b0 b0 1

p33 p32 p31 p30 p23 p22 p21 p20 p13 p12 p11 p10 p03 p02 p01 y0

m8 c04_b m7 c03_b m6 c02_b m5 c01_b 8

c14_b 0 c13_b p21 1 c12_b p20 c11_b 0 1 7

p23 p22 s04 p12 y1 s03 p11 s02 p10 y0 6

p33 p33 p32 p13 p31 p03 p30 p02 0 p01 5

c13 c04 c04_b c11 c13 c03 c03_b c02 c02_b c12 c01 c01_b 4

0 c14 c14 c14_b m4 0 0 c13_b m3 c12 c12_b m2 c11 c11_b m1 0 3

a3 a2 a1 a0 a3 a2 a1 a0 a3 a2 a1 a0 a3 a2 a1 a0 2

b3 b3 b3 b3 b2 b2 b2 b2 b1 b1 b1 b1 b0 b0 b0 b0 1

s14 s13 s12 y2

m8 c04_b m7 c03_b m6 c02_b m5 c01_b 8

c14_b 0 c13_b p21 1 c12_b p20 c11_b 0 1 7

p23 p22 s04 p12 y1 s03 p11 s02 p10 y0 6

p33 p33 p32 p13 s12 s14 p31 p03 s12 p30 p02 s13 0 p01 5

c13 s14 c04 c04_b c11 c13 c03 c03_b s13 c02 c02_b c12 c01 c01_b 4

0 c14 c14 c14_b m4 0 0 c13_b m3 c12 c12_b m2 c11 c11_b m1 0 3

a3 a2 a1 a0 a3 a2 a1 a0 a3 a2 a1 a0 a3 a2 a1 a0 2

b3 b3 b3 b3 b2 b2 b2 b2 b1 b1 b1 b1 b0 b0 b0 b0 1

m_2 m_1 c1 m_3 m_4

m8 c04_b m7 c03_b m6 c02_b m5 c01_b 8

c14_b 0 c13_b p21 1 c12_b p20 c11_b 0 1 7

p23 p22 s04 p12 y1 s03 p11 s02 p10 y0 6

m_3 p33 p33 p32 p13 s12 s14 p31 p03 s12 p30 p02 s13 0 p01 m_1 5

m_4 c13 s14 c04 c04_b c11 c13 c03 c03_b s13 c02 c02_b c12 c01 c01_b m_2 4

0 c14 c14 c14_b m4 0 0 c13_b m3 c12 c12_b m2 c11 c11_b m1 3

a3 a2 a1 a0 a3 a2 a1 a0 a3 a2 a1 a0 a3 a2 a1 a0 2

b3 b3 b3 b3 b2 b2 b2 b2 b1 b1 b1 b1 b0 b0 b0 b0 1

c2

m8 c04_b m7 c03_b m6 c02_b m5 c01_b 8

c14_b 0 c13_b p21 1 c12_b p20 c11_b 0 1 7

p23 p22 s04 p12 y1 s03 p11 s02 p10 y0 6

0 p33 p33 p32 p13 s12 s14 p31 p03 s12 p30 p02 s13 0 p01 m_1 5

m_3 c13 s14 c04 c04_b c11 c13 c03 c03_b s13 c02 c02_b c12 c01 c01_b m_2 4

m_4 c14 c14 c14_b m4 0 c2 c13_b m3 c12 c12_b m2 c11 c11_b m1 c2 3

a3 a2 a1 a0 a3 a2 a1 a0 a3 a2 a1 a0 a3 a2 a1 a0 2

b3 b3 b3 b3 b2 b2 b2 b2 b1 b1 b1 b1 b0 b0 b0 b0 1

c4 c3

m8 c04_b m7 c03_b m6 c02_b m5 c01_b 8

1 c3 c14_b 0 0 c2 c13_b p21 1 c12_b p20 c1 c11_b 0 1 7

c4 c4b p23 p22 c1b c3b s04 p12 y1 s03 p11 c2b s02 p10 y0 6

0 p33 p33 p32 p13 s12 s14 p31 p03 s12 p30 p02 s13 0 p01 m_1 5

m_3 c13 s14 c04 c04_b c11 c13 c03 c03_b s13 c02 c02_b c12 c01 c01_b m_2 4

m_4 c14 c14 c14_b m4 0 c2 c13_b m3 c12 c12_b m2 c11 c11_b m1 c2 3

a3 a2 a1 a0 a3 a2 a1 a0 a3 a2 a1 a0 a3 a2 a1 a0 2

b3 b3 b3 b3 b2 b2 b2 b2 b1 b1 b1 b1 b0 b0 b0 b0 1

m_8 m_5 m_7 m_6

0 m_8 m8 c04_b m_5 m_7 m7 c03_b 0 m6 c02_b m_6 m5 c01_b 0 8

1 c3 c14_b 0 0 c2 c13_b p21 1 c12_b p20 c1 c11_b 0 1 7

c4 c4b p23 p22 c1b c3b s04 p12 y1 s03 p11 c2b s02 p10 y0 6

0 p33 p33 p32 p13 s12 s14 p31 p03 s12 p30 p02 s13 0 p01 m_1 5

m_3 c13 s14 c04 c04_b c11 c13 c03 c03_b s13 c02 c02_b c12 c01 c01_b m_2 4

m_4 c14 c14 c14_b m4 0 c2 c13_b m3 c12 c12_b m2 c11 c11_b m1 c2 3

a3 a2 a1 a0 a3 a2 a1 a0 a3 a2 a1 a0 a3 a2 a1 a0 2

b3 b3 b3 b3 b2 b2 b2 b2 b1 b1 b1 b1 b0 b0 b0 b0 1

 y7 y6 y3 y5 y1 y4 y2 y0

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 8: Mapping of the 4 × 4 Wallace Tree multiplier (12 logic levels) of Fig. 7 to 1T-1R array. All the majority gates in a level are
executed in parallel (shaded portions). Each majority logic level of Fig. 7 is mapped to 1T-1R array of size 8× 16 (each rectangular box
is assumed as a 1T-1R cell). In each step, the majority output is marked in red and the new contents written to the array in blue.

V-B, the result of multiplication is available at the 31st cycle.
Simulation result of a 4 × 4 Wallace Tree Multiplier for the
inputs A = 1010 and B = 0101 is shown in Fig.9.

