
1 

 

A novel individual-tree mixed model to account for competition and 

environmental heterogeneity: a Bayesian approach 

 

EDUARDO P. CAPPA
12* FACUNDO MUÑOZ

3
 LEOPOLDO SANCHEZ

3
 RODOLFO J. C. CANTET

24 

 

1 Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Recursos Biológicos, De Los Reseros y 

Dr. Nicolás Repetto s/n, 1686, Hurlingham, Buenos Aires, Argentina. 

2 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. 

3 Institut National de la Recherche Agronomique (INRA) Orléans, Unité Amélioration, Génétique et 

Physiologie Forestières, 2163 Avenue de la Pomme de Pin, CS 40001 ARDON, 45075 Orleans, Cedex 02, 

France. 

4 Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Avenida San 

Martín 4453, C1417DSQ, Buenos Aires, Argentina. 

 

 

* Corresponding author 

Eduardo Pablo Cappa 

Bosques Cultivados 

Instituto de Recursos Biológicos  

Centro de Investigación en Recursos Naturales  

Instituto Nacional de Tecnología Agropecuaria 

De Los Reseros y Dr. Nicolás Repetto s/n 

1686 Hurlingham, Buenos Aires  

Argentina. 

 

Phone: +54 11 4621 0433 

Fax: +54 11 4621 0433 

e-mail: ecappa@cnia.inta.gov.ar 

  

mailto:ecappa@cnia.inta.gov.ar


2 

 
Abstract 

Negative correlation caused by competition among individuals, and positive spatial correlation due to 

environmental heterogeneity, may lead to biases in estimating genetic parameters and predicting breeding 

values (BV) from forest genetic trials. Former models dealing with competition and environmental 

heterogeneity did not account for the additive relationships among trees or for the full spatial covariance. This 

paper extends an individual-tree mixed model with direct additive genetic, genetic and environmental 

competition effects, by incorporating a two-dimensional smoothing surface to account for complex patterns of 

environmental heterogeneity (Competition + Spatial Model, CSM). We illustrate the proposed model using 

simulated and real data from a loblolly pine progeny trial. The CSM was compared with three reduced 

individual-tree mixed models using a real data set, while simulations comprised only CSM versus true 

parameters comparisons. Dispersion parameters were estimated using Bayesian techniques via Gibbs 

sampling. Simulation results showed that the CSM yielded posterior mean estimates of variance components 

with slight or negligible biases in the studied scenarios, except for the permanent environment variance. The 

worst performance of the simulated CSM was under a scenario with weak competition effects and small-scale 

environmental heterogeneity. When analyzing real data, the CSM yielded a lower value of the Deviance 

Information Criterion than the reduced models. Moreover, although correlations between predicted BV 

calculated from CSM and from a standard model with block effects and direct genetic effects only were high, 

the ranking among the top 5% ranked individuals showed differences which indicated that the two models 

will have quite different genotype selections for the next cycle of breeding.  
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Introduction 

Advanced forest genetic evaluation involves analyzing data from progeny tests using mixed linear 

models to calculate “best linear unbiased predictors” (BLUP) of tree breeding values (BV). As BLUP 

prediction depends on the values of the covariance matrices for the assumed model, the specification of the 

dispersion parameters should take into account the negative correlation caused by competition among 

individuals, and the positive spatial correlation due to the environmental heterogeneity. In field trials with 

perennial plants, both phenomena (i.e., competition and environmental heterogeneity) are dynamic and 

coexist simultaneously (Magnussen 1994). Therefore, statistical genetic analyses neglecting these factors or 

considering only one of them can lead to biases in the estimation of genetic parameters and in the prediction 

of individual additive genetic effects (i.e., BLUP of BV). Simulation studies have shown that positive spatial 

correlation inflates the additive genetic variance, while moderate levels of negative correlation caused by 

competition depresses it (Magnussen 1994). Therefore, when both competition and environmental 

heterogeneity are present in a forest genetic trial, a complete model approach that allows fitting 

simultaneously both processes is necessary (Resende et al. 2005). However, appropriate choice of the model 

is likely to influence how well the two processes can be separated analytically (Durban et al. 2001). 

Competition reflects the impairing interplay of closely neighboring trees, often when local resources 

are limiting. It depends on the genetic composition and the spatial arrangement of neighboring trees (Hinson 

and Hanson 1962), and it can be decomposed into genetic and environmental sources (Magnussen 1989). 

Cappa and Cantet (2008) presented an approach to account for competition effects in forest genetic 

evaluation. The mixed linear model included direct and indirect (i.e., competition) genetic effects, as well as 

environmental competition effects. Competition effects, either genetic or environmental, are identified in the 

phenotype of a competitor tree by means of the „intensity of competition‟ elements (IC). The ICs are inverse 

functions of the distance and the number of competing individuals, either row/column-wise or diagonally. The 

ICs allow standardization of the variance of competition effects, so that the model accounts for unequal 

number of neighbors in locations with mortality and borders. Cappa and Cantet (2008) applied this approach 

to data on growth at breast height in loblolly pines, resulting in a strong negative correlation between direct 

and competition breeding values of -0.79. In the model where competition effects were not fitted, the value of 

the additive genetic variance was smaller and the residual variance was larger than in the model with 

competition effects. However, Stringer et al. (2011) noted that the approach proposed by Cappa and Cantet 

(2008) was limited due to not taking into account environmental heterogeneity within trials. 

There are usually two types of spatial environmental variation within a site: global trend (or large-

scale variation), and/or local trend (or small-scale variation). Both are empirically known in forestry field 

trials, and result from variations in soil characteristics and terrain orientation. Many studies applying spatial 

analysis techniques to single forest genetic trials reported a consistent reduction in residual variance and an 

increase in estimated heritability. This typically results in a gain of accuracy of BV and in greater genetic gain 

when compared with different a priori experimental designs (e.g. Dutkowski et al. 2006; Zas 2006; Cappa 
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and Cantet 2007; Ye and Jayawickrama 2008). Several approaches have been developed and applied to single 

forest trials to reduce the effects of environmental variability (Magnussen 1990; Zas 2006; Thomson and El-

Kassaby 1988; Costa e Silva et al. 2001; Ericsson 1997). However, fitting a two-dimensional surface proved 

useful for accommodating complex patterns of spatial heterogeneity within forest genetic trials (Cappa and 

Cantet 2007; Finley et al. 2009; Cappa et al. 2011). Cappa and Cantet (2007) proposed using tensor products 

of cubic B-splines (Eilers and Mark 2003) based on a mixed model, by treating the coefficients of B-spline 

functions as random variables (and using a covariance structure for the random spline effects based on the 

spatial arrangement) in a two-dimensional grid. The mixed model with the fit of a two-dimensional surface 

displayed a consistent reduction in the residual variance, an increase in the estimated additive genetic variance 

and heritability, and an increase in the accuracy of the predicted breeding values of parent and offspring in 

both large (Cappa and Cantet 2007) and small (< 1 ha) forest genetic trials (Cappa et al. 2011). Finley et al. 

(2009) proposed an individual linear mixed model with spatial random effects modeled with two methods: the 

first used an exponential Ornstein–Uhlenbeck process, whereas the second was based on a hierarchical 

Gaussian predictive process model with a set of knots for rows and columns. In a dataset from Scots pine 

(Pinus sylvestris L.) progeny trial conducted in northern Sweden, they demonstrated that estimates from the 

predictive process approach provided a reliable reduction in the residual variance and an increment in the 

heritability even when the underlying spatial process was misaligned with the grid‟s rows and columns. 

However, where both environmental heterogeneity and competition effects are important, a full model 

approach is needed (Resende et al. 2005). 

In a simulation study of an empirical sib-trial data set from Pinus banksiana Lamb., Magnussen 

(1994) suggested modeling both effects by means of an iterative nearest neighbor adjustment and a standard 

linear model (two-way ANOVA). In a series of 70 sugar beet trials, Durban et al. (2001) simultaneously 

modeled the fertility trend and the genetic competition by means of a mixed model. They used the “treatment 

interference model” proposed by Besag and Kempton (1986) to model the interplot competition, and a one-

dimensional smoothing spline to account for environmental heterogeneity. However, Durban et al. (2001) 

considered varieties as fixed effects, and did not account for additive relationships among genotypes, a usual 

assumption in variety selection. A more realistic joint modeling approach was proposed recently by Stringer 

et al. (2011) and applied in two early-stage data sets from sugarcane trials. They extended the model proposed 

by Durban et al. (2001) modeling the variability from the local environmental trend with a Kronecker product 

of first order autoregressive (AR(1)) covariance structures for rows and columns (Gilmour et al. 1997), and 

included random variety genetic effects. However, when in a forest genetic trial both competition and 

environmental effects are important, the AR(1) covariance residual structure reflects a mixture of 

environmental competition and local trend. To minimize this confounding of effects, Stringer et al. (2011) 

proposed modeling the environmental competition effects using an autoregressive residual process, but in this 

case of order 2 (EAR2), or 3 (EAR3). While analyzing sorghum trials from Australia, Hunt et al. (2013) 

accommodated both spatial heterogeneity and interplot competition while using pedigree information. The 

spatial heterogeneity was modeled with an AR(1) residual covariance structure for rows and columns, and the 
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interplot competition using the “treatment interference model” (Besag and Kempton 1986). Following 

Stringer et al. (2005), Resende et al. (2005) modeled simultaneously competition effects and spatial variability 

in two field forest trials, they used the approach proposed by Besag and Kempton (1986) to account for 

competition, and the approach of Gilmour et al. (1997) to model via AR(1) row and column environmental 

variation. In that tree study, however, Resende et al. (2005) did not account for additive relationships among 

trees, they applied the joint competition and spatial model at the plot level instead of at the individual-tree 

level, and did not accommodate unequal number of neighbors due to mortality or edge plot effects. 

