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Discrete wavelet transform (DWT) is often implemented by an iterative filter bank; hence, a lake of optimization of a discrete time
basis is observed with respect to time localization for a constant number of zero moments. This paper discusses and presents an
improved form of DWT for feature extraction, called Slantlet transform (SLT) along with neutrosophy, a generalization of fuzzy
logic, which is a relatively new logic. Thus, a novel composite NS-SLT model has been suggested as a source to derive statistical
texture features that used to identify the malignancy of brain tumor. The MR images in the neutrosophic domain are defined
using three membership sets, true (T), false (F), and indeterminate (I); then, SLT was applied to each membership set. Three
statistical measurement-based methods are used to extract texture features from images of brain MRI. One-way ANOVA has been
applied as a method of reducing the number of extracted features for the classifiers; then, the extracted features are subsequently
provided to the four neural network classification techniques, Support Vector Machine Neural Network (SVM-NN), Decision Tree
Neural Network (DT-NN), K-Nearest Neighbor Neural Network (KNN-NN), and Naive Bayes Neural Networks (NB-NN), to
predict the type of the brain tumor. Meanwhile, the performance of the proposed model is assessed by calculating average
accuracy, precision, sensitivity, specificity, and Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC)
curve. The experimental results demonstrate that the proposed approach is quite accurate and efficient for diagnosing brain tumors
when the Gray Level Run Length Matrix (GLRLM) features derived from the composite NS-SLT technique is used.

1. Introduction

Most contemporary vision algorithms cannot accurately per-
form based on image intensity values which are directly
derived from the initial gray level representation. Image
intensity values are highly redundant, while the amount of
important information within the image might be small.
The Slantlet-based transformation of the initial MR image
representation into a feature representation explicitly

emphasizes the useful image features without losing essential
image information, reduces the redundancy of the image
data, and eliminates any irrelevant information [1]. Medical
images perform a crucial role in disease analysis, education,
investigation, etc. In the medical domain, due to the enor-
mous development of digital medical images, an automated
classification system of brain tumors is required to help radi-
ologists accurately identify brain tumors or perform investi-
gation based on brain Magnetic Resonance Imaging (MRI)
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[2, 3]. Since 2006, numerous systems were developed in the
area of medical image, which relies mainly on the extraction
of low-level features such as texture, intensity, shape, and
color in order to understand, characterize, and classify
medical images efficiently [2]. Medical image classification
is a key issue in the field of image recognition, and it is
intended to classify medical images into different catego-
ries. Basically, the classification of medical images can be
divided into two phases of development. Effective image
features are extracted from the first stage, and the second
step is to use the features to construct an image dataset
model [4]. Moreover, texture analysis, the mathematical
method for quantitative analysis of image pattern varia-
tion, had shown promising diagnostic potential in different
brain tumors that relate to an object’s surface properties
and its association with the adjacent region [5–7].

A brain tumor is one of the worst diseases that has risen
due to an abnormal brain cell growth affecting the function of
nervous systems. Various types of tumors in the brain may be
benign or malignant. Cells of a benign brain tumor (low-
grade glioma (LGG)) rarely invade healthy adjacent cells
and have different boundaries and slow development of pro-
gression. Malignant brain tumor (HGG, BM, or recurrent gli-
oma) cells readily invade brain or spinal cord neighboring
cells and have fluid boundaries and rapid growth levels [8–
10]. The early stage of tumor diagnosis relies on the doctor’s
knowledge and experience to help patients to recover and
survive. An automated brain tumor classification system is
an efficient tool to help physicians to successfully follow their
treatment options [11, 12]. During the past years, several
automatic methods for brain image analysis have been devel-
oped to detect and classify brain tumors using MR images.