VI. n× n IN-MEMORY WALLACE TREE MULTIPLIER

A. 8× 8 In-memory Wallace Tree Multiplier

In this section, we extend the proposed in-memory mul-
tiplier to design 8 × 8 and n × n Wallace Tree multipliers
in memory. Specifically, we consider a 8 × 8 Wallace Tree
multiplier using majority logic and calculate the latency to
execute in memory. To accelerate the addition in the final
stage of 8×8 Wallace Tree multiplier, a majority-based 10-bit
parallel prefix (Ladner Fischer) adder is chosen. The majority-
based circuit of 8 × 8 Wallace Tree multiplier is shown in
Fig. 10. From the analysis of 4× 4 and 8× 8 multipliers, we
formulate the latency required to execute n× n multiplier in
memory. Comparing Fig. 7 and 10, it is clear that from 4×4 to
8×8 multipliers, the number of logic levels is increased from
12 to 19. This is the advantage of Wallace Tree architecture
using majority logic and we will transfer this latency advantage
to in-memory implementation as well. For 8 × 8 multiplier,

two different ways of mapping were experimented: Latency
optimized mapping and Area optimized mapping.

1) Latency optimized mapping: This method of mapping
for 8 × 8 multiplier follows the same procedure that was
used for 4 × 4 multiplier (see Section V-B). ReRAM cells
are not reused during multiplication i.e. each cell is used
only once during the entire multiplication process. This is
endurance-friendly mapping considering the limited endurance
of ReRAM devices [40]. Initially all the cells are initialized
to logic ‘0’. When the new contents are to be written to
the array during the multiplication process, only logic ‘1’ is
written to multiple cells in parallel using op-amp circuitry
(see Section IV-B). This minimizes the number of write
cycles there by reducing the latency of overall multiplication.
However, to avoid overwriting, each intermediate result is
written to a new location in the memory and, therefore, the
area of the array increases marginally. Following this method,
the proposed 8 × 8 multiplication in-memory requires a total
of 58 cycles (39 WRITE and 19 READ cycles). The 19 logic
levels of 8×8 multiplier require 59 memory cycles, as shown
in Fig. 10. The number of ReRAM cells utilized for the 8×8

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I , VOL. , NO. , MONTH. 2021 8

y7

Fig. 9: Simulation result of a 4× 4 Wallace Tree Multiplier for the inputs A = 1010 and B = 0101. EN is enable signal of SA
which is high during the READ operation (R = READ & W = WRITE). Multiplication result is available at the 31st cycle
(600n–620ns) marked with a red line and the result is y7y6y5y4y3y2y1y0 = 00110010.

multiplication in-memory is 560. Using this method, nlog2n
latency is accomplished for n × n multiplication in memory.
The proposed approach is one of the fastest implementations
of multiplication in ReRAM array.

For 8×8 multiplier in this mapping, the number of majority
operations is 283 and 556 bits are written. The total energy
for majority operations is therefore 283 × 2.2 pJ/majority
operation = 622 pJ. The total WRITE energy is 556 × 8.2
pJ/bit = 4559 pJ. The energy for 8×8 multiplications is 5181
pJ. The switching time, HRS, LRS and other parameters of
ReRAM vary from device to device and energy value depends
on HRS and LRS values and also the switching time. For
accurate energy comparison, all the multipliers should be
simulated using the same ReRAM device.