In the current research, statistical and methodological aspects of joint analysis of competition effects 

and environmental heterogeneity of forest genetic trials are developed. We extend the individual-tree mixed 

model with additive direct, genetic and environmental competition effects of Cappa and Cantet (2008) with a 

two-dimensional smoothing surface (Cappa and Cantet 2007) that captures the complex patterns of 

environmental heterogeneity. A Bayesian approach via Gibbs sampling was employed to make inference in 

all dispersion parameters of the model. Developments are illustrated with simulated datasets covering a wide 

range of competition and environmental parameters, and with real data for diameter at breast height of Pinus 

taeda L. used by Cappa and Cantet (2008). The resulting estimates of all dispersion parameters are compared 

with the corresponding estimates from three reduced individual-tree mixed models: the standard model with 

block and direct genetic effects only (no competition and spatial continuous effects), the competition model 

(Cappa and Cantet 2008), and the spatial model (Cappa and Cantet 2007). The ranking of selection candidates 

calculated for the joint and standard models are compared to determine the importance of simultaneously 

accounting for competition and environmental heterogeneity effects.  

 

Methods 

Competition individual-tree mixed model 

We follow closely Cappa and Cantet (2008) to describe the models presented in this research. The 

individual-tree mixed model that includes direct and competition genetic effects plus a permanent 

environmental competition effect, is described by the following model equation 

d d c c p c
y X Z a Z a Z p eβ      [1] 

where y = [yi] (n  1) contains the phenotype of tree i (i = 1, ...., n; n is the total number of trees with recorded 

data); X is the n  p incidence matrix relating records to the vector of fixed effects ;  pc is a vector that 

includes permanent environmental effects such that  pc = [pci], such that pc ~ Nn (0, In
2

p
); and e ~ Nn (0, In 

2

e
) is the random of residuals, and 2

e is the residual variance. Direct and competition breeding values for 

parents without records plus offspring with data in y are included in the random vector ad = [adj] and ac = [acj], 

respectively, with j = 1, ..., q > n. The breeding values for an observed individual i are the a.j(i) components of 

both vectors. Direct and competition breeding values are related to y by the n  q incidence matrices Zd and 

Zc, respectively. Every row (i) of Zd has all elements equal to 0 except for a 1 in the column j(i). Similarly, 
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each row i of matrix Zc has all elements equal to zero except in the position j = j1, ..., jmi corresponding to the 

mi neighbors of the tree i, where they are fij. These positive coefficients can be interpreted as the intensity of 

competition (IC) that each neighbor exerts over the phenotype of the ith tree. As show by Cappa and Cantet 

(2008), the standardization of the variance of competition effects within the phenotypic variance of any 

individual-tree, when accounting for unequal number of neighbors, can be achieved by using intensity of 

competition factors (fij) under the following restriction: 

2 2 2

R - C R - C D D
1

1
i

m

ij i i i i
j

f n f n f  

where ni R-C and ni D are the respective numbers of jth competitors that lie either in the same row or column of 

the tree i (R-C; see Cappa and Cantet 2008 Figure 1) and jth competitors that lie in the diagonal (D; see Cappa 

and Cantet 2008 Figure 1), and fiR-C and fiD are the IC for R-C and for D competitors to tree i.  In trees planted 

at certain distances, Cappa and Cantet (2008) assumed that the ICs are related to the inverse of the distance 

between i and j (i.e., Radtke et al. 2003). If d is the regular spacing of the planting design, for R-C competitors 

the IC is proportional to 1/d. However, the distance of a tree located diagonal to i is 21/2 
d by the Pythagorean 

theorem, so that competition is proportional to 1/(21/2 d) for D competitors. Thus, fiR-C  and fiD are: 

D

R - C D

1
=  

2
i

i i

f

n n

  
R - C

R - C D

2
=  

2
i

i i

f
n n

   [2] 

For a more detailed explanation of the derivation of these formulas, see Cappa and Cantet (2008). Matrix Zp is 

composed of the non-zero columns of Zc and has order equal to n × n. 

The covariance matrix of ad is A 2
Ad, where the q  q matrix A is the additive relationship matrix and 

A d
 is the variance of the direct additive genetic effects. Also, ac ~ N (0, A

A c
) where 

A c
 is the variance of 

the competition breeding values, and cov(ad, ac) = A 
A Ad c

, where 
A Ad c

 is the covariance between direct and 

competition breeding values. Thus, the covariance matrix of the stacked vector of breeding values is equal to 

A A A

A A A

0
V ar

d d c

d c c

d

c

a
A = G A

a
 

In the following section, we focus on an extension of model [1] with a two-dimensional smoothing 

surface to account for large- and/or small-scale environmental heterogeneity. 

 

Joint competition and spatial individual-tree mixed model 

The individual-tree mixed model with competition effects [1] can be extended to include a two-

dimensional smoothed surface to account for the environmental heterogeneity, as follows 

d d c c p c
y X B b Z a Z a Z p eβ     [3] 
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where B b is the matrix expression approximating the two-dimensional surface with a tensor product of cubic 

B-spline bases (Eilers and Marx 2003). Matrix B has dimension n × (nxr = number of splines for rows × nxc = 

number of splines for columns), and is equal to ' '

c r
r n x n x c

B B 1 # 1 B , where the symbols  and # 

indicate the Kronecker and Hadamard products of matrices, respectively (Harville 1997). The matrices B 

contain the B-splines bases evaluated in the corresponding rows and columns for each tree. Calculations of 

the B coefficients were performed using the recursive algorithm of De Boor (1993). The vector of random 

effects b contains the nxr × nxc coefficients of the tensor products of B-splines bases. The vector b is assumed 

normally distributed with mean zero and covariance matrix 
2

b
U . The scalar 

2

b
 is the variance of the B-

spline coefficients for rows and columns, and the U matrix is the covariance structure in two dimensions for 

the B-splines coefficients. In the present study, we select the tridiagonal matrix originally proposed by Green 

and Silverman (1994; page 13) and then used by Durban et al. (2001) to fit a fertility trend. A more detailed 

explanation of the two-dimensional surface (B b) and the U matrix covariance structure can be found in 

Cappa and Cantet (2007, pp. 2678-2680). 

Taking into account the random effects in model [3], the covariance matrix (V) of the data vector y is 

given by: 

2 2 2 2

A A A A

2

b d d d d c c d d c c c c p p p n e

´ ´ ´ ´ ´ ´
V B U B Z A Z Z A Z Z A Z Z A Z Z Z I  

A set of mixed model equations (Henderson 1984) for model [3] is equal to 

 

2

2

2

2

' ' ' ' '

' ' 1 ' ' '

' ' ' 1 ' 1 '

1 1 1 2

' ' ' 1 ' 1 '

2 1 2 2

' ' ' ' '

e

b

e

p

d c p

d c p

dd d d d d c d p

c c c d c c c p c

p p p d p c p p

k k

k k

X X X B X Z X Z X Z

B X B B U B Z B Z B Z b

Z X Z B Z Z A Z Z A Z Z a

Z X Z B Z Z A Z Z A Z Z a

Z X Z B Z Z Z Z Z Z I p

β '

'

'

'

'

d

c

p

c

X y

B y

Z y

Z y

Z y

      [4] 

where  
11 1 1 2 2

0

2 1 2 2

e

k k

k k
= G  

The conditional likelihood of the observed data is written as being proportional to:  

2

2

12 2 2 2

0 2
, , , , , , , , ex p

n

e
d c c b p e e

p
'

y b a a p G e eβ   [5] 

where 
d d c c p c

e = y X B b Z a Z a Z pβ . 
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Bayesian estimation of covariance components 

All dispersion parameters of model [3], i.e. 
2

b
 , 

A

2

d
, 

A Ad c
, 

A

2

c
, 

2

p
 and 

2

e
, are estimated 

using a Bayesian approach, by means of Gibbs sampling (Sorensen and Gianola 2002). Below we describe in 

detail the prior distribution of all parameters, and the joint and conditional posterior densities for the joint 

individual-tree model with competition and spatial effects, as these are needed to make posterior inference 

with the Gibbs sampler. In doing so, we follow closely Cappa and Cantet (2007, 2008). 