The research paper [13] addresses a fully automated sys-
tem for the identification of tumor slices and the delineation
of the tumor region on the basis of two-dimensional ana-
tomic MR images. Features were extracted using Gabor
wavelet and statistical feature extraction techniques, and they
achieved the highest classification result with statistical fea-
tures in comparison to Gabor wavelet features. Subashini
and Gandhi [14] and his coworkers published an article on
automatic detection and classification of MRI brain tumors
using LabVIEW. A dataset of 80 images was utilized to test
this approach, and they achieved 92.5% of classification accu-
racy. In another work [15], the authors proposed a 2-level
DWT method to extract features from MR images. In the
method, feature selection using PCA and DNN models was
used for brain MRI classification into normal and three cate-
gories of malignant brain tumors. Gupta et al. [16] proposed
a noninvasive system for brain glioma detection on brain
MRIs using texture and morphological features with ensem-
ble learning. Simulations were scored 97.37% and 98.38 on
JMCD and BraTS, respectively. In [17], the authors devel-
oped a clinical support system to enhance brain tumor detec-
tion and classification using images from the BraTS dataset.
The tumor region’s features were collected by the GLCM
extraction technique and classified using LOBSVM with
97.69% accuracy. An approach of a deep learning (DL) model
based on a CNN for the classification of brain tumor MR
images was suggested by Sultan et al. [18]. The proposed sys-

tem attained a substantial performance with the best overall
accuracy of 98.7%. In Reference [18], the authors have
addressed the new liver and brain tumor classification
approach using CNN, DWT, and LSTM for feature extrac-
tion, signal processing, and signal classification, respectively.
Experimental results showed that hybrid CNN-DWT-LSTM
algorithms were substantially better performing, and they
achieved overall performance of 98.6%. In 2019, Ullah et al.
[19] developed a modified scheme to differentiate between
normal and abnormal brain MR images based on a median
filter, DWT, color moments, and ANN. In [20], the author
proposed a machine learning approach based on delta-
radiomic features of DSC-MR images. The developed algo-
rithm was used for classifying HG and LG GBMs with an
average of 90% accuracy.

Over the past few decades, many methods have been pro-
posed in the literature for feature extraction. These tech-
niques were based on features extracted from spatial and
frequency domains, and it was observed that very few studies
have been conducted on brain tumor diagnosis based on the
neutrosophic domain. Amin and his colleagues [21] devel-
oped a new system of neutrosophic ranking for classifying
tumors in BUS images. In the system, original BUS images
were transformed into a neutrosophic set domain and vari-
ous features were extracted from statistical and morphologi-
cal features. Sert and Avci [22] proposed a neutrosophic set
EMFSE system using maximum fuzzy entropy and fuzzy c-
partitionmethods to identify the enhancing part of the tumor
in a brain MR image. The authors in [23] proposed an effec-
tive automatic brain tumor segmentation scheme based on
the NS-EMFSE method for classifying brain tumors as
benign and malignant with the SVM and KNN classifier. A
dataset of 500 samples was taken from various cancer catego-
ries for the TCGA-GBM dataset to test this approach, and
they achieved the highest performance by the SVM classifier
with 95.62%.

1.1. Neutrosophy. Neutrosophy is a branch of philosophy,
introduced by F. Smarandache in 1980, which generalized
dialectics and studied the origin, nature, and scope of neu-
tralities, in addition to their interactions with numerous ide-
ational spectra [24]. In neutrosophy theory, every event has a
definite degree of truth (T), falsity (F), and indeterminacy (I)
that have to be considered independently from each other
[23, 25–28]. Therefore, fAg is an idea, theory, event, concept,
or entity; fAnti − Ag is the opposite of fAg; and the neutral-
ity {Neut − A} means neither fAg nor fAnti − Ag, that is, the
neutrality between the two extremes [29, 30].

