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Abstract: A new control scheme for induction motors is proposed in the present paper, applying the interconnection
and damping assignment-passivity based control (IDA-PBC) method. The scheme is based exclusively on passivity based
control, without restricting the input frequency as it is done in field oriented control (FOC). A port-controlled Hamiltonian
(PCH) model of the induction motor is deduced to make the interconnection and damping of energy explicit on the scheme.
The proposed controller is validated under computational simulations and experimental tests using an inverter prototype.
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1 Introduction

Passivity-based control (PBC) has become an important
tool in nonlinear control research, mainly because of its
straightforward application to physical systems (mechani-
cal, electrical and electromechanical). In recent years, inter-
connection and damping assignment-passivity based con-
trol (IDA-PBC) has appeared as a flexible and versatile
method to design controllers for nonlinear systems, intro-
ducing tools to assign the interconnection and damping of
internal energy.

Also, induction motors are an interesting area of research
for nonlinear control [1, 2]. Their wider use replacing DC
motors has been an incentive to develop more and better
techniques to control their dynamic behavior to obtain a
more efficient use of the energy without losing performance.

The present paper analyzes the use of IDA-PBC as a
method to control induction motors. The result is a new
scheme to design controllers for induction motors focus-
ing on energy characteristics, like equilibrium and shape, to
achieve the desired objective. This result does not use field
oriented control (FOC) or any other scheme to fix the in-
put voltage frequency; on the contrary, the input frequency
is used as a fundamental part of the solution. As a result
of the new scheme, a speed regulator is obtained and simu-
lated with an induction motor model in the Matlab-Simulink
environment. To apply the IDA-PBC method to induction
motors, a port-controlled Hamiltonian (PCH) model is de-
ducted for the complete electro-mechanical system. Also,
using an inverter prototype designed in [3], a set of experi-

ments are performed showing the behavior of the proposed
scheme.

This IDA-PBC controller is based on a different paradigm
for the induction motor control than the one used in FOC.
Instead of decoupling the inputs of the induction motor to
make it similar to a DC motor, the IDA-PBC controller takes
advantage of the internal properties of the system to reach
the desired objective without intermediate steps.

2 IDA-PBC control

2.1 Passive systems

The definition of a passive system is taken from [4]. Other
ways to state this definition, using the concept of dissipative
systems, can be found in [5].

Definition 1 [4] Let Σp be a dynamical system,

Σp :

{
ẋ = f(x) + g(x)u,

y = h(x)
(1)

with u, y ∈ R
p, x ∈ X ⊆ R

n and an equilibrium point
x∗ ∈ X such that f(x∗) = 0 and h(x∗) = 0. This sys-
tem will be called passive if there is a continuous function
H : X → R

+ with H(x∗) = 0, called the storage function,
such that ∀t � t0 ∈ R and ∀u(·)

H(x(t)) − H(x(t0)) �
� t

t0
uT(s)y(s)ds. (2)

The function H(·) is related with the stored energy of a
system and, in a consistent way, the product uT(t)y(t) has
instant power units. The inequality (2) shows that the inter-
nal stored energy of a passive system is always less than or
equal to the energy supplied to it, or in other words, a pas-
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sive system is unable to generate energy. The relation (2) is
called Dissipation Inequality.

2.2 PCH models

An interesting point of view in modeling dynamical sys-
tems has been raised following the known methodologies
of Lagrange and Hamilton, because they generate equations
with structures that allow to establish physical relationships
based on their variables and parameters. Particularly, we
will analyze the systems modeled with the Hamilton equa-
tions. A deeper study on this issues is found on [5∼8].

Definition 2 [5] A dynamical system ΣPCH has a PCH
model if its mathematic representation has the form,

ΣPCH :

{
ẋ = [J (x) −R(x)]∇H + g(x)u,

y = gT(x)∇H,
(3)

where
· H(x) : R

n → R is a C1 function that represents the in-
ternal energy in the system.

· x ∈ R
n are the state variables.

· J (x) = −J T(x) is the interconnection matrix.
· R(x) = R(x) � 0 is the damping matrix.
· g(x) is the input matrix.

The close relationship between the physical phenomenon
and its PCH model is the main contribution of this represen-
tation, because it allows a direct read of the internal inter-
connection and damping of energy on the matrices J and
R. This reason makes the PCH models particulary suitable
to analyze electrical, mechanical or electromechanical sys-
tems, because the physical knowledge is used to understand
their behaviour.