Specification of prior distributions:  In a conjugate approach the prior densities for all parameters are 

chosen to be closed under sampling (Robert and Casella 1999), which means that both prior and posterior 

belong to the same family of distributions. In order to reflect a prior state of uncertainty for the fixed effects in 

a mixed linear model, while keeping the posterior distribution proper (Hobert and Casella 1996), β is taken to 

be Np (0, K). The matrix K is diagonal with large elements (kii > 108), so that the prior density of β is then 

proportional to 

2
1

2

= 1 1

1

2
e x p

β
β

p

i

i i
ii

p

ii
p k

k

K     [6] 

The vector b is distributed a priori as b ~ Nb(0,
2

b
U ), so that the prior distribution of b is 

2 2

2
2

'
e x p

2
bb

b

n x* n x

p σ σ
σ

b U b
b                              [7] 

The joint prior distribution of the direct and competition breeding values a = [ad´, ac´]´ can be written as 

  12

0

1

0 0 2
e x p tr

q

gp a A G G G S    [8] 

where 

1 1

1 1

' '

d d c d

g
' '

d c c c

a A a a A a
S

a A a a A a
 

A priori the permanent environmental effects are distributed as pc ~ Nn (0, 
2

p
In): 

2

2 2 2

2

'
ex p

p

n

c c

c p p
p

 p p

p     [9] 

The covariance matrix of the direct and competition breeding values (G0) follows a priori an Inverted Wishart 

(IW) density: G0 ~ IW (
*

0
G , υg), where 

*

0
G  is the prior covariance matrix and υg is the degree of belief 

parameter. Thus:  
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3

1 * 12
0 0 0 02

( )

, e x p tr

g

g gp G S G G G    [10] 

Following Sorensen and Gianola (2002), we choose to use independent scaled inverted chi-square densities as 

prior distributions for the variance components 
2

b
 , 

2

p
 and 

2

e
: 

1
2

2

2
ex p

2

b

b b

bb b b

b

p
2                                 [11] 

1
2

22

2
ex p

2

p

p p

p p p p

p

p     [12] 

            

1
2

22

2
e x p

2

e

e e

e e e e

e

p                                                       [13] 

Parameters of the densities [11], [12], and [13] are the hypervariances 2
b, 

2
p and 2

e, and the degrees 

of freedom υb, υp and υe, respectively. 

Joint and conditional posterior densities: multiplying expression [5] with densities [6] to [13] produces the 

joint posterior density for all parameters, and this is proportional to 

2 2 2

0

2 2 2 2

0 0

2 2 2 2 2 2 2

0

, , , , , , , σ ,

, , , , , σ , , , ,

, , , ,

d c c b p e

c d c b p e b c d

c p g g b b b p p p e e e

p σ σ

p σ σ p p σ p

p σ p p σ p σ p σ

b a a p G y

y b a a p G K b a a A G

p G S

β

β   [14] 

The posterior conditional density for the Gibbs sampling of β, b, ad, ac, and pc is equal to 
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2

2

2 2 2

0

' ' ' ' '

' ' 1 ' ' '

' ' 1 ' 1 ' 1 '

1 1 1 1 1 2

' ' 1 ' 1

2 1 2 1

,

N ,

e

b

d
b p e

c

c

d c p

d c p

d d d d d d c d p

c c c d cc

c

σ σ σ

k k k

k k

b

y Ga

a

p

X X X B X Z X Z X Z

B X B B U B Z B Z B Zb

Z X Z B A Z Z A Z Z A Z Za

Z X Z B A Z Z A Za

p

β

β

2

2

1

' 1 '

2 2

' ' ' ' '
e

p

c c p

p p p d p c p p

kZ A Z Z

Z X Z B Z Z Z Z Z Z I

 

[15]  

where β̂ , b̂ , da , ca ,and
c

p  are the solutions to equation [4]. 

Expression [15] may suggest that sampling of β, b, ad, ac, and pc is in block. However, it is simpler to 

sample the elements of those vectors individually, as discussed by Sorensen and Gianola (2002, page 566, 

expressions (13.11) and (13.12)), which was the way it was done in the current research. 

Collecting the third and seventh terms in the right of [14], the full conditional posterior distribution 

of 
2

b  is the scaled inverted chi-square  

2
1

2 2

22 2 2
0 2

, , , , , , , , e x p
2

n
b

b b

b d c c p e b

b

p σ b a a p G yβ  [16] 

with *
b b

n x n x and 1 2´
b b b b

b U b . 

Collecting the fourth and sixth terms on the right of [14], the full conditional posterior distribution of 

G0 is equal to 

( )

1 1 *2 2 2
0 0 0 02

, , , , , , , ex p tr

q
g

c d c p e g
p G b a a p y G G S + Gβ    [17] 

Expression [17] is the kernel of a 2  2 scaled inverted Wishart distribution, with degrees of freedom equal to 

(
g

+ q + 3) and scale matrix 
*

0g
S + G . 

For the permanent environmental variance, the full conditional posterior distribution is 
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2

1
2 2

22 2
0 2

2 , , , , , , , , ex p
2

n
p

p p

c d c b e p

p

pp b a a p G yβ   [18] 

which is a scaled inverted 2 density with 
p p

n + degrees of freedom and scale parameter 

2

2
´

c c

n

p p

p

p

p p
. 

 Finally, the full conditional posterior density of the residual variance is proportional to 

 

2
1

2 2

22 2
0 2

2 , , , , , , , , e x p
2

n
e

e e

c d c b p e

e

ep b a a p G yβ   [19] 

i.e. a scaled inverted 2 density with n +
e e

degrees of freedom and scale parameter 

2

2
´

n

e e

e

e

e e
.  

At any iteration of the Gibbs algorithm, we first sampled from distribution [15], then from [19], next 

from [17], next from [18], and finally from [16], to start the process back again. A program was written in 

FORTRAN to perform all calculations. The FORTRAN program is available from the first author on request. 

 

An application to loblolly pines 

Data 

Data came from a field trial of 20 open-pollinated families of loblolly pine (Pinus taeda L.), 

originating from Marion County, Florida, USA, and belonging to CIEF (Forestry Research and 

Experimentation Centre). Five lots of commercial seeds were used as control populations (about 7% of the 

total of phenotypic data). These trees were included in the analysis due to their contribution to the estimation 

of environmental variation (Dutkowski et al. 2006). The trait analyzed was diameter at breast height (1.3 m, 

DBH) measured at age 13 on the 932 surviving trees (93.2 % of survival). The trial site was located in Villa 

Olivari (lat. 27º 36' S long. 56º 55' W), northern Corrientes province, Argentina. Families were arranged in 

randomized complete blocks, with eight replicates of five-trees row-plots, and the spacing was 3.5 m × 3.5 m.  

Further details about the experimental data are given in Cappa and Cantet (2008). 

 

Models of analysis 

 Four individual-tree mixed models were evaluated in the loblolly pine data set. All models included 

a random direct additive genetic effect and a random effect of commercial seed lots. The latter was to avoid 
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biasing in the estimates of the additive genetic variances caused by the inclusion of these trees with unknown 

parents in the additive relationships matrix A (Dutkowski et al. 2006). The standard individual-tree mixed 

model (“standard model”, TM) also included a fixed block effects. The second individual-tree mixed model, 

the “competition model” (CM) included fixed block effects, direct additive genetic and competition effects, 

and permanent competition effects (see expression [1]). The third model, the “spatial model” (SM) included 

the same effects as in TM plus a tensor product of B-splines (to account for environmental heterogeneity). 

Four spatial structures with different numbers of knots for rows and columns were fitted: 10 × 10, 12 × 12, 15 

× 15, and 18 × 18. The model including 15 × 15 knots displayed the better fit (based on the smallest Deviance 

Information Criterion, see below), and captured most of the spatial variability (i.e., visual comparison 

between the spatial patterns of the residuals and the resulting estimated surface shows minor differences). 

Therefore, this model was used for further comparison. The fourth individual-tree mixed model, i.e. the 

“competition + spatial model” (CSM) included a two-dimensional smoothed surface, a direct and competition 

genetic effects, plus permanent competition effects (model [3]). The Deviance Information Criterion (DIC, 

Spiegelhalter et al. 2002) was employed to compare the models. The DIC combines a measure of model fit 

(the posterior mean deviance), with a measure of model complexity (the “effective number of parameters”). 