1.2. Concept of Neutrosophic Set. A neutrosophic set is a gen-
eralization of the theory of fuzzy set, intuitionistic fuzzy set,
paraconsistent set, dialetheist set, paradox set, and tautologi-
cal set where each element of the universe has a degree of
truth, falsity, and indeterminacy, respectively. Unlike in
fuzzy sets, the neutrosophic set presents the additional
domain (I) which provides a more effective way to handle
higher degrees of uncertainty. Let U be a universe of dis-
course set and a neutrosophic set A in U is characterized by
three neutrosophic components: T , F, and I are defined to
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estimate the membership degree (truth membership degree),
nonmembership degree (falsity membership degree), and the
indeterminacy membership degree of an element indepen-
dently. The neutrosophic schema in the general case is shown
in Figure 1.

The novelty of the proposed approach is to apply Slant-
let transform in each of the neutrosophic sets to extract sta-
tistical texture features, which has not been explored and
performed on MICCAI BraTS dataset. Furthermore, differ-
ent individual and combined feature extraction methods
using composite NS-SLT were compared through their clas-
sification accuracies to select the effective approach with
four types of neural network classification techniques. To
evaluate the performance, extensive experiments were car-
ried out which show that the proposed composite system
achieves excellent results and classifies images accurately.

2. Materials and Methods

The overall design of the proposed framework is shown in
Figure 2. First, MR images of patients are acquired, cropped,
and resized in the preprocessing step; then, statistical tex-
ture features are extracted from SLT in the neutrosophic
domain. Afterwards, feature selection is performed to
choose the most salient features, followed by applying four
neural network classifiers to identify the tumor as benign
or malignant derived from the extracted features. Finally,
the performance is evaluated by using certain parameters.
The detail of these given methods has been presented in
the subsequent subsections.

2.1. Dataset. Images in the MICCAI Brain Tumor Segmenta-
tion 2017 Challenge (BraTS 2017) were used to analyze and
evaluate our proposed approach, which is one of the standard
and benchmarked datasets [9, 31–33]. It is comprised of 210
preoperative MR images of patients from high-grade glioma
(HGG) volumes and 75 MRIs from low-grade glioma
(LGG) volumes collected from multiple centers. For each
patient, there are four MRI modalities, including the native
T1-weighted (T1), contrast-enhanced T1-weighted (T1ce),
T2-weighted (T2), and T2 fluid-attenuated inversion recov-
ery (FLAIR) (Figure 3). After their preprocessing, the data
provided are distributed, i.e., skull-stripped, coregistered to
the same anatomical template, and with the same resolution
interpolated into 1 × 1 × 1mm3 and with a sequence size of
240 × 240 × 155. In order to homogenize data, each modality
scan is rigidly coregistered with T1Ce modality, because in

most cases, T1Ce has the highest spatial resolution. There-
fore, for our experiments, 285 brain MRI tumor (T1Ce)
images are used, out of which 210 were cancerous (malignant)
tumors from HGG and 75 were benign tumors from LGG.

2.2. Preprocessing. In the preprocessing stage, the input
images (axial images) were initialized. The middle slice in
an MRI volume is considered to have all the tissue regions.
The pixels (nonobject) in the background are usually very
prominent in MR images, and the processing time of brain
extraction can be reduced considerably by separating target
pixels from background pixels. Therefore, in this step, the
bounding box cropping approach is computed in order to
extract the brain portion alone as the AOI by removing the
unwanted background from the input image. Before import-
ing the input MR images into the system, the cropped MR
images are resized into 512 ∗ 512 pixels.