2) Area optimized mapping: In this method of mapping,
some ReRAM cells which are used in the previous com-
putation steps are re-used to write the intermediate values
(resulting after READ operation) during the multiplication
process. When the cells are re-used, there is no guarantee
that the initial state is ‘0’ unlike latency optimized mapping
(Section VI-A1) where all cells are initialized to logic ‘0’ and
are not re-used. Here writing of logic ‘1’ and logic ‘0’ are
performed separately when the intermediate results have to
be written to the array. The simultaneous writing of logic ‘1’
and ‘0’ is not possible because it is required to connect op-
amp circuitry to bit lines while writing ‘0’ and source lines
while writing ‘1’ (Fig. 6). For example, to write “10101010”
to a row, in area optimized mapping, first “ 0 0 0 0” is
written by a SET operation, and then, “1 1 1 1 ” is written
by a RESET operation3. This doubles the number of WRITE
cycles compared to the latency-optimized mapping leading to
an increase in overall latency of multiplier. The number of cells
utilized is less in this mapping method due to overwriting of
cells. Using this approach by reusing 40% of the cells, 8× 8
multiplication in-memory requires 99 cycles (80 WRITE and
19 READ cycles) and 270 ReRAM cells. In this work, since

3In latency-optimized method, writing “10101010,” can be done in a single
step by writing “1 1 1 1 ” using parallel RESET operation in those four
locations and there is no need to write other locations as all the memory cells
are initialized to ‘0’ (SET)

our main focus is on latency optimization, we focused more
on latency-optimized mapping for n×n in-memory multiplier.

B. n× n In-Memory Wallace Tree Multiplier

The size of the 1T-1R array required for n× n In-Memory
Wallace Tree Multiplier grows as 8 × (n2 + 6log2

n
4). The

number of partial product reduction stages for n× n Wallace
Tree multiplier follows log2 n2

4 (see Section II) and each stage
has 3 levels of majority gates. Therefore, the number of levels
of majority gates for partial product reduction phase in n× n
in-memory multiplier is 3(log2 n2

4). Assuming the inputs to
be multiplied are in the memory, the latency of in-memory
computation can be formulated as follows:

• One read cycle is required to compute the partial prod-
ucts.

• n×n Wallace Tree multiplier has log2 n2

4 partial product
reduction stages (intermediate stages of addition) and
each stage requires 6 cycles for addition using majority
logic.

• n × n multiplier needs 2(n − log2n) bit adder in the
final stage. The number of cycles required for parallel-
prefix addition in the last stage is 4blog22(n−log2n)c+6
cycles (Cycles required for p-bit in-memory addition is
4blog2pc+ 6, see ref [7]).

• The write cycles required to map the intermediate results
to desired locations in memory are (n − 2)blog2(n −
2)c+3.

• The total number of cycles required to compute n × n
Wallace Tree multiplication in-memory is given by, La-
tency = 6log2

n2

4 +4blog22(n−log2n)c+(n−2)blog2(n−
2)c+ 10

The above equation is verified for n = 2, n = 4 and n = 8. The
number of ReRAM cells utilized for the computation of 4×4
and 8 × 8 multiplication in-memory without overwriting the
contents of cells is 128 and 560 respectively. For n×n multi-
plication in-memory, the number of ReRAM cells required is
given by 8n2 + 48log2

n
4 .

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I , VOL. , NO. , MONTH. 2021 9

p01 p10 0p02 p11 p20p03 p12 p21p04 p13 p22p05 p14 p23p06 p15 p24p07 p16 p250 p17 p26