Models with more parameters display better fit, but at the expense of adding complexity. Similar to Akaike 

Information Criterion (AIC), DIC penalizes the additional parameters that improve the fit while in the search 

for a more parsimonious model. Therefore, models with the smallest value of DIC should be favored, as this 

indicates a better fit and a lower degree of model complexity. Total tree breeding value (TBVi) from CSM [3] 

was calculated following Costa e Silva and Kerr (2013; equation 14); i.e., TBVi
 = adi + 2.32 aci, where the 

quantity 2.32 is the sum of the products of the means across all focal individuals in the loblolly pine trial for 

the number of their neighbors and IC elements in the row, column and diagonal directions

R C DR C D
 

ij ij ij
n f + n f + n f . It is important to examine the impact of competition effects and environmental 

heterogeneity on selection decisions (in addition to their impact on the variance component), when both types 

of effects exist. In that sense, Spearman rank correlations were calculated to assess the extent by which the 

ranking of predicted tree breeding values for all individuals (offspring) differed among the standard and the 

competition + spatial models. Additionally, the proportion of common individuals (offspring) in the top 5% 

(47 trees) from the two models was also compared. 

 

Identification of spatial and competition effects 

As in Gilmour et al. (1997), we examined the spatial distribution of residual to identify spatial 

patterns in the data, using an exploratory model with fixed overall mean and random commercial seed lot 

effect and direct breeding values. The distribution of the residuals from this model of DBH is displayed in 

Figure 1. The grayscale intensity represents the magnitude of the residuals - the darker and bright the square, 

the larger the residual values - and shows the small-scale environmental variation observed within the loblolly 

pine trial studied. 
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Figure 1: Spatial patterns of the residuals from an exploratory model of tree diameter at breast height. 

The presence of competition was first detected by a diagnostic plot of residuals of DBH from the 

exploratory model, against the mean DBH of nearest 8 neighbors, following Durban et al. (2001) (Figure 2), 

where a negative correlation (r = -0.22) suggested the presence of competition. Second, the correlation 

between direct and competition genetic effects from CSM [3] was also used to identify competition effects at 

the genetic level. High and negative correlation between direct and competition BV (higher than -0.3, 

Kusnandar 2001) revealed strong genetic competition, meaning that a tree with a positive breeding value for 

its own growth has - on average - a negative genetic influence on the growth of its neighbors (Costa e Silva et 

al. 2013). The magnitude of this correlation was moderate to large and negative (–0.85, see below). Finally, a 

two-dimensional autoregressive (AR(1) × AR(1)) residual structure was fitted to the standard model using the 

ASREML program (Gilmour et al. 2006). The sign and magnitude of the autocorrelation parameters for row 

and column suggest that competition between neighbors may be present, and it is dominant over the 

environmental heterogeneity at the small scale (ρrow = -0.34 and ρcolumn = -0.10). 
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Figure 2: Residuals from the exploratory model vs. mean of tree diameter at breast height of the nearest neighbor 

trees. 

 

Computational details and posterior inference 

The values of the hypervariances in the priors of 
A

ˆ
d

and ˆ
e

 were estimated from the same data set 

using an empirical Bayes approach via Gibbs sampling, with an individual-tree model including fixed effects 

of blocks, and random additive genetic effects (standard model). As there was no prior information on the 

hypervariance 
2ˆ

b
, we tried different values in the interval [0,

2ˆ
e

) and found that the algorithm converged 

always to the same posterior mean of 2ˆ
b

 in the spatial model. The same strategy was used for 
A A

ˆ
c d

 and 
A

ˆ
c
, 

by trying different prior values of 
A A

ˆ
c d

 (+, 0, and -) and of 
A

ˆ
c
(high and low relative to 

A
ˆ

d
) under CM. 

The hypervariance 
2ˆ
p

 was chosen to be equal to the prior value for 
A

ˆ
c
. The deviance information criterion 

(DIC) was computed for each model using the output from the Gibbs sampling. 

A single Gibbs chain of 1,010,000 samples were drawn as discussed above. The first 10,000 

iterations were discarded as burn-in. Convergence was monitored by plotting the iterations against the 

parameter value (trace plots) and against the mean of the draws up to each iteration (running mean plots) for 

each parameter, and using the Z criterion of Geweke (1992) for each parameter. To evaluate the impact of 

autocorrelations in the variability of the samples, the „effective sample size‟ (ESS) proposed by R. Neal (Kass 

et al. 1998) was calculated for each parameter as: 
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where i is the autocorrelation measured at lag i. Means, modes, medians, standard deviations, and 95% 

high posterior density intervals (95% HPD) were then calculated with „Bayesian Output Analysis‟ (BOA 

version 1.1.7, Smith 2003) for all parameters from the individual marginal posteriors, under the free-software 

R (R Development Core Team 2011).  

 

Simulation example 

To further illustrate the performance of the proposed model, a stochastic simulation study was 

carried out. In order to simplify the simulation procedure without loss of generality, data were generated 

according to a structure mimicking loblolly pine data, using the same design (e.g., the same number of 

families and trees per family) and similar variance components. Simulated data were investigated under 27 

different scenarios varying the type of environmental heterogeneity (i.e., Small = small-scale variation, Large 

= large-scale variation, and Mixed = large-scale together with small-scale variation; see Supplementary Table 

S1). These spatial variations were simulated with a B-spline model, in a rectangular region of 25 rows and 40 

columns with 10 knots in each dimension for the small-scale scenario, and 4 knots in each dimension for the 

large-scale. The Mixed scenario was obtained from the sum of a small-scale surface and a large-scale surface. 

Some of the parameters used in the simulation were fixed: 
A

ˆ
d

= 10; 2ˆ
b

 = 31.52, 2ˆ
p

 = 1, and 2ˆ
e

 = 5. 

However, in view of the importance of the additive genetic variance for competition breeding values ( 2

A
ˆ

c
) 

and the correlation between direct and competition breeding values ( A Ad c
), we examine three values of these 

parameters. Specifically, we used the values of 1, 2.5, and 5 for 2

A
ˆ

c
 which represent a 10, 25 and 50 percent, 

respectively, of the additive genetic variance for direct effects (
A

ˆ
d

). Since negatives correlations values are 

expected when strong competition for resources exist (e.g. Muir 2005), we used the values -0.3, -0.6, and -0.9 

for A Ad c
 representing low, moderate, and high levels of competition, respectively. Altogether, the three 

environmental scales of variations, three levels of genetic competition variance, and three values of 

correlation between direct and competition genetic effects resulted in 33 = 27 scenarios. We produced 6 

replicates for each scenario, giving rise to 162 simulated data sets. All data sets were simulated through the 

function breedR.sample.phenotype() of the R-package breedR (Muñoz and Sanchez, 2014). Finally, the 

simulated data were analyzed using the CSM (model [3]), and the simulated values were compared with the 

true values using the mean and the average relative deviation from the true value (bias) averaged over the 6 

replicates. The average root mean squared relative error was used to measure the performance of the proposed 

joint CSM [3] in the different scenarios studied, according to the following formula: 

1
2 2

6

1

1

6

l l

l l

S T

T
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where Sl are the simulated values and Tl the true values for each dispersion parameters of model [3], i.e., l = 1, 

…, 6. 

The hypervariances of all parameters were set equal to the true values used in the simulated data, and 

degrees of belief were set to 5 to reflect a relatively high degree of uncertainty. A single Gibbs chain of 

510,000 samples were drawn, with first 10,000 iterations were discarded as burn-in. 
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Results 

Results from the simulation 

Table 1 shows the posterior means of each parameter under each of the 27 simulation scenarios. The 

deviations of the estimates relative to true values are shown in the Supplementary Table S2. In general, the 

CSM (Model 3) yielded posterior means of variance components with slight or negligible biases, except for 

the permanent environment variance that showed important systematic overestimations across scenarios. For 

the rest of variables, estimates of parameters of interest agree well with the true values (Table 1 and 

Supplementary Table S2). Variances of estimates (Table 1) over 6 replicates, were generally small with the 

exception of the permanent environment variance, particularly under small-scale and mixed-scale variation 

and lower competition additive genetic variance. The average root mean squared relative error varies from 

0.33 to 2.18 for the different scenarios studied. Additionally, the marginal posterior (and prior) distributions 

of each parameter in each scenario are shown in the Supplementary Figure S1. A quick view of the figure 

clearly suggests that the posterior distributions have distinguishable modes for all of the parameters. The prior 

distributions follow the shape of the posteriors for all parameters; but, in general, the priors are at a lower 

value, reflecting the vague prior information characteristics induced by the degrees of freedom used (i.e., 5 in 

all parameters). In summary, the proposed CSM gives reliable inferential answers about unknown parameters 

in the model under the different scenarios studied. 
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Table 1. Posterior means (and standard deviations) of estimates of the direct additive genetic variance

A d
, 

the competition additive genetic variance
A c

, the correlation between direct and competition genetic effects 

A Ad c
, the variance of the B-spline coefficients

b
, the permanent environmental variance

p
 and the residual 

variance
e

 by scenario, averaged over the 6 replicated simulations. 