2.3. The Image in Neutrosophic Domain. Let U be a universe
of discourse and A be a set included in U , which is composed
of bright pixels. The image in the neutrosophic domain (PNS)
is represented using three distinctive membership compo-
nents (T , I, and F), where T defines the truth scale, F defines
the scale of false, and I characterizes the scale of intermediate.
All considered components are autonomous from each
other. A pixel (P) of an image in the neutrosophic domain
is characterized as PðT , I, FÞ [26–28, 30, 34] and belongs to
set A in the following way: it is t% true membership function
in the bright pixel set, i% indeterminacy membership func-
tion in the set, and f % a falsity-membership function in the
set, where t varies in T , i varies in I, and f varies in F. There
is a valuation for each component in [0, 1]. In the image
domain, pixel Pði, jÞ is transformed into a neutrosophic
domain by calculating PNSði, jÞ = fT ði, jÞ, I ði, jÞ, F ði, jÞg in
equations (1), (2), (3), (4), (5) and (6), where Tði, jÞ, Iði, jÞ,
and Fði, jÞ considered as a probability that pixel Pði, jÞ
belongs to white set (object), indeterminate set, and non-
white set (background), respectively (see Figure 4). This is
the primary benefit of neutrosophy in image processing,
and it can be taken at the same time when the decision is
made for each pixel in the image. In [22, 23, 35–38], the fol-
lowing basic equations were proposed for transforming
images from a pixel domain to the neutrosophic domain:

PNS i, jð Þ = T i, jð Þ, I i, jð Þ, F i, jð Þf g, ð1Þ

T i, jð Þ =
�g i,jð Þ − �gmin

�gmax − �gmin

, ð2Þ

�g i,jð Þ =
1

A2
〠
i+a/2

m=i−a/2

〠
j+a/2

n=j−a/2

g m,nð Þ, ð3Þ

I i, jð Þ =
δ i,jð Þ − δmin

δmax − δmin

, ð4Þ

δ i,jð Þ = g i,jð Þ − �g i,jð Þ

�

�

�

�

�

�
, ð5Þ

F i, jð Þ = 1 − T i, jð Þ, ð6Þ

U

<A> <Anti A>

<Neut A>

Figure 1: Neutrosophic diagram.
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where gði,jÞ represents the intensity value of an image in the

pixel domain; T , I, and F are true, indeterminacy, and false
sets, respectively, in the neutrosophic domain; �gði,jÞ can be

defined as the local mean value of gði, jÞ; and δði,jÞ is the

homogeneity value of T at (i, j), which is described by the
absolute value of the difference between intensity value of
an image gði,jÞ and its local mean value �gði,jÞ.

2.4. Slantlet Transform (SLT). The Slantlet transform is an
improved orthogonal DWT variant with two zero moments
and better time localization which was first utilized by Seles-
nick to evaluate nonstationary signals [39]. DWT is usually
carried out by filter bank iteration, where a tree structure is
utilized. Slantlet transform is inspired by an equivalent

DWT implementation, in which a filter bank in a parallel
structure is implemented [40]. DWT utilizes a product
form of basic filters in some of these parallel branches,
and the filter bank “Slantlet” uses a similar structure in
parallel. However, there is no product type of implementa-
tion for the component filter branches, which means that
SLT has extra independence. SLT will produce a filter
bank, where each filter has its length in the power of 2;
this results in a periodic output for the analysis filter bank
and reduces the samples ð2i – 2Þ which support approaches
one-thirds, as ðiÞ increases [41].

For a mathematical perspective of the transformation of
Slantlet, let us take a generalized representation of Figure 5,
for (l) scales. The filters in scale ðiÞ must be giðnÞ, f iðnÞ,
and hiðnÞ to analyze the signal where each filter has an
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Figure 2: General architecture of the proposed system.
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Figure 3: Continued.
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appropriate 2i+1 support. For ðlÞ, the SLT filter bank uses
(l) number of pairs of channels, i.e., ð2lÞ channels in total.
The low pass hiðnÞ filter is then combined with its adja-
cent f iðnÞ filter, where a downsampling of 2i is followed
by any filter. The channel pairs of each ðl − 1Þ constitute
a giðnÞ, followed by a downsampling by 2i+1 and the
downsample by a reversed time version i = 1, 2, 3,⋯, l − 1
: The following expressions are represented by the follow-
ing, as the filters giðnÞ, f iðnÞ, and hiðnÞ implement linear
forms in pieces:

gi nð Þ =
a0,0 + a0,1n, for n = 0,⋯, 2i − 1

a1,0 + a1,1n, for n = 2i,⋯, 2i+1 − 1

( )