p01 p10

0

p02 p11

p20

p03 p12

p21

p04 p13

p22

p05 p14

p23

p06 p15

p24

p07 p16

p25

p170p31 p40

 0

p32 p41

p50

p33 p42

p51

p34 p43

p52

p35 p44

p53

p36 p45

p54 p26

0 p31 p40p32 p41 p50p33 p42 p51p34 p43 p52p35 p44 p53p36 p45 p54

p37 p46

p55

 0 p47

p56

p37 p46 p55 0 p47 p56

c01c02c03c04c05c06c07c08c11c12c13c14c15c16c17c18

m1m2m3m4m5m6m7m8m9m10m11m12m13m14m15m16

s02s03s04s05s06s07s08s11s12s13s14s15s16s17s18

0

p30

s03

s11

s04

s12

s05

s13

s06

s14

s07

s15

s08p60

 0 p70

p61

p71

p62

p72

p63

p73

p64

p74

p65 p27

p75

p66

 0 p76

p67

c21c22c23c24c25c26c27c28c31c32c33c34c35c36c37c38

m17m18m19m20m21m22m23m24m25m26m27m28m29m30m31m32

s22s23s24s25s26s27s28s31s32s33s34s35s36s37s38

0

0

p30s11s12s13s14s15s16 p27

s16

p60 0

p70 p61p71 p62p72 p63p73 p64p74 p65p75 p66p76 p67 0

0

s23

 0

s24

c11

s25

s31

s26

s32

s27

s33

s28

s34s35

c40c41c42c43c44c45c46c47

m33m34m35m36m37m38m39m40

s41s42s43s44s45s46s47

0

s22

 0c11s17

s17

s36

c48

m41

s48

s18

s18

s37

c49

m42

s49

p57

p57

 0 0

 0 0

s42

 c41

s43

c42

s44

c43

s45

c44

s46

c45

s47

c46c47

c50c51c52c53c54c55c56c57

m43m44m45m46m47m48m49m50

s51s52s53s54s55s56s57

0

s41

 0 0c31c32c33c34c35

s48

c48

c58

m51

s58

c36

s49

c49

c59

m52

s59

c37

s38

 0

 c5_10

m53

s5_10

p77

p77

 0

0

c40

00c31c32c33c34c35c36c37c38

0a0 b0

 c50 c51 c52 c53 c54 c55 c56 c57 c58 c59

10-bit Parallel-Prefix Adder

P0

P1

P2

P3

P4

y0y1y2y3y4y5y6y7y8y9y10y11y12y13y14y15

0

s51 c50s52 c51s53 c52s54 c53s55 c54s56 c55s57 c56s58 c57s59 c58s510 c59

 s51c50

0

 s52 c51

c1

c2

c3

c4

c5

c6

c7

c8

c9

s510c59 s59c58 s58 c57 s57c56 s56 c55 s55 c54 s54 c53 s53c52

c1c2c3c4c5c6c7c8c9

y5y6y7y8y9y10y11y12y13y14 y15

cout

1 2 3 4 5 6 7

8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24

25 26 27 28 29 30 31 32 33 34

35 36 37 38 39 40 41 444342

0 p07 p06 p05 p04 p03 p02 p01 p00

p17 p16 p15 p14 p13 p12 p11 p10

p27 p26 p25 p24 p23 p22 p21 p20 0

0 p37 p36 p35 p34 p33 p32 p31 p30

p47 p46 p45 p44 p43 p42 p41 p40

p57 p56 p55 p54 p53 p52 p51 p50 0

p67 p66 p65 p64 p63 p62 p61 p60

p77 p76 p75 p74 p73 p72 p71 p70

p27 s08 s07 s06 s05 s04 s03 s02 s01

c08 c07 c06 c05 c04 c03 c02 c01

p57 s18 s17 s16 s15 s14 s13 s12 s11 p30 0

0 c18 c17 c16 c15 c14 c13 c12 c11

p67 p66 p65 p64 p63 p62 p61 p60

p77 p76 p75 p74 p73 p72 p71 p70 0

p57 s18 s17 s28 s27 s26 s25 s24 s23 s22 s21

0 0 c28 c27 c26 c25 c24 c23 c22 c21

p77 s38 s37 s36 s35 s34 s33 s32 s31 c11 0 0

c38 c37 c36 c35 c34 c33 c32 c31

p77 s38 s49 s48 s47 s46 s45 s44 s43 s42 s41 s40

0 c49 c48 c47 c46 cc45 c44 c43 c42 c41 c40

c38 c37 c36 c35 c34 c33 c32 c31 0 0 0

s5_10 s59 s58 s57 s56 s55 s54 s53 s52 s51 s50

c5_10 c59 c58 c57 c56 c55 c54 c53 c52 c51 c50

y15 y14 y13 y12 y11 y10 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

 a7 a6 a5 a4 a3 a2 a1 a0 b7 b6 b5 b4 b3 b2 b1 b0 ⨯

Full

adder

I

II

III

IV

V

1

2

3

4

5

6

7

8

9

10

11

12

13

14-19

READ

READ

3 WRITE

READ

3 WRITE

READ

1 WRITE

READ

2 WRITE

READ

1 WRITE

READ

2 WRITE

READ

2 WRITE

READ

3 WRITE

READ

1 WRITE

READ

1 WRITE

READ

3 WRITE

6 READ &16 WRITE

READ

1 WRITE

Level Operation

Total cycles = 58+1 cycle

 to write result to array

Fig. 10: The five stages (I-V) of a general 8 × 8 Wallace Tree multiplier expressed as 19 levels of majority gates. READ and WRITE
operations performed at each level are shown next to the level number. Levels 14-19 are the 10-bit parallel-prefix (Ladner Fischer) adder
used to accelerate addition in the last stage to produce result. Total number of cycles required for 8× 8 multiplication is 59, out of which
58 cycles are for the entire multiplication process and 1 cycle is to write result to the memory array.