Scenario1 A
ˆ

d
 2

A
ˆ

c
 A Ad c

 2ˆ
b

 2ˆ
p

 2ˆ
e

 

Small /
2

A
ˆ

c
= 1 / A Ad c

=-0.3 9.05 (1.42) 1.33 (0.55) -0.29 (0.12) 26.82 (6.05) 2.28 (0.78) 5.14 (1.15) 

Small /
2

A
ˆ

c
= 1 / A Ad c

=-0.6 9.10 (1.41) 1.02 (0.37) -0.62 (0.12) 26.20 (5.79) 3.04 (0.73) 5.16 (1.17) 

Small /
2

A
ˆ

c
= 1 / A Ad c

=-0.9 9.25 (1.18) 1.21 (0.29) -0.87 (0.07) 25.44 (5.38) 2.19 (0.55) 5.18 (1.00) 

Small /
2

A
ˆ

c
= 2.5 / A Ad c

=-0.3 9.84 (1.51) 2.86 (0.86) -0.33 (0.10) 28.86 (6.93) 2.49 (0.90) 4.93 (1.21) 

Small /
2

A
ˆ

c
= 2.5 / A Ad c

=-0.6 8.92 (1.39) 3.01 (0.79) -0.55 (0.10) 32.39 (7.04) 2.26 (0.82) 5.12 (1.15) 

Small /
2

A
ˆ

c
= 2.5 / A Ad c

=-0.9 9.58 (1.25) 2.77 (0.59) -0.80 (0.06) 27.67 (5.82) 2.02 (0.62) 5.26 (1.06) 

Small /
2

A
ˆ

c
= 5 / A Ad c

=-0.3 9.13 (1.64) 4.29 (1.05) -0.19 (0.09) 25.77 (6.31) 1.97 (0.89) 5.84 (1.32) 

Small /
2

A
ˆ

c
= 5 / A Ad c

=-0.6 8.88 (1.36) 5.37 (1.14) -0.61 (0.08) 32.33 (7.30) 2.34 (0.97) 5.83 (1.15) 

Small /
2

A
ˆ

c
= 5 / A Ad c

=-0.9 10.57 (1.16) 6.22 (0.98) -0.77 (0.05) 25.04 (5.44) 1.92 (0.72) 4.04 (0.90) 

Large /
2

A
ˆ

c
= 1 / A Ad c

=-0.3 9.51 (1.49) 0.84 (0.33) -0.23 (0.14) 51.24 (23.14) 1.93 (0.60) 5.02 (1.17) 

Large /
2

A
ˆ

c
= 1 / A Ad c

=-0.6 9.00 (1.39) 1.02 (0.34) -0.62 (0.11) 42.82 (19.77) 2.19 (0.54) 5.37 (1.14) 

Large /
2

A
ˆ

c
= 1 / A Ad c

=-0.9 9.45 (1.21) 0.91 (0.19) -0.89 (0.06) 55.18 (24.72) 1.75 (0.40) 5.22 (0.99) 

Large /
2

A
ˆ

c
= 2.5 / A Ad c

=-0.3 8.98 (1.58) 2.47 (0.71) -0.28 (0.11) 38.06 (17.44) 1.60 (0.65) 5.91 (1.30) 

Large /
2

A
ˆ

c
= 2.5 / A Ad c

=-0.6 8.90 (1.46) 3.13 (0.71) -0.56 (0.09) 40.99 (18.94) 1.51 (0.58) 5.58 (1.21) 

Large /
2

A
ˆ

c
= 2.5 / A Ad c

=-0.9 10.09 (1.26) 2.97 (0.54) -0.83 (0.05) 34.07 (15.64) 1.25 (0.42) 5.08 (1.01) 

Large /
2

A
ˆ

c
= 5 / A Ad c

=-0.3 9.03 (1.66) 4.79 (1.01) -0.26 (0.09) 40.52 (19.09) 1.69 (0.78) 5.98 (1.35) 

Large /
2

A
ˆ

c
= 5 / A Ad c

=-0.6 9.95 (1.32) 5.85 (1.01) -0.62 (0.07) 36.05 (17.17) 1.95 (0.73) 4.52 (1.06) 

Large /
2

A
ˆ

c
= 5 / A Ad c

=-0.9 9.87 (1.23) 5.42 (0.74) -0.80 (0.05) 53.50 (24.15) 1.20 (0.47) 4.90 (0.97) 

Mixed /
2

A
ˆ

c
= 1 / A Ad c

=-0.3 9.32 (1.46) 0.86 (0.36) -0.19 (0.15) 42.25 (8.19) 2.59 (0.75) 4.95 (1.14) 

Mixed /
2

A
ˆ

c
= 1 / A Ad c

=-0.6 8.76 (1.40) 1.06 (0.41) -0.57 (0.13) 33.49 (7.02) 3.17 (0.77) 5.37 (1.17) 

Mixed /
2

A
ˆ

c
= 1 / A Ad c

=-0.9 9.12 (1.24) 0.84 (0.20) -0.86 (0.07) 38.54 (7.38) 2.58 (0.60) 5.29 (1.04) 

Mixed /
2

A
ˆ

c
= 2.5 / A Ad c

=-0.3 8.79 (1.55) 2.65 (0.79) -0.24 (0.11) 38.81 (7.83) 1.88 (0.79) 6.03 (1.26) 

Mixed /
2

A
ˆ

c
= 2.5 / A Ad c

=-0.6 8.72 (1.48) 3.35 (0.90) -0.51 (0.10) 40.56 (7.69) 2.14 (0.84) 5.58 (1.24) 

Mixed /
2

A
ˆ

c
= 2.5 / A Ad c

=-0.9 9.47 (1.3) 3.16 (0.65) -0.82 (0.06) 26.60 (5.52) 1.73 (0.60) 5.54 (1.09) 

Mixed /
2

A
ˆ

c
= 5 / A Ad c

=-0.3 8.99 (1.63) 5.49 (1.32) -0.21 (0.09) 31.62 (7.35) 2.30 (1.13) 5.77 (1.31) 

Mixed /
2

A
ˆ

c
= 5 / A Ad c

=-0.6 8.98 (1.33) 6.61 (1.26) -0.62 (0.07) 33.56 (7.11) 2.21 (0.92) 5.57 (1.11) 

Mixed /
2

A
ˆ

c
= 5 / A Ad c

=-0.9 9.47 (1.21) 6.03 (0.95) -0.77 (0.05) 38.12 (6.98) 1.70 (0.67) 4.85 (0.98) 

Note: 

1
 Small corresponds to small-scale environmental variation; Large correspond to large-scale environmental 

variation; Mixed correspond to small-scale together with large-scale variation. 
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Results from the real data analysis of loblolly pines 

Lack of convergence of the Gibbs sampler was not detected by inspection of trace plots of all 

unknowns parameters from the four models evaluated in the real data set (Supplementary Figure S2). When 

comparing the four models, it is clear that adding competition and/or environmental heterogeneity effects 

improved the fit compared to TM. This can be seen in Table 2 via the DIC, for which CSM resulted in the 

lowest value, followed by CM and SM. The CM showed a greater reduction in DIC than SM, most likely due 

to the fact that competition had a higher effect than the small-scale environmental heterogeneity in this 

loblolly pine data set. 
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Table 2: Deviance Information Criterion (DIC) and posterior statistics for the direct additive genetic variance

A
ˆ

d
, the competition additive genetic variance

A
ˆ

c
, the estimated correlation between direct and competition 

genetic effects A Ad c
, the variance of commercial seed lots ˆ

t
, the variance of the B-spline coefficients 2ˆ

b
, 

the permanent environmental variance 2ˆ
p

, and the residual variance 2ˆ
e

 for diameter at breast height in the 

loblolly pine data set and from the four models evaluated. 

Model
a
 DIC Parm.

b
 Mean Median Mode SD

c
 95% HPD

d
 ESS

e
 

TM 2686.24 

2

A
ˆ

d
 5.76 5.57 4.74 1.52 3.62 – 8.54 17,512 

2ˆ
t

 20.72 18.80 15.39 8.74 10.66 – 37.33 294,926 

2ˆ
e

 12.44 12.52 12.55 1.41 10.00 – 14.63 22,268 

CM 2515.20 

2

A
ˆ

d
 8.04 7.98 7.95 1.43 5.78 – 10.48 15,864 

2

A
ˆ

c
 1.56 1.54 1.39 0.33 1.08 – 2.14 15,877 

A Ad c
 -0.85  -0.86 -0.87 0.05 -0.91 - -0.76 16,694 

2ˆ
p

 1.21 1.17 1.20 0.30 0.79 – 1.76 21,008 

2ˆ
t

 19.39 17.59 14.85 8.19 9.98 – 34.96 268,454 

2ˆ
e

 8.25 8.22 7.63 1.26 6.23 – 10.36 17,351 

SP 2593.88 

2

A
ˆ

d
 8.52 8.34 8.32 2.22 5.18 – 12.46 15,279 

2ˆ
b

 3.00 2.87 2.92 0.88 1.83 – 4.63 46,867 

2ˆ
t

 16.30 14.80 11.32 6.80 8.46 – 29.29 314,012 

2ˆ
e

 10.19 10.26 10.84 1.85 7.02 – 13.11 16,394 

CSM 2481.25 

2

A
ˆ

d
 8.75 8.70 10.09 1.52 6.35 – 11.33 15,681 

2

A
ˆ

c
 1.62 1.59 1.77 0.33 1.12 – 2.19 16,796 

A Ad c
 -0.85 -0.86 -0.86 0.05 -0.92 - -0.77 16,694 

2ˆ
b

 2.88 2.75 2.25 0.83 1.78 – 4.41 47,504 

2ˆ
p

 0.98 0.95 1.05 0.24 0.65 – 1.42 21,260 

2ˆ
t

 19.45 17.65 13.13 8.20 10.01 – 35.00 267,294 

2ˆ
e

 7.54 7.51 6.17 1.27 5.51 – 9.67 16,461 

Note: 
a TM (Standard model): Individual-tree mixed model does not account for competition effects and 

continuous environmental heterogeneity (only fit blocks fitted as fixed effects). 
 CM (Competition model): Individual-tree mixed model that accounts competition effects. 
 SP (Spatial model): Individual-tree mixed model that accounts environmental heterogeneity using P-splines 

with 15 knots for rows and 15 knots for columns.  