Moreover, it is proved in [5] that if H(·) is bounded from
below, then the system ΣPCH is passive, with H(·) as the
storage function.

2.3 IDA-PBC control

The interconnection and damping assignment-passivity-
based control (IDA-PBC), when used on PCH models, can
assign the interconnection, damping and internal energy of
a closed loop by changing the matrices J , R and the storage
function H . The formulation for general models of systems
is found in [9, 10].

Theorem 1 Let ΣPCH be a system described by the
equation (3). Let us assume that there are matrices g⊥(x),
Jd = −J T

d , Rd = RT
d � 0 and a function Hd : R

n → R

such that

g⊥ [J −R]∇H = g⊥ [Jd −Rd]∇Hd, (4)

where g⊥(x) is a full range left-annihilator of g(x), i.e.,
g⊥g = 0, and Hd such that

x∗ = arg min
x∈Rn

Hd(x). (5)

Then, applying the control u = β(x), where

β =
[
gT g

]−1
gT {[Jd−Rd]∇Hd−[J −R]∇H} , (6)

the closed-loop dynamics will be

ẋ = [Jd −Rd]∇Hd (7)

with x∗ as a locally stable equilibrium point in the Lyapunov
sense. The equilibrium point will be asymptotically stable in
the Lyapunov sense if the largest invariant set contained in{

x ∈ R
n

∣∣∇HT
d (x)Rd(x)∇Hd(x)

}
(8)

equals {x∗}.
A complete demonstration of the previous theorem can

be found in [10].

3 Induction motor: PCH model and IDA-

PBC control

The deduction of the PCH model for an induction motor
will be divided in two parts: the electrical subsystem model
and the mechanical subsystem model.

3.1 Electrical subsystem

The general equations for AC machines are used to study
this subsystem, as they are commonly used in [11, 12] to
analyze triphase motors.

Under symmetry hypothesis of the coils in the motor, and
using the Voltage Kirchhoff law over stator and rotor cir-
cuits, the equations are

us = Rsis +
dψs

dt
, (9a)

0 = Rrir +
dψr

dt
, (9b)

with us being the voltage applied to the stator, is and ir the
stator and rotor currents respectively, ψs and ψr the mag-
netic fluxes linked by the stator and rotor coils, and Rs and
Rr the stator and rotor internal resistance, respectively. In
addition, the magnetic coupling between stator and rotor is
modeled as

ψs = Lsis + Lmir, ψr = Lmis + Lrir, (10)

where Ls and Lr are the stator and rotor self-inductances,
and Lm is the mutual-inductance between both circuits.

Let a new reference frame rotated ρg radians with respect
to the stator frame, as shown in Fig.1.

Fig. 1 Phasor diagram of the reference frame rotated ρg radians.
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In this new system, the equation (9a) is transformed to

us = Rsejρg isg +
d(ejρgψsg)

dt

= Rsejρg isg + ejρg
dψsg

dt
+ jejρgωgψsg, (11)

where ωg is the temporal derivative of ρg , i.e., the angular
velocity of the reference frame. In addition, if the voltage
applied to usg is defined as us = ejρgusg then, using (11),
we get

usg = Rsisg +
dψsg

dt
+ jωgψsg. (12)

Let θr be the rotor mechanical angle. Then, using a ref-
erence frame rotated (ρg − θr) radians, the equation (9b)
implies

0 = Rrej(ρg−θr)irg + ej(ρg−θr)
dψrg

dt
+jej(ρg−θr)(ωg − ωr)ψrg

= Rrirg +
dψrg

dt
+ j(ωg − ωr)ψrg, (13)

where ωr is the temporal derivative of θr, i.e., the rotor an-
gular velocity.

Defining the real and imaginary parts of the following
variables: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

usg = usx + jusy,

isg = isx + jisy,

irg = irx + jiry,

ψsg = ψsx + jψsy,

ψrg = ψrx + jψry,

(14)

equations (12) and (13) are equivalent to⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

usx = Rsisx + ψ̇sx − ωgψsy,

0 = Rrirx + ψ̇rx − (ωg − ωr)ψry,

usy = Rsisy + ψ̇sy + ωgψsx,

0 = Rriry + ψ̇ry + (ωg − ωr)ψrx.