,

hi nð Þ =
b0,0 + b0,1n, for n = 0,⋯, 2i − 1

b1,0 + b1,1n, for n = 2i,⋯, 2i+1 − 1

( )

,

f i nð Þ =
c0,0 + c0,1n, for n = 0,⋯, 2i − 1

c1,0 + c1,1n, for n = 2i,⋯, 2i+1 − 1

( )

:

ð7Þ

Two issues must be taken into account when computing
SLT on MR images. Firstly, input signal length should be
power of two, or higher than, the analysis filter bank length
of the SLT, since all filter lengths are power of two in SLT filter
bank. Secondly, the matrix of transformation has to be con-
structed. In a 2D SLT decomposition, there is usually an image
that is divided into two parts: approximation and detailed
parts. The approximation part includes one low-frequency
LL subband, and detailed parts include three high-frequency
subbands: LH, HL, and HH, as Figure 6 illustrates, where H
and L represent the high- and low-frequency bands, respec-
tively. The low-frequency subband component (LL) includes
the inventive information of the original image. On the con-
trary, the LH, HL, and HH subbands retain the information
associated with the contour, edge, and the image’s other
details. In the image, high coefficients characterize the impor-
tant information; the low (insignificant) coefficients mean-
while are deliberated as trivial information or noise.
Therefore, such small coefficients should be avoided for the

best results. In this work, the SLT was utilized on MR images
in spatial and neutrosophic domains to extract the statistical
features of the images.

2.5. Feature Extraction. Feature extraction is the process of
transforming the raw pixel values from an image into a set
of features, normally distinctive properties of input patterns
that can be used in the selection and classification tasks. Fea-
ture extraction techniques are usually divided into the geo-
metrical, statistical, model-based, and signal processing [14,
16, 18, 42]. This stage involves obtaining important features
extracted from MR images. The main features can be used
to indicate the texture property, and the information is stored
in the knowledge base for the system training. Three sets of
statistical texture features (GLDS, GLRLM, and GLCM) are
included for feature extraction in the proposed system. The
obtained texture features by different methods are used indi-
vidually and fused with each other for the classification pro-
cess. Table 1 shows all 22 statistical textural features extracted
from each technique.

2.5.1. Gray Level Cooccurrence Matrix (GLCM). GLCM is
one of the most widespread techniques of texture analysis
that quantitatively measured the frequency of different
combinations of pixel brightness values (gray levels) which
occur in an image, and it has been used in a number of
applications, e.g., [42–48]. In this step, texture features
that contain information about the image are computed
by GLCM to extract second-order statistic texture features
(Table 1).

(1) Neutrosophic Image Homogeneity. Homogeneity also
called inverse difference moment is a value that measures
the similarity of the distribution of elements in the gray level
cooccurrence matrix which is defined in [48]. The values vary
between 0 and 1, and a higher value reveals a smoother tex-
ture feature.

Mathematically, homogeneity of an image in the spatial
domain is defined as

(g) (h)

Figure 3: Samples from dataset for each class of brain tumors: (a) T1Ce benign image, (b) FLAIR benign image, (c) T1 benign image, (d) T2
benign image, (e) T1Ce malignant image, (f) FLAIR malignant image, (g) T1 malignant image, and (h) T2 malignant image.
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Homogeneity = 〠
N−1

i=0

〠
N−1

j=0

1

1 + i − jð Þ2
· P i, jð Þ, ð8Þ

where Pði, jÞ denotes element i, j of GLCM; N is the number
of gray levels in the image; and i, j demonstrates the number
of rows and columns in the image.