TABLE I: Comparison of the proposed (8 × 8) In-memory multiplier with previous works in terms of Latency (# Cycles),
Area (# Memristors & Modifications to peripheral circuitry)

Comparison of 8× 8 Memristor Based Multipliers
Multiplier Logic Primitive # Cycles # Memristors Modifications to Peripheral

Circuitry
Array Compatibility

Shift and Add [16] IMPLY Gate 296 57 63 Switches & 56 Drivers No

Array [17] IMPLY Gate 157 393 449 Switches & 449 Drivers No

Dadda [18] IMPLY Gate 106 385 482 Switches & 390 Drivers No

Semi-Serial Adder Based [19] IMPLY Gate 280 138 51 Switches Moderate (switches, RG)

Full Precision Fixed Point [41] NOR Gate 726 155 NA∗ Yes (1S-1R)

MultPIM [20] Minority+NOT 139 105 NA∗ Yes (1S-1R)

Proposed(Latency Optimized) Majority Gate 59 560 (8×70 array) Triple row decoder Yes (1T-1R)

Proposed(Area Optimized) Majority Gate 99 270 Triple row decoder Yes (1T-1R)

* Source does not provide information about modifications to peripheral circuitry.

VII. COMPARISON WITH THE PREVIOUS WORKS

In this section, we compare the proposed in-memory Wal-
lace Tree multiplier with other in-memory multipliers in
literature. A direct comparison with CMOS multipliers is
not possible due to lack of accurate numbers for DRAM
access latency/energy4. In literature, not all memristor-based
multiplier works can be classified as in-memory multipliers.
For example, the works [16]–[18] implement multipliers using
memristors but not in a memory array. The work in [19] uses
IMPLY logic to implement a multiplier in a memory array, but
with significant modifications to the memory array (switches

4The latency/energy of in-memory multiplier must be compared with the
combined time/energy needed to fetch data from DRAM memory and be
multiplied in CMOS-based processor.

in certain parts of the array and work resistor RG). In contrast,
our work is true in-memory multiplication since the computa-
tion is performed as a sequence of READ/WRITE operations.
Table I & II summarizes the metrics of latency, area (both array
area and peripheral circuitry) and the degree of compatibility
to a regular memory array. From Table I, it is clear that
the proposed multiplier outperforms all existing multipliers in
terms of latency. The multiplier proposed in this work (Latency
optimized) achieves 44% less latency than the multiplier with
least latency reported in literature (Dadda multiplier with
106 cycle latency). Further, IMPLY-based multipliers (Shift
and Add, Array, Dadda & Semi-serial adder based) require
additional switches and drivers (Table I). Multipliers based on
NOR ([41]) and Minority+NOT ([20]) require an isolation

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I , VOL. , NO. , MONTH. 2021 10

TABLE II: Comparison of the proposed (n × n) In-memory multiplier with previous works in terms of Latency (# Cycles),
Area (# Memristors & Modifications to peripheral circuitry)

Comparison of n× n Memristor Based Multipliers
Multiplier # Cycles # Memristors Modifications to Periph-

eral Circuitry
Array Compatibility

Shift and Add [16] 2n2 + 21n 7n+ 1 8n − 1 Switches & 7n
Drivers

No

Array [17] 24n− 35 7n2 − 8n+ 9 8n2−9n+9 Switches &
Drivers

No

Dadda [18] NA∗ NA∗ NA∗ No

Semi-Serial Adder Based [19] dlog2ne(10n+ 2) + 4n+ 2 2n2 + n+ 2 12dn
2
e+dn−1

2
e Switches Moderate (switches, RG)

Full Precision Fixed Point [41] 13n2 − 14n+ 6 20n− 5 NA∗ Yes (1S-1R)

MultPIM [20] nlog2(n) + 14n+ 3 14n− 7 NA∗ Yes (1S-1R)

Proposed(Latency Optimized) 6log2
n2

4
+4blog22(n−log2n)c+

(n− 2)blog2(n− 2)c+ 10
8n2 + 48log2

n
4

Triple row decoder Yes(1T-1R)