(15)

Using (10) and organizing the terms, these equations are
transformed to⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ψ̇sx = −Rsisx + ωgLsisy + ωgLmiry + usx,

ψ̇rx = −Rrirx + ωgLmisy + ωgLriry − ωrψry,

ψ̇sy = −Rsisy − ωgLsisx − ωgLmirx + usy,

ψ̇ry = −Rriry − ωgLmisx − ωgLrirx + ωrψrx

(16)

or ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ψ̇x = −Rix + ωgLiy −
[

0

ψry

]
ωr +

[
usx

0

]
,

ψ̇y = −Riy − ωgLix +

[
0

ψrx

]
ωr +

[
usy

0

] (17)

with⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ψx =

[
ψsx

ψrx

]
, ψy =

[
ψsy

ψry

]
, ix =

[
isx

irx

]
, iy =

[
isy

iry

]
,

R =

[
Rs 0

0 Rr

]
, L =

[
Ls Lm

Lm Lr

]
.

(18)

3.2 Mechanical subsystem

Applying the second Newton law in the rotor axis, the
following equation is obtained:

Jω̇r = −Bpωr + TEM − TL (19)

with J being the rotor inertial momentum, Bp the friction
coefficient of the rotor, TEM the electromagnetical torque
generated by the electrical subsystem and TL the load torque
applied to the rotor.

The electromagnetical torque is modeled in [11] as

TEM = Lmir × is = Lm (isyirx − isxiry)
= ψryirx − ψrxiry (20)

and the equation (19) becomes

Jω̇r = −Bpωr + ψryirx − ψrxiry − TL . (21)

3.3 System energy and PCH model

Defining the state variables as

x=
[
ψsx ψrx ψsy ψry Jωr

]T
=

[
ψT

x ψT
y Jωr

]T
∈R

5, (22)

hence the system’s energy H , which is formed by the mag-
netic energy of the coils and the kinetic energy of the rotor,
is written in terms of the state variables as

H =
1
2
xT

12L
−1x12 +

1
2
xT

34L
−1x34 +

1
2
J−1x2

5, (23)

where

x12 = ψx = [ψsx ψrx]T, x34 = ψy = [ψsy ψry]T.

The partial derivatives of the energy with respect to the state
variables are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂H

∂x12
= L−1x12 = ix ⇒

⎧⎪⎪⎨
⎪⎪⎩

∂H

∂x1
= isx,

∂H

∂x2
= irx,

∂H

∂x34
= L−1x34 = iy ⇒

⎧⎪⎪⎨
⎪⎪⎩

∂H

∂x3
= isy,

∂H

∂x4
= iry,

∂H

∂x5
= J−1x5 = ωr.

(24)

If the angular velocity of the reference system ωg is fixed
to the voltage electrical frequency ωs then its value can be
arbitrarily assigned, which means that it can be used as a
new input for our model. Also, as a simplification to the
mechanical subsystem, the load torque applied to the axis
will be considered to be in the following form:

TL = Bωr (25)

with B being a positive constant value.
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Using the electrical and mechanical equations shown in
(17) and (21), which are written based on the state variables
(22), and applying the simplifications for the angular veloc-
ity of the reference frame ωg and the load torque TL (in the
equation (25)), the following equations are obtained as the
induction motor model⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−Rs 0 0 0 0

0 −Rr 0 0 −x4

0 0 −Rs 0 0

0 0 0 −Rr x2

0 x4 0 −x2 −B′

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
∇H

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 x3

0 0 x4

0 1 − x1

0 0 − x2

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

usx

usy

ωs

⎤
⎥⎥⎦ ,

y =

⎡
⎢⎢⎣

1 0 0 0 0

0 0 1 0 0

x3 x4 −x1 −x2 0

⎤
⎥⎥⎦∇H =

⎡
⎢⎢⎣

isx

isy

0

⎤
⎥⎥⎦ ,

(26)

where B′ = Bp + B. The third element of the output vec-
tor is used to maintain the mathematical framework of pas-
sivity, where the product between u(t) and y(t) has instant
power units. In physical terms, the new input ωs is not in-
volved with power delivery, so it must be multiplied by zero.

The following matrices can be identified from the system
in the equation (26)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J (x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 0 0 0 −x4

0 0 0 0 0

0 0 0 0 x2

0 x4 0 − x2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

R(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Rs 0 0 0 0

0 Rr 0 0 0

0 0 Rs 0 0

0 0 0 Rr 0

0 0 0 0 B′

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

g(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 x3

0 0 x4

0 1 − x1

0 0 − x2

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(27)

where J = −J T and R = RT � 0. With these matrices,
the system (26) can be written as a PCH model

ẋ = [J −R]∇H + gu, y = gT∇H, (28)

where u = [usx usy ωs]T ∈ R
3 are the inputs of the sys-

tem. Also, as the energy H is bounded from below, the PCH
model is passive.