 CSM (Competition + Spatial model): Individual-tree mixed model that accounts competition effects and 
environmental heterogeneity using P-splines with 15 knots for rows and 15 knots for columns.  

b Parm. = Parameter. 
c SD = standard deviation. 
d HPD = high posterior density interval. 
e ESS = effective sample size. 
 

Posterior summaries for 
A

ˆ
d

, 
A

ˆ
c
, A Ad c

, ˆ
b

, ˆ
p

, ˆ
t

 and ˆ
e

 are shown in Table 2. Posterior 

means, medians, and modes were quite similar, except for ˆ
t

, and ˆ
e

 from CSM. The 95% high posterior 

density intervals for these variance components were shifted away from zero, which reflects the constraint of 

the priors but also the fact that all the effects in these models had detectable variation. TM resulted in the 
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lowest component of 

A
ˆ

d
 among all 4 models, with a corresponding maximum value under CSM. 

Conversely, ˆ
e

was highest for TM and lowest for CSM, and differences between both can be easily labeled 

as competition and environmental heterogeneity components. Relative to TM, the reduction in ˆ
e

 was much 

larger for the CM (34%) than for the SM (18%). This further confirms the observation that competition 

effects predominate over the small-scale environmental heterogeneity in this loblolly pine trial. Although 

smaller when compared with the estimates of 
A d

, the estimates of 
A c

 were similar in CM (1.56) and CSM 

(1.62). The marginal posterior mean of ρAdAc from CM was large and negative -0.85, and the SD was 0.05, 

revealing a strong competition between additive genetic effects. While CSM showed similar marginal 

posterior mean of ρAdAc to CM, the estimate of 2

p
 was smaller in the former (1.21 and 0.98, respectively).  

The estimate of 2

b
 from SM (3.00) was slightly higher than the corresponding values of CSM (2.88). 

The Spearman rank correlations between offspring predicted breeding values from TM, and the 

direct and total breeding values from CSM (i.e., the one with the smallest DIC) were high and positive (0.96 

and 0.70, respectively). 

 

Discussion 

This research presents an extension of the method of Cappa and Cantet (2008) to account for 

environmental heterogeneity within genetic trials using a smoothing surface. This extension produces a more 

realistic model, making possible to fit simultaneously competition effects and spatial environmental 

variability. To do this, we included in the individual-tree model with competition effects proposed by Cappa 

and Cantet (2008) a surface that is smoothed in the direction of both the columns and the rows, to account for 

large- and/or small-scale environmental variation.  

There are other approaches that simultaneously dealt with competition and spatial modelling.  

Stringer et al. (2011) developed a joint model to account for interplot competition in one dimension and 

spatial variability. They fitted the “treatment interference model” presented by Besag and Kempton (1986) 

and originally proposed by Pearce (1957), to model the genetic competition as a random effect. In this 

approach, each treatment is assumed to have a direct effect and a neighbor effect on adjacent plots. In other 

words, the average genotypic value is associated with the nearest neighboring plots of many plants, rather 

than with the observed individual-tree data. Moreover, it does not account for the genetic relationship between 

units (plots or trees). If selection is designed to select genotypes for the next generation of the breeding 

population, the most convenient way is to add a random genetic effect that accounts for the additive 

relationship between individuals, as we have proposed here. Additionally, our approach accounts for unequal 

numbers of neighbors due to mortality or border location, and for different competition intensity between the 

trees in the different spatial directions (i.e., row, column and diagonal), by incorporating the IC elements 

(Cappa and Cantet 2008). Recently, Costa e Silva et al. (2013) applied the competition individual-tree mixed 

model proposed by Cappa and Cantet (2008) and the covariance residual structure EAR3 after Stringer et al. 
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(2011), to jointly model competition effects and local environmental heterogeneity of a large progeny trial of 

Eucalytus globulus. Different from the original formulation, Costa e Silva et al. (2013) modeled the large-

scale environmental variation using the mixed model proposed by Verbyla et al. (1999) to fit a smoothing 

spline in row and/or column directions only. 

In the present study, a two-dimensional surface using the tensor product of B-splines bases (Marx 

and Eilers 2005) was used to model both global- and small-scale spatial variation. The literature is extremely 

limited on the application of a tensor product of B-splines bases to capture both kinds of spatial heterogeneity 

in forest genetic evaluation (Cappa and Cantet 2007; Cappa et al. 2011). In research that is not yet published, 

we observed the utility of the approach in accommodating complex patterns of spatial heterogeneity in several 

large forest genetic trials of western hemlock (Tsuga heterophylla (Raf.) Sarg.). Stringer et al. (2011) 

proposed to account for global trend by including design factors based on row and column coordinates, or by 

fitting in one dimension either low order polynomials or cubic smoothing splines (Verbyla et al. 1999). 

Durban et al. (2001) also proposed to model the large-scale fertility variation using cubic smoothing splines in 

one dimension (Green and Silverman 1994). Nevertheless, in forest genetic trials where trees are planted in 

squares or rectangles, a large portion of the global trend is usually present in two dimensions, and one-

dimensional polynomials or cubic smoothing splines may not completely account for spatial covariance 

(Cappa and Cantet 2007). Moreover, it is extremely rare to find large-scale continuous spatial variability 

either in the direction of the rows or of the columns, and some sort of interaction between rows and columns 

has to be considered to account for such variability (Federer 1998). Additionally, polynomials do a poor job 

when fitting observations in the extremes, and small changes in the data produce a dramatic effect in the 

estimated values of the parameters, and this is specially so for polynomials of higher degree. 

As interacting trees share the same environment when competition and environmental heterogeneity 

are present, there is a risk of confounding environmental competition and local trend effects (Bijma 2013). 

Following Cappa and Cantet (2008) (model [1]), the proposed model [3] included permanent competition 

effects through a random variable (pc) to model a competition effect at the environmental or residual level. To 

model the permanent environmental competition effects and local environmental trend, Stringer et al. (2011) 

proposed including an autoregressive residual process EAR2 or EAR3. The EAR3 has two parameters, one 

nominally representing the local trend, the other representing the environmental competition. They 

recommended modeling the permanent environmental competition using an EAR2 in trials where competition 

was dominant, while an EAR3 allowed for competition and local trend variability. However, when the 

permanent environmental competition seemed to be dominant over small-scale trend, Costa e Silva and Kerr 

(2013) suggested that the EAR2 did not appear to produce a better fit than the AR(1) in preliminary analysis 

of diameter growth from forest genetic trials. Instead, in an empirical study of the trait DBH, Costa e Silva et 

al. (2013) used a separable EAR3 residual structure in the column direction. However, when the 

environmental trend was stronger than the permanent environmental competition and the full model was fitted 

(i.e., a mixed model including genetic and environmental competition effects and large - and small - 

environmental trend), the autocorrelation coefficient for columns was estimated with a large standard error. 
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There seems to be a problem of residual confounding in this analysis, a ubiquitous process in mixed model 

inference with errors following autoregressive processes (Gustafson and Greenland 2006; Paciorek 2010). 

The issue can be compounded by the fact that models including autoregressive processes are prone to bias, 

especially if the series is short (Shaman and Stine 1988). In these conditions, fitting permanent environmental 

effects as random variables, apart from the error term, and with an informative covariance structure between 

direct and competition breeding values seems to be advantageous. The procedure mimics the fitting of a prior 

distribution to avoid residual confounding as suggested by Gustafson and Greenland (2006). In their words, 

“the benefit from modeling residual confounding is maintained when the prior distributions employed only 

roughly correspond to reality”. Additionally, while the competition additive genetic effects extend over the 

whole area of the trial, the environmental permanent competition effects act locally, i.e. in the nearest eight 

neighbors. In our approach, every row of the incidence matrix Zp has all elements equal to zero except for a 1 

in the column belonging to apj of the nearest j neighbor competitor tree. However, the EAR3 residual structure 

could be unnecessary in most cases, given that it is unlikely that the environmental competition effects be 

spatially extended in the direction of columns or/and rows beyond of first- or second-order competitors.  