The neutrosophic image homogeneity is defined as the
summation of the homogeneities of three sets T , I, and F.
The basic equations to transform images from the pixel
domain to the neutrosophic domain are calculated as follows:

NSHomogeneity = HOM Tð Þ +HOM Ið Þ + HOM Fð Þ,

HOM Tð Þ = 〠
N−1

i=0

〠
N−1

j=0

1

1 + i − jð Þ2
· PT i, jð Þ,

HOM Ið Þ = 〠
N−1

i=0

〠
N−1

j=0

1

1 + i − jð Þ2
· PI i, jð Þ,

HOM Fð Þ = 〠
N−1

i=0

〠
N−1

j=0

1

1 + i − jð Þ2
· PF i, jð Þ:

ð9Þ

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4: Samples from each class of brain tumors in the neutrosophic domain: (a) original image (benign), (b) T domain of benign image, (c)
F domain of benign image, (d) I domain of benign image, (e) original image (malignant), (f) T domain of malignant image, (g) F domain of
malignant image, and (h) I domain of malignant image.
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(2) Neutrosophic Image Energy.

ENR = 〠
N−1

i=0

〠
N−1

j=0

P i, jð Þ2
� �

,

NSEnergy = ENR Tð Þ + ENR Ið Þ + ENR Fð Þ:

ð10Þ

(3) Neutrosophic Image Entropy.

ENT = − 〠
N−1

i=0

〠
N−1

j=0

P i, jð Þ · log P i, jð Þ½ �,

NSEnergy = ENR Tð Þ + ENR Ið Þ + ENR Fð Þ:

ð11Þ

(4) Neutrosophic Image Contrast.

CON = 〠
N−1

n=0

n2 〠
N−1

i=0

〠
N−1

j=0

P i, jð Þ, n = i − jj j,

NSContrast = CON Tð Þ + CON Ið Þ + CON Fð Þ:

ð12Þ

(5) Neutrosophic Image Symmetry.

SYM = 〠
N−1

i=0

〠
N−1

j=0

P i, jð Þ − P j, ið Þj j,

NSSymmetry = SYM Tð Þ + SYM Ið Þ + SYM Fð Þ:

ð13Þ

(6) Neutrosophic Image Correlation.

COR = 〠
N−1

i=0

〠
N−1

j=0

i, jð Þ · P i, jð Þ − μx · μy

� �

σx · σy
� � ,

NSCorrelation = COR Tð Þ + COR Ið Þ + COR Fð Þ:

ð14Þ

(7) Neutrosophic Image Moment 1.

MOM1 = 〠
N−1

i=0

〠
N−1

j=0

i − jð Þ · P i, jð Þ,

NSMoment1 =MOM1
Tð Þ +MOM1

Ið Þ +MOM1
Fð Þ:

ð15Þ

(a) (b)

LHLL

HHHL

(c) (d)

Figure 6: Samples from brain tumors: (a) preprocessed image, (b) image in NS domain (T image), (c) Slantlet transform image, and (d)
extracted feature vector.

H(z)H(z2) H(z)F(z2) z–2F(z)

4444

F(z)

(a)

H2(z) F2(z) G1(z) z–3G1(1/z)

4444

(b)

Figure 5: The two-scale iterated D2 filter bank (a) and two-scale SLT filter bank (b) [40].
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(8) Neutrosophic Image Moment 2.

MOM2 = 〠
N−1

i=0

〠
N−1

j=0

i − jð Þ2 · P i, jð Þ,

NSMoment2 =MOM2
Tð Þ +MOM2

Ið Þ +MOM2
Fð Þ:

ð16Þ

(9) Neutrosophic Image Moment 3.

MOM3 = 〠
N−1

i=0

〠
N−1

j=0

i − jð Þ3 · P i, jð Þ,

NSMoment3 =MOM3
Tð Þ +MOM3

Ið Þ +MOM3
Fð Þ:

ð17Þ

(10) Neutrosophic Image Moment 4.