3.4 Control

To apply the IDA-PBC control, the matrices Jd, Rd and
g⊥ are chosen as⎧⎪⎪⎨

⎪⎪⎩
Jd(x) = J (x), Rd(x) = R(x),

g⊥(x) =

[
0 0 0 0 1

0 x2 0 x4 0

]
,

(29)

where J and R are the matrices shown in equation (27).
With these matrices, the PDE (4) can be simplified as

g⊥[J −R]∇Ha = 0 (30)

with Ha being the energy applied by the controller, and
therefore the energy of the closed loop is Hd = H + Ha.
After evaluating g⊥, J and R, the following two equations
are obtained:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x2

[
−Rr

∂Ha

∂x2
−x4

∂Ha

∂x5

]
+x4

[
−Rr

∂Ha

∂x4
+x2

∂Ha

∂x5

]
= 0,

x4
∂Ha

∂x2
− x2

∂Ha

∂x4
− B′ ∂Ha

∂x5
= 0

(31)

with a general solution

Ha = Ha

(
x1, x3, x5 + B′ arctan

(
x2

x4

))
. (32)

Once the solution to the equation system (31) is obtained,
a suitable function Ha must be selected. This means that the
selected function must fix the equilibrium point to reach the
desired steady state response of the system and at the same
time must define the transient response using the “geomet-
rical shape” of the energy.

Since the objective of this controller is to regulate the an-
gular velocity ωr, the chosen applied energy function is

Ha = k1x1 + k2x3 + k3

[
x5 + B′ arctan

(
x2

x4

)]
(33)

with ki, i = 1, 2, 3 real constant values. The equilibrium
points of the closed loop are defined by the solutions to
∇(H + Ha) = 0:

L−1x12 +

⎡
⎣ k1

x4

x2
2 + x2

4

k3B
′

⎤
⎦ = 0, (34a)

L−1x34 +

⎡
⎣ k2

− x2

x2
2 + x2

4

k3B
′

⎤
⎦ = 0, (34b)

J−1x5 + k3 = 0. (34c)

It can be easily deduced from the equation (34c) that
the angular velocity ωr has a unique equilibrium point in
ω∗

r = −k3, which validates this controller as an angular
speed regulator for induction motors. The general solution
to the equations is shown in the Appendix, including the
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equilibrium points of all the electrical state variables.
Finally, the control that must be applied is given by the

equation (6) and has the form

usx(x) = −Rsk1 +
(

1 +
RrB

′

x2
2 + x2

4

)
x3k3, (35a)

usy(x) = −Rsk2 −
(

1 +
RrB

′

x2
2 + x2

4

)
x1k3, (35b)

ωs(x) = −
(

1 +
RrB

′

x2
2 + x2

4

)
k3, (35c)

where k3 = −ω∗
r and the constants k1 and k2 are chosen to

give an equilibrium point to every state variable in the equa-
tion’s system (34) (in Appendix, it is shown that not every
value of k1 and k2 solves the equation system).

To implement this controller in a real motor, the stator
and rotor magnetic fluxes must be known at every instant
of time. This issue can be surpassed by using a magnetic
flux observer for the motor, taking the estimated measures
as replacements of the unknown state variables. A complete
review in this area can be found in [16].

4 Simulation results

A simulation of the previous scheme was built using
Matlab-Simulink. The parameters used in the model of the
motor are shown in Table 1, which are the same values used
in [13]

Table 1 Parameters used in the PCH induction motor
model.

Parameter Value

Rs 0.687 Ω

Rr 0.842 Ω

Ls 84 mH

Lr 85.2 mH

Lm 81.3 mH

Bp 0.01 Kg · m2/s

B 0 Kg · m2/s

J 0.03 Kg · m2/s

The initial conditions and the controller parameters were
chosen as {

x0 = [0 0.1 0 0.1 0 ]T,

k1 = −5, k2 = −10, k3 = −50.
(36)

Using the parameter values included in Table 1, the val-
ues of the constants k1, k2 and k3, and the general solution
to the equation system (34) included in Appendix, the equi-
librium points of the closed loop are⎧⎨
⎩

xε1 =[0.45896 0.44734 0.81794 0.78988 1.5 ]T,

xε2 =[0.07314 0.043 0.04628 − 0.0188 1.5 ]T.
(37)

A linearized model of the closed loop over each of these
equilibrium points was used to analyze their stability. The
poles of the system linearized over x = xε1 are⎧⎪⎨
⎪⎩

λ11 =−212.13, λ12 = −231.7,

λ13 =−12.241+3.843 j, λ14 =−12.241−3.843 j,
λ15 =−4.5409

(38)

and the poles of the closed loop system linearized over
x = xε2 are{

λ21 = −369.12, λ22 = 118.56, λ23 = −163.62,

λ24 = −58.257, λ25 = −0.4205,
(39)

hence, as the closed loop system is asymptotically stable
and the equilibrium point xε2 has a pole with positive real
part, the state will converge to xε1 as the time goes to infin-
ity.