There are few empirical studies that combine competition and spatial variability in agronomic crops 

(Durban et al. 2001; Stringer et al. 2011; Hunt et al. 2013) and forest genetic trials (Magnussen 1994; Resende 

et al. 2005 and Costa e Silva et al. 2013). When the root mean squared relative error was calculated to 

evaluate the performance of the proposed joint model in the different scenarios studied, lower values were 

found for those scenarios with large-scale environmental heterogeneity and stronger competition genetic 

effects (i.e., highest and negative correlation between direct and competitive additive genetic effects). On the 

contrary, the highest values were observed for those scenarios with small-scale environmental heterogeneity 

and weak competition effects. These results suggest that the performance of the proposed model under 

situations with weak competition effects and environmental heterogeneity operating at the same spatial scales 

(i.e., small-scale) may be somewhat limited. In the empirical analysis reported here, conditions a priori were 

more favorable than the worst-case scenario from simulations, with the former showing strong competition 

and small-scale environmental heterogeneity. In these circumstances, the proposed CSM showed better fit 

(i.e., smallest DIC) than simpler models with no competition and spatial continuous effects, or either of these 

effects alone (i.e., TM, CM, and SM, Table 2). Similar results have been found in crop (Stringer et al. 2011; 

Hunt et al. 2013) and forest species (Resende et al. 2005 and Costa e Silva et al. 2013), when competition and 

environmental spatial effects are present regardless of whether the spatial trend predominated over 

competition or vice-versa. However, different traits responded differently to competition. The substantial 

improvement in the fit from CSM was followed by CM, and this may be attributed to the fact that DBH is 

more affected by competition than, for example, the height trait (Hunnrup et al. 1998; Dutkowski et al. 2006; 

Ye and Jayawickrama 2008). 

Our results from the simulation data using the proposed CSM show that the permanent environment 

variance estimates were biased upwards in most scenarios. However, it is important to note that this 

component accounts for a very small part of the variation. We further investigated the possible causes of this 



24 

 
bias, and one possible explanation is the fact that there were slight differences between the incidence matrices 

used to simulate the data and to analyze the data. Another possible source of this bias is the simple form of the 

covariance matrix used for these permanent environmental effects, i.e., an identity matrix. This simple 

structure specifies that these environment effects are independent. A more complex and informative 

covariance structure for this environmental parameter will be considered in a future work. 

Our empirical results show that not fitting the detected competition effects (i.e., TM or SM) and/or 

small-scale trend (i.e., TM or CM) resulted in a consistent increase in the posterior mean of ˆ
e

and a decrease 

in the posterior mean of 
A

ˆ
d

 (Table 2). Costa e Silva and Kerr (2013) have observed a similar phenomenon 

when comparing TM with the CM proposed by Cappa and Cantet (2008). This was observed from simulated 

data where competition was the most important source of residual autocorrelation, and the environmental 

heterogeneity was negligible so that it was not modeled. These results are also in agreement with those of 

Brotherstone et al. (2011) who studied the diameter trait in a 19-year old Sitka spruce clonal trial growing in 

Scotland. They fitted the simple competition model proposed by Bijma (2007) jointly with an AR(1) × AR(1) 

covariance structure for the residual. There was evidence of a global trend in the latter model, but this effect 

was not formally accounted for.  

In the current research, where the empirical data shows strong competition effects, ignoring the 

genetic and environmental competition effects leads to overestimation of environmental heterogeneity; i.e., 

the spatial model yielded estimates of 
b

 that were higher than those of CSM (3.00 vs. 2.88, respectively). 

While CM yielded estimates of ρAdAc that were equal to those of CSM (-0.85), ignoring the environmental 

heterogeneity led to overestimation of the environmental competition effects; i.e., CM yielded higher ˆ
p

 than 

the estimate from CSM (1.21 vs. 0.98, respectively). This is the first study applying the competition model 

proposed by Cappa and Cantet (2008) plus a two-dimensional smoothing surface to account for 

environmental heterogeneity in forest genetic trials. Therefore, it is not possible to compare the variance 

estimates 
b

 and 
p

 with estimates from other studies.  

Trees may compete at an early stage for water and nutrients, and after canopy closure they compete 

mainly for light (Brotherstone et al. 2011). In small row-plot designs (as with the five-tree row-plot) the 

sharing of these resources could be different, because the interacting plants are genetically different (Stanger 

et al. 2011). In this work, a maximum of eight first-order neighbor trees were used in both CM and CSM 

models. However, the larger negative autocorrelation coefficient for row (-0.34) than for column (-0.10) 

identified in the first step of the analysis, suggests a slight asymmetric competition. When an asymmetric 

genetic competition effect was fitted in the CM and CSM models, i.e., when considering only the maximum 

of two row-neighbor trees to calculate the ICs, the values of DIC were higher (2571.97 and 2563.04, 

respectively) than the respective values considering all the eight first-order neighbors trees (Table 2). 

Moreover, posterior means of the covariance components for the CM model fitted only with the row-neighbor 

trees were 
A

ˆ
d

= 5.87, 
A

ˆ
c
= 1.52, 

A Ad c
= -0.80, ˆ

p
= 1.64, ˆ

t
= 19.23 and ˆ

e
= 9.71. Notice that the 
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estimate of 

A d
 was smaller (5.87 vs. 8.04) and the estimate of 

e
 was larger (9.71 vs. 8.25) than when the 

eight first-order neighbors were fitted. Similar results were obtained for the CSM. Therefore, this result 

suggests that, if left out of the analysis, those competitors may bias the predictions of the direct breeding 

values. 

From the tree breeder‟s viewpoint, a relevant question is whether or not the predicted tree BV from 

TM and the predicted direct and total tree BV from CSM lead to a different ranking. In our study, rank 

correlations of predicted BV were high, but not perfect. Assuming 100 % survival and using simulated data 

with a similar additive covariance matrix of breeding values (i.e., 
A

ˆ
d

= 20; 
A

ˆ
c
= 2; 

A Ad c  = -0.9), Costa e 

Silva and Kerr (2013), also found that the Spearman correlations were high and positive between predicted 

breeding values from SM and direct (0.99) and total breeding values (0.79) from a model including both 

competition and spatial effects. Although our empirical study showed high correlations between predicted tree 

BVs, the ranking among the top 5% (47) individuals from TM and CSM displayed some differences. The 

proportion of common individuals within the top 47 trees (5%) was 0.83 between the BV of TM and direct 

BV from CSM, and 0.34 between the BVs of TM and total BV from CSM. These differences demonstrate that 

using overly simplified models may substantially compromise selection decisions and genetic progress. 

 

Summary and Conclusions 

A novel Bayesian approach to effectively model simultaneously and effectively two of the sources of 

potential bias in forest genetic trials - the genetic and environmental competition and environmental 

heterogeneity - was developed in the current research. Models that were previously suggested for dealing with 

competition and spatial environmental variation neglect some aspect, like the additive relationships among 

trees, or the full spatial covariance. The fitting of a more complex model to accommodate both competition 

and environmental heterogeneity effects was illustrated using simulated data and also real data of diameter at 

age 13, from an open-pollinated progeny trial of loblolly pine. The simulation and the real data example 

showed the importance of simultaneously accounting for competition and environmental heterogeneity 

effects, and make it possible to understand the dynamics of both phenomena and their effects on the 

estimation of genetic parameters and the prediction of breeding values in single forest genetics trials. In 

particular, the real data analysis carried out with the proposed joint model showed that: a) by not fitting the 

detected competition and the small-scale trend resulted in a consistent increase in the residual variance and in 

a decrease in the estimated direct genetic variance; b) correlations between predicted tree BV from TM and 

CSM were high; however, the ranking among the top 5% ranked individuals showed differences which 

indicated that the two models will have quite different genotype selections for the next cycle of breeding; and 

c) total tree breeding values led to more realistic results. 
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Supplementary material 

 

Table S1. Combination of environmental heterogeneity and competition true parameters used in the simulated 

example (see caption of Table 1 for dispersion parameters‟ abbreviations). 