* Source does not provide this information

voltage (to be applied at rows where NOR operation is not
intended) and an execution voltage (for NOR operation). Thus,
two additional voltage sources are needed and the peripheral
circuitry must have the capability to multiplex atleast five
voltage sources (VREAD, VWRITE , VGND, VISO, VEXE) to
each row/column. Therefore, existing multipliers need signif-
icant modifications to the peripheral circuitry, whereas the
proposed multiplier requires only a minor modification to
the row decoder (to select three consecutive rows during
majority operation). The number of memristors required for
the proposed multiplier is more owing to high degree of gate-
level parallelism employed and endurance-friendly mapping.
But memristor is a nanoscale device which occupies very
less area and even if the number of memristors is increased,
this does not contribute to significant increase in the total
area (to compare two in-memory multipliers, both the array
area and the increased peripheral circuitry area required to
accommodate logic operations must be determined [7]). The
proposed multiplier is energy efficient due to the absence of
sneak path currents in 1T–1R configuration. In Tables I & II,
the energy for different multipliers is not included since the
energy of other multipliers is either not reported or reported
for different ReRAM technology. As stated in Section IV-D,
comparison of energy of different multipliers is inconclusive
since the switching energy (HRS
 LRS) varies across
different ReRAM technologies. From Table I, proposed in-
memory Wallace Tree multiplier is the fastest among the
existing in-memory multipliers without significant increase in
total area (memory array area + peripheral circuitry area) and
also endurance-friendly.

The comparison of the proposed and the existing n × n
memristor-based multipliers using the formulations from Sec-
tion VI-B is given in Table II. Using the formulations in Table
II to perform 64×64 (n = 64) multiplication in-memory, Shift
and Add multiplier requires 9536 cycles, Array multiplier re-
quires 1501 cycles, Multiplier using semi-serial adder requires
4110 cycles, Full precision fixed point multiplier requires
52358 cycles, MultPIM requires 1283 cycles and the proposed
multiplier requires 404 cycles. From this example, it is clear
that the proposed multiplier provides optimum latency for

intensive multiplication and the latency grows as O(n · logn).

Fig. 11: Latency variation of in-memory multipliers with
increase in bit-width. In-memory multipliers, Shift & Add,
Array, Semi-serial adder based, Full precision fixed point and
MultPIM require thousands of cycles for 64-bit multiplication,
while the proposed in-memory multiplier requires only 404
cycles.

VIII. CONCLUSION

In this work, we have implemented a novel in-memory
Wallace Tree multiplier using majority gates. Latency opti-
mized in-memory multiplication is achieved by combining the
strength of majority logic primitive and speed of Wallace Tree
architecture. High degree of gate-level parallelism is employed
since majority gates can be executed simultaneously in the
columns of the array. In this manner, latency is optimized
at each level– at the architecture level by choosing Wallace
Tree, at the circuit level by choosing majority gates and in
the memory array by parallel operations in the columns of
the array. In addition to accelerating multiplication in 1T-
1R array, the proposed multiplier is energy-efficient since
energy associated with sneak currents is negligible in the
1T-1R array. Since the proposed multiplier performs parallel
majority operations to minimize latency without overwriting

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I , VOL. , NO. , MONTH. 2021 11

the cells, it requires considerable area of the array but no major
modifications to the peripheral circuitry of the memory array.

REFERENCES

[1] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications
of the obvious,” ACM SIGARCH computer architecture news, vol. 23,
no. 1, pp. 20–24, 1995.

[2] M. Horowitz, “1.1 computing’s energy problem (and what we can do
about it),” in 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC). IEEE, 2014, pp. 10–14.

[3] A. Pedram, S. Richardson, M. Horowitz, S. Galal, and S. Kvatinsky,
“Dark memory and accelerator-rich system optimization in the dark
silicon era,” IEEE Design & Test, vol. 34, no. 2, pp. 39–50, 2016.

[4] S. F. Yitbarek, T. Yang, R. Das, and T. Austin, “Exploring specialized
near-memory processing for data intensive operations,” in 2016 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2016, pp. 1449–1452.

[5] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim,
M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit: In-
memory accelerator for bulk bitwise operations using commodity dram
technology,” in 2017 50th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 2017, pp. 273–287.

[6] A. Agrawal, A. Jaiswal, C. Lee, and K. Roy, “X-sram: Enabling in-
memory boolean computations in cmos static random access memories,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65,
no. 12, pp. 4219–4232, 2018.

[7] J. Reuben and S. Pechmann, “Accelerated addition in resistive ram array
using parallel-friendly majority gates,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 29, no. 6, pp. 1108–1121, 2021.

[8] I. Giannopoulos, A. Sebastian, M. Le Gallo, V. Jonnalagadda, M. Sousa,
M. Boon, and E. Eleftheriou, “8-bit precision in-memory multiplication
with projected phase-change memory,” in 2018 IEEE International
Electron Devices Meeting (IEDM), 2018, pp. 27.7.1–27.7.4.

[9] H. Zhang, W. Kang, K. Cao, B. Wu, Y. Zhang, and W. Zhao, “Spintronic
processing unit in spin transfer torque magnetic random access memory,”
IEEE Transactions on Electron Devices, vol. 66, no. 4, pp. 2017–2022,
2019.