The results of the simulation defined by the previous pa-
rameters are shown in Figs.2 to 5. Notice that the ampli-
tudes of the electrical variables (input voltages and motor
currents) are kept under acceptable bounds in terms of real
motor nominal values. The controller does not try to cancel
the nonlinear behavior of the system but uses it to achieve
the control objective.

Fig. 2 Time evolution of the internal state variables.

Fig. 3 Time evolution of the motor currents (stator and rotor) and the
angular velocity.
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Fig. 4 Time evolution of the inputs to the system: voltages and frequency. Fig. 5 Time evolution of the electromagnetic torque vs. the load torque.

5 Experimental results

For the IDA-PBC scheme used in this paper, it is neces-
sary to introduce some modifications to obtain experimental
results. In principle, this strategy was developed to control
the mechanical speed of the motor, being unable to control

mechanical torque perturbations. This implies that perma-
nent errors in the mechanical speed are obtained, in simu-
lations as well as in experiments. To solve this problem, a
simple proportional integral (PI) controller loop was added
in the original scheme for the mechanical speed reference,
as shown in Fig.6.

Fig. 6 Modified IDA-PBC control scheme.

In the case of the induction motor, the rotor flux cannot
be measured directly, so the implementation of a rotor flux
observer becomes necessary in order to implement the IDA-
PBC scheme. The observer used in this study was imple-
mented based on the voltage-current model of the induction
motor, which is developed in [14∼16] and it is shown next.

The current model of the induction motor is given by

˙̂
ψdqr =

R̂rLm

Lr
idqr − ω̂rψ̂dqr, (40)

where ω̂r = R̂r/Lr − ωrj and R̂r represents the rotor re-
sistance estimation of the observer. Then, considering only
variations on rotor resistance, the relationship between the
observed flux and the real one is

ψ̂dqr

ψdqr
=

R̂r(s + ω̂r)
Rr(s + ωr)

= FRFc. (41)

On the other hand, the open loop voltage model is
˙̂
ψdqs = vdqs − R̂sidqs, (42)

where ψ̂dqr =
Lr

Lm
ψ̂dqs − σ

1 − σ
Lmidqs. The transfer func-

tion between the observed flux and the real one for the volt-

age model is

ψ̂dqr

ψdqr
= 1 +

L
2

r

RrL2
m

(
s + ωr

s

)
(Rs − R̂s) = FRFv. (43)

It is important to point out that the current model gives a
good estimate at low speeds and the voltage model gives a
good estimate at high speeds. To be able to use both mod-
els, they are grouped using a transition function of the form
K(s) = k1 + k2/s. Then, the following transfer function is
obtained:

ψ̂dqr

ψdqr
=

Lm
Lr

s(FRFv) + K(FRFc)
Lm
Lr

s + K
. (44)

With the transfer function shown above, a rotor flux ob-
server is obtained for the induction motor, which considers
the rotor resistance variations. Because of the form of the
observer, its formulation is only valid when the mechanical
speed, ωr, is constant or varies slowly since otherwise the
term ω̂rψ̂dq adds a non considered dynamics into the model.

The experimental results are obtained using a 3φ in-
verter developed in [3] which communicates to the PC us-
ing the software Matlab-Simulink with an S-Function. The
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induction motor used was a Siemens 1LA7080, 0.55KW,
cos φ=0.82, 220V, 2.5A, 4 poles and 1395rpm. The mo-
tor was tested to obtain its electrical parameters, which are
given in Table 2.

Table 2 Induction motor parameters.
Parameter Rs Rr Xs Xr Xm

Value(Ω) 14.7 5.5184 11.5655 11.5655 115.3113

To apply mechanical load to the induction motor, it was
mechanically coupled to a continuous current generator,
Briggs and Stratton ETEK, with permanent magnets, mak-
ing it ideal to use as an electric generator. The load of the
generator was applied to the stator using a cage of dis-
crete resistances, controlled manually by switches, allowing
with this to apply resistive torque onto the rotor axis of the
induction motor. The experimental assembly consisting of
the motor-generator group used in the experimental tests is
shown in Fig.7:

Fig. 7 Experimental assembly.