Scenarios 
Environmental 

heterogeneity1 
Competition2 A

ˆ
d

 2

A
ˆ

c
 A Ad c

 2ˆ
b

 2ˆ
p

 2ˆ
e

 

1 Small + 10 1 -0.3 31.52 1 5 
2 Small ++ 10 1 -0.6 31.52 1 5 
3 Small +++ 10 1 -0.9 31.52 1 5 
4 Small + 10 2.5 -0.3 31.52 1 5 
5 Small ++ 10 2.5 -0.6 31.52 1 5 
6 Small +++ 10 2.5 -0.9 31.52 1 5 
7 Small + 10 5 -0.3 31.52 1 5 
8 Small ++ 10 5 -0.6 31.52 1 5 
9 Small +++ 10 5 -0.9 31.52 1 5 

10 Large + 10 1 -0.3 31.52 1 5 
11 Large ++ 10 1 -0.6 31.52 1 5 
12 Large +++ 10 1 -0.9 31.52 1 5 
13 Large + 10 2.5 -0.3 31.52 1 5 
14 Large ++ 10 2.5 -0.6 31.52 1 5 
15 Large +++ 10 2.5 -0.9 31.52 1 5 
16 Large + 10 5 -0.3 31.52 1 5 
17 Large ++ 10 5 -0.6 31.52 1 5 
18 Large +++ 10 5 -0.9 31.52 1 5 
19 Mixed + 10 1 -0.3 31.52 1 5 
20 Mixed ++ 10 1 -0.6 31.52 1 5 
21 Mixed +++ 10 1 -0.9 31.52 1 5 
22 Mixed + 10 2.5 -0.3 31.52 1 5 
23 Mixed ++ 10 2.5 -0.6 31.52 1 5 
24 Mixed +++ 10 2.5 -0.9 31.52 1 5 
25 Mixed + 10 5 -0.3 31.52 1 5 
26 Mixed ++ 10 5 -0.6 31.52 1 5 
27 Mixed +++ 10 5 -0.9 31.52 1 5 

Note: 
1 Small corresponds to small-scale environmental variation; Large correspond to large-scale environmental 
variation; Mixed correspond to small-scale together with large-scale variation. 
2 Intensity of competition based on the information from A Ad c

: + low; ++ medium; +++ strong.  
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Table S2. Posterior means of the relative deviations for the direct additive genetic variance

A
ˆ

d
, the 

competition additive genetic variance
A

ˆ
c
, the correlation between direct and competition genetic effects 

A Ad c
, the variance of the B-spline coefficients ˆ

b
, the permanent environmental variance ˆ

p
 and the residual 

variance ˆ
e

 by scenario, averaged over the 6 replicated simulations. 

Scenario1 A
ˆ

d
 2

A
ˆ

c
 A Ad c

 2ˆ
b

 2ˆ
p

 2ˆ
e

 

Small /
2

A
ˆ

c
= 1 / A Ad c

=-0.3 -0.095 0.327 -0.048 -0.149 1.281 0.028 

Small /
2

A
ˆ

c
= 1 / A Ad c

=-0.6 -0.090 0.022 0.037 -0.169 2.045 0.031 

Small /
2

A
ˆ

c
= 1 / A Ad c

=-0.9 -0.075 0.209 -0.029 -0.193 1.191 0.036 

Small /
2

A
ˆ

c
= 2.5 / A Ad c

=-0.3 -0.016 0.142 0.093 -0.085 1.493 -0.014 

Small /
2

A
ˆ

c
= 2.5 / A Ad c

=-0.6 -0.108 0.204 -0.086 0.028 1.257 0.024 

Small /
2

A
ˆ

c
= 2.5 / A Ad c

=-0.9 -0.042 0.107 -0.107 -0.122 1.020 0.052 

Small /
2

A
ˆ

c
= 5 / A Ad c

=-0.3 -0.087 -0.142 -0.366 -0.182 0.973 0.168 

Small /
2

A
ˆ

c
= 5 / A Ad c

=-0.6 -0.112 0.075 0.012 0.026 1.343 0.166 

Small /
2

A
ˆ

c
= 5 / A Ad c

=-0.9 0.053 0.280 -0.175 -0.168 0.555 -0.162 

Large /
2

A
ˆ

c
= 1 / A Ad c

=-0.3 -0.049 -0.164 -0.219 0.625 0.926 0.003 

Large /
2

A
ˆ

c
= 1 / A Ad c

=-0.6 -0.100 0.017 0.041 0.359 1.187 0.074 

Large /
2

A
ˆ

c
= 1 / A Ad c

=-0.9 -0.055 -0.086 -0.015 0.751 0.746 0.045 

Large /
2

A
ˆ

c
= 2.5 / A Ad c

=-0.3 -0.102 -0.011 -0.076 0.207 0.601 0.183 

Large /
2

A
ˆ

c
= 2.5 / A Ad c

=-0.6 -0.110 0.252 -0.069 0.300 0.512 0.117 

Large /
2

A
ˆ

c
= 2.5 / A Ad c

=-0.9 0.009 0.190 -0.075 0.081 0.248 0.016 

Large /
2

A
ˆ

c
= 5 / A Ad c

=-0.3 -0.097 -0.041 -0.147 0.286 0.686 0.196 

Large /
2

A
ˆ

c
= 5 / A Ad c

=-0.6 -0.005 0.171 0.034 0.144 0.953 -0.095 

Large /
2

A
ˆ

c
= 5 / A Ad c

=-0.9 -0.013 0.084 -0.116 0.697 0.204 -0.020 

Mixed /
2

A
ˆ

c
= 1 / A Ad c

=-0.3 -0.068 -0.145 -0.360 0.340 1.593 -0.010 

Mixed /
2

A
ˆ

c
= 1 / A Ad c

=-0.6 -0.124 0.060 -0.054 0.063 2.172 0.075 

Mixed /
2

A
ˆ

c
= 1 / A Ad c

=-0.9 -0.088 -0.155 -0.043 0.223 1.576 0.058 

Mixed /
2

A
ˆ

c
= 2.5 / A Ad c

=-0.3 -0.121 0.062 -0.213 0.231 0.884 0.206 

Mixed /
2

A
ˆ

c
= 2.5 / A Ad c

=-0.6 -0.128 0.338 -0.158 0.287 1.140 0.115 

Mixed /
2

A
ˆ

c
= 2.5 / A Ad c

=-0.9 -0.053 0.266 -0.089 -0.156 0.733 0.108 

Mixed /
2

A
ˆ

c
= 5 / A Ad c

=-0.3 -0.101 0.098 -0.311 0.003 1.297 0.155 

Mixed /
2

A
ˆ

c
= 5 / A Ad c

=-0.6 -0.102 0.321 0.031 0.065 1.207 0.113 

Mixed /
2

A
ˆ

c
= 5 / A Ad c

=-0.9 -0.053 0.207 -0.147 0.209 0.697 -0.030 
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Note: 
1 Small corresponds to small-scale environmental variation; Large correspond to large-scale environmental 
variation; Mixed correspond to small-scale together with large-scale variation.  
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Figure S1. Marginal posterior densities by scenario for direct additive variance
A

ˆ
d

, the competition additive genetic variance
A

ˆ
c
, the correlation 

between direct and competition genetic effects A Ad c
, the variance of the B-spline coefficients ˆ

b
, the permanent environmental variance ˆ

p
 and the 

residual variance ˆ
e

. The line represents each of the six replicates generated for each scenario and parameter. Prior distributions are shown as dotted 

lines. 

Scenario1 A
ˆ

d
 2

A
ˆ

c
 A Ad c

 2ˆ
b

 2ˆ
p

 2ˆ
e

 

Small /
2

A
ˆ

c
= 

1 / A Ad c
=-0.3 

      

Small /
2

A
ˆ

c
= 

1 / A Ad c
=-0.6 

      

Small /
2

A
ˆ

c
= 

1 / A Ad c
=-0.9 
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Small /
2

A
ˆ

c
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2.5 / A Ad c
=-

0.3 

      

Small /
2

A
ˆ

c
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2.5 / A Ad c
=-

0.6 

      

Small /
2

A
ˆ

c
= 

2.5 / A Ad c
=-

0.9 

      

Small /
2

A
ˆ

c
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5 / A Ad c
=-0.3 

      

Small /
2

A
ˆ

c
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5 / A Ad c
=-0.6 
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ˆ
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=-0.9 
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ˆ
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Large /
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ˆ

c
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1 / A Ad c
=-0.9 

      

Large /
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A
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= 
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0.3 
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Large /
2
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0.6 
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=-

0.9 

      

Large /
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Large /
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A
ˆ

c
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5 / A Ad c
=-0.9 
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Mixed /
2

A
ˆ

c
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1 / A Ad c
=-0.3 

      

Mixed /
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Figure S2. Trace plots of the direct additive genetic variance

A
ˆ

d
, the competition additive genetic variance

A
ˆ

c
, the correlation between direct and competition genetic effects A Ad c

, the variance of the B-spline 

coefficients ˆ
b

, the permanent environmental variance ˆ
p

 and the residual variance. 
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Note: 
a TM (Standard model): Individual-tree mixed model does not account for competition effects and 

continuous environmental heterogeneity (only fit blocks fitted as fixed effects). 
 CM (Competition model): Individual-tree mixed model that accounts competition effects. 
 SP (Spatial model): Individual-tree mixed model that accounts environmental heterogeneity using P-splines 

with 15 knots for rows and 15 knots for columns.  

 CSM (Competition + Spatial model): Individual-tree mixed model that accounts competition effects and 
environmental heterogeneity using P-splines with 15 knots for rows and 15 knots for columns.  

b Parm. = Parameter. 
 