[10] X. Yin, X. Chen, M. Niemier, and X. S. Hu, “Ferroelectric fets-based
nonvolatile logic-in-memory circuits,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 27, no. 1, pp. 159–172, 2019.

[11] S. Yu, “Resistive random access memory (rram),” Synthesis lectures on
emerging engineering technologies, vol. 2, no. 5, pp. 1–79, 2016.

[12] J. Reuben et al., A Taxonomy and Evaluation Framework for Memristive
Logic. Cham: Springer International Publishing, 2019, pp. 1065–1099.

[13] Y. S. Kim, M. W. Son, and K. M. Kim, “Memristive stateful logic for
edge boolean computers,” Advanced Intelligent Systems, vol. 3, no. 7,
p. 2000278, 2021.

[14] N. Xu, T. Park, K. J. Yoon, and C. S. Hwang, “In-memory stateful
logic computing using memristors: Gate, calculation, and application,”
physica status solidi (RRL) – Rapid Research Letters, vol. 15, no. 9, p.
2100208, 2021.

[15] J. Reuben, “Rediscovering majority logic in the post-cmos era: A per-
spective from in-memory computing,” Journal of Low Power Electronics
and Applications, vol. 10, no. 3, 2020.

[16] L. Guckert and E. E. Swartzlander, “Optimized memristor-based multi-
pliers,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 64, no. 2, pp. 373–385, 2017.

[17] L. E. Guckert et al., “Memristor-based arithmetic units,” Ph.D. disser-
tation, 2016.

[18] L. Guckert and E. E. Swartzlander, “Dadda multiplier designs using
memristors,” in 2017 IEEE International Conference on IC Design and
Technology (ICICDT). IEEE, 2017, pp. 1–4.

[19] D. Radakovits, N. TaheriNejad, M. Cai, T. Delaroche, and S. Mirabbasi,
“A memristive multiplier using semi-serial imply-based adder,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 5,
pp. 1495–1506, 2020.

[20] O. Leitersdorf, R. Ronen, and S. Kvatinsky, “Multpim: Fast stateful mul-
tiplication for processing-in-memory,” IEEE Transactions on Circuits
and Systems II: Express Briefs, 2021.

[21] D. R. Gandhi and N. N. Shah, “Comparative analysis for hardware
circuit architecture of wallace tree multiplier,” in 2013 International
Conference on Intelligent Systems and Signal Processing (ISSP). IEEE,
2013, pp. 1–6.

[22] F. U. D. Farrukh, C. Zhang, Y. Jiang, Z. Zhang, Z. Wang, Z. Wang,
and H. Jiang, “Power efficient tiny yolo cnn using reduced hardware
resources based on booth multiplier and wallace tree adders,” IEEE Open
Journal of Circuits and Systems, vol. 1, pp. 76–87, 2020.

[23] G. Jaberipur, B. Parhami, and D. Abedi, “Adapting computer arithmetic
structures to sustainable supercomputing in low-power, majority-logic
nanotechnologies,” IEEE Transactions on Sustainable Computing, vol. 3,
no. 4, pp. 262–273, 2018.

[24] L. Amaru, P.-E. Gaillardon, and G. De Micheli, “Majority-inverter
graph: A new paradigm for logic optimization,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 35,
no. 5, pp. 806–819, 2015.

[25] I. A. Young and D. E. Nikonov, “Principles and trends in quantum nano-
electronics and nano-magnetics for beyond-cmos computing,” in 2017
47th European Solid-State Device Research Conference (ESSDERC).
IEEE, 2017, pp. 1–5.

[26] V. Pudi, K. Sridharan, and F. Lombardi, “Majority logic formulations for
parallel adder designs at reduced delay and circuit complexity,” IEEE
transactions on computers, vol. 66, no. 10, pp. 1824–1830, 2017.

[27] J. Reuben and S. Pechmann, “A parallel-friendly majority gate to
accelerate in-memory computation,” in 2020 IEEE 31st International
Conference on Application-specific Systems, Architectures and Proces-
sors (ASAP), 2020, pp. 93–100.

[28] Y. devi Ykuntam, K. Pavani, and K. Saladi, “Design and analysis of
high speed wallace tree multiplier using parallel prefix adders for vlsi
circuit designs,” in 2020 11th International Conference on Computing,
Communication and Networking Technologies (ICCCNT). IEEE, 2020,
pp. 1–6.

[29] U. Kumar and A. Fam, “Enhanced wallace tree multiplier via a prefix
adder,” in 2020 IEEE Student Conference on Research and Development
(SCOReD). IEEE, 2020, pp. 211–216.

[30] W. J. Townsend, E. E. Swartzlander Jr, and J. A. Abraham, “A com-
parison of dadda and wallace multiplier delays,” in Advanced signal
processing algorithms, architectures, and implementations XIII, vol.
5205. International Society for Optics and Photonics, 2003, pp. 552–
560.