The constant values k1 and k2 were chosen by performing
preliminary tests, obtaining the values k1 = k2 = −30 and
for the proportional integral loop it was obtained K

P
= 3

and K
I

= 0.5. The tests carried out on the induction motor
are the following:
· Test 1: Speed reference of ramp type from zero to nom-

inal value in 9 seconds. Load torque proportional to the
speed equals to the nominal value (100%) during the whole
test.
· Test 2: Speed reference of ramp type from zero to nomi-

nal value in 9 seconds. Between t = 40s and t = 70s the ref-
erence is a pulse train of amplitude 0.1ωrnom and frequency
2π/20. Between t = 80s and t = 110s the reference is si-
nusoidal of amplitude 0.1ωrnom and frequency 2π/20. Load
torque proportional to the speed equals to 50% of the nom-
inal value during the whole test.
· Test 3: Speed reference of ramp type from zero to nom-

inal value in 9 seconds. Initial load torque equals to 0% of
the nominal value. Between t = 40s and t = 80s a torque
perturbation equal to 50% of the nominal value is added.

The results of the experimental tests are shown in Figs.8
to 10. The blue line in the first subfigure is the speed refer-
ence and the green line is the measured mechanical speed.
In the third subfigure, the blue line is the stator RMS volt-
age applied to the motor, and the green line is the frequency
(in Hz) of the RMS voltage.

Fig. 8 Experimental results test 1.
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Fig. 9 Experimental results test 2.

Fig. 10 Experimental results test 3.

As shown in the results, an oscillatory component appears
in the signal due to the dynamics of the flux observer, which
is valid only when the mechanical speed varies slowly.
Thus, when a speed ramp reference is applied, the observer
oscillates until the speed is stabilized. These oscillations are
also because we are not considering the variations induced

by the addition of the proportional integral outer loop in the
formulation of the IDA-PBC scheme.

6 Conclusions

A novel scheme was presented to control an induction
motor based on the energy shape of the system. This scheme
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allows to choose the closed loop energy shape, and the elec-
trical variables are a consequence of this choice. One of the
main characteristics of this scheme is that the concept of
Field Oriented Control is not needed, giving more freedom
when designing a control scheme for induction motors. It
is shown that the scheme achieved the control objectives in
simulations as well as in experiments.
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Appendix

A1 Solution of the equilibrium point equation system

The complete solution of the equation system (34) is shown in
equations (a1) to (a5).

x1 =
1

Δ

j
2k1k2k3B

h `
k2
1 + k2

2

´ `−LsLr + L2
m

´
+ ξ

i

+k2
1

`
k2
1 + k2

2

´ „
−Ls +

L2
m

Lr

« h `
k2
1 + k2

2

´
L2

m + ξ
i

+2k2
3LrB

2 `
k2
2 − k2

1

´ ff
, (a1)

x2 =
2k3LrB

LmΔ

h
k3LrB

`
k2
2 − k2

1

´
+ k1k2ξ

i
, (a2)

x3 = −Lsk2 +
1

2 (k2
1 + k2

2) Lr

n
− 2k1k3LrB

+k2

ˆ`
k2
1 + k2

2

´
L2

m + ξ
˜ o

, (a3)

x4 =
1

2 (k2
1 + k2

2) Lm

n
− 2k1k3LrB

−k2

ˆ`
k2
1 + k2

2

´
L2

m + ξ
˜ o

, (a4)

x5 = −k3J, (a5)

where

Δ =
`
k2
1 + k2

2

´ n
2k2k3LrB + k1

ˆ`
k2
1 + k2

2

´
L2

m + ξ
˜ o

,

(a6)

ξ = ±
q

(k2
1 + k2

2)
2 L4

m − 4k2
3L2

rB2. (a7)

Thus, the variables ξ and Δ define the existence and number of
solutions. There will be no solutions only if:

Δ = 0 ∨ `
k2
1 + k2

2

´
L2

m < 2k3LrB, (a8)

also, given Δ �= 0, there will be one solution if`
k2
1 + k2

2

´
L2

m = 2k3LrB, (a9)

and two solutions if`
k2
1 + k2

2

´
L2

m > 2k3LrB. (a10)
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