[31] Z.-R. Wang, Y. Li, Y.-T. Su, Y.-X. Zhou, L. Cheng, T.-C. Chang, K.-H.
Xue, S. M. Sze, and X.-S. Miao, “Efficient implementation of boolean
and full-adder functions with 1t1r rrams for beyond von neumann in-
memory computing,” IEEE Transactions on Electron Devices, vol. 65,
no. 10, pp. 4659–4666, 2018.

[32] L. Cheng, Y. Li, K.-S. Yin, S.-Y. Hu, Y.-T. Su, M.-M. Jin, Z.-R. Wang,
T.-C. Chang, and X.-S. Miao, “Functional demonstration of a memristive
arithmetic logic unit (memalu) for in-memory computing,” Advanced
Functional Materials, vol. 29, no. 49, p. 1905660, 2019.

[33] S. G. Rohani, N. Taherinejad, and D. Radakovits, “A semiparallel
full-adder in imply logic,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 28, no. 1, pp. 297–301, 2019.

[34] R. Ben-Hur, R. Ronen, A. Haj-Ali, D. Bhattacharjee, A. Eliahu, N. Peled,
and S. Kvatinsky, “Simpler magic: Synthesis and mapping of in-
memory logic executed in a single row to improve throughput,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 39, no. 10, pp. 2434–2447, 2020.

[35] E. Testa, M. Soeken, L. G. Amar, and G. De Micheli, “Logic synthesis
for established and emerging computing,” Proceedings of the IEEE, vol.
107, no. 1, pp. 165–184, 2018.

[36] S. Pechmann, T. Mai, M. Völkel, M. K. Mahadevaiah, E. Perez, E. Perez-
Bosch Quesada, M. Reichenbach, C. Wenger, and A. Hagelauer, “A
versatile, voltage-pulse based read and programming circuit for multi-
level rram cells,” Electronics, vol. 10, no. 5, p. 530, 2021.

[37] Q.-K. Trinh, S. Ruocco, and M. Alioto, “Time-based sensing for
reference-less and robust read in stt-mram memories,” IEEE Transac-
tions on Circuits and Systems I: Regular Papers, vol. 65, no. 10, pp.
3338–3348, 2018.

[38] M.-F. Chang, C.-H. Chuang, M.-P. Chen, L.-F. Chen, H. Yamauchi, P.-F.
Chiu, and S.-S. Sheu, “Endurance-aware circuit designs of nonvolatile
logic and nonvolatile sram using resistive memory (memristor) device,”
in 17th Asia and South Pacific Design Automation Conference. IEEE,
2012, pp. 329–334.

[39] J. Reuben, D. Fey, and C. Wenger, “A modeling methodology for
resistive ram based on stanford-pku model with extended multilevel
capability,” IEEE Transactions on Nanotechnology, vol. 18, pp. 647–
656, 2019.

[40] S.-Y. Hu, Y. Li, L. Cheng, Z.-R. Wang, T.-C. Chang, S. M. Sze, and
X.-S. Miao, “Reconfigurable boolean logic in memristive crossbar: The
principle and implementation,” IEEE Electron Device Letters, vol. 40,
no. 2, pp. 200–203, 2018.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I , VOL. , NO. , MONTH. 2021 12

[41] A. Haj-Ali, R. Ben-Hur, N. Wald, R. Ronen, and S. Kvatinsky, “Imaging:
In-memory algorithms for image processing,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 65, no. 12, pp. 4258–4271,
2018.

This is the author's version of an article that has been published in this journal. Changes were made to
this version by the publisher prior to publication. The final version of record is available at
http://dx.doi.org/10.1109/TCSI.2021.3129827

	Introduction
	Wallace Tree Multiplier
	Majority Logic as a Logic Primitive for In-Memory Multiplication
	Boolean Logic Primitives Implemented in Memory
	In-Memory Implementation of a Majority Gate

	Structure of In-Memory Computing System
	READ circuit (Sense Amplifier)
	WRITE Circuit
	Row Decoder, Column Selection Logic and Memory controller
	Energy for In-Memory Operations

	Proposed 44 In-Memory Wallace Tree Multiplier
	44 Wallace Tree Multiplier using Majority Logic
	Mapping of the 44 Wallace Tree Multiplier to 1T-1R Array
	Simulation of 44 Wallace Tree Multiplier in 1T-1R Array

	nn In-Memory Wallace Tree Multiplier
	88 In-memory Wallace Tree Multiplier
	Latency optimized mapping
	Area optimized mapping

	n n In-Memory Wallace Tree Multiplier

	Comparison with the Previous Works
	Conclusion
	References