MOM4 = 〠
N−1

i=0

〠
N−1

j=0

i − jð Þ4 · P i, jð Þ,

NSMoment4 =MOM4
Tð Þ +MOM4

Ið Þ +MOM4
Fð Þ:

ð18Þ

2.5.2. Gray Level Run Length Matrix (GLRLM). The concept,
GRLM, is based on the reality that many neighboring pixels
with the same gray level are characterized by coarse texture
features [42, 44, 45, 47]. For a given image, GLRLM Pði, jÞ
is calculated by representing the total runs of pixels having
gray level i and run length j in a particular direction. Textural
features are calculated from a set of components used to
explore the essence of the textures of the image. Many
numerical texture measurements can be calculated from the
original run-length matrix Pði, jÞ. At the end, eight original
features of run length statistics for the neutrosophic domain
are derived (Table 1).

(1) Neutrosophic Image Short Run Emphasis (SRE).

SRE =
1

Nr

〠
M−1

i=0

〠
N−1

j=0

P i, jð Þ

j2
, ð19Þ

where Pði, jÞ denotes the number of runs of pixels that have
gray level i and length group j; Nr is the total number of runs
in the image; M is the number of gray levels (bins); and N is
the number of run lengths (bins):

NSSRE = SRE Tð Þ + SRE Ið Þ + SRE Fð Þ: ð20Þ

(2) Neutrosophic Image Long Run Emphasis (LRE).

LRE =
1

Nr

〠
M−1

i=0

〠
N−1

j=0

P i, jð Þ · j2,

NSLRE = LRE Tð Þ + LRE Ið Þ + LRE Fð Þ:

ð21Þ

(3) Neutrosophic Image Gray Level Nonuniformity (GLN).

GLN =
1

Nr

〠
M−1

I=0

〠
N−1

J=0

P i, jð Þ

 !2

,

NSGLN = GLN Tð Þ + GLN Ið Þ + GLN Fð Þ:

ð22Þ

(4) Neutrosophic Image Run Percentage (RP).

RP =
Nr

Np

, ð23Þ

where Np is the total number of pixels in the image:

NSRP = RP Tð Þ + RP Ið Þ + RP Fð Þ: ð24Þ

(5) Neutrosophic Image Run Length Nonuniformity (RLN).

RLN =
1

Nr

〠
N−1

j=0

〠
M−1

i=0

P i, jð Þ

 !2

,

NSRLN = RLN Tð Þ + RLN Ið Þ + RLN Fð Þ:

ð25Þ

(6) Neutrosophic Image Low Gray Level Run Emphasis
(LGRE).

LGRE =
1

Nr

〠
M−1

i=0

〠
N−1

j=0

P i, jð Þ

i2
,

NSLGRE = LGRE Tð Þ + LGRE Ið Þ + LGRE Fð Þ:

ð26Þ

(7) Neutrosophic Image High Gray Level Run Emphasis
(HGRE).

HGRE =
1

Nr

〠
M−1

i=0

〠
N−1

j=0

P i, jð Þ · i2,

NSHGRE = HGRE Tð Þ + HGRE Ið Þ + HGRE Fð Þ:

ð27Þ

Table 1: Statistical textural features extracted from dataset.

Technique Textural features
No. of extracted

features

GLCM
Homogeneity, energy, entropy, symmetry, contrast, correlation, moment 1, moment 2, moment 3, moment

4
10

CLRLM
Short run emphasis, long run emphasis, gray level nonuniformity, run percentage, run length

nonuniformity, low gray level run emphasis, high gray level run emphasis
8

GLDS Angular second moment, contrast, mean, entropy 4
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2.5.3. Gray Level Difference Statistics (GLDS). The GLDS
emphasizes the histogram of the absolute differences in the
gray level between the two pixels that are separated by a dis-
placement vector to calculate the tumor region’s texture
coarseness [49]. Let d = ðdx, dyÞ be the displacement vector
between two image pixels and gðdÞ the gray level difference
at distance ðdÞ:

g dð Þ = f i, jð Þ − f i + dx, j + dyð Þj j: ð28Þ

Pgðg, dÞ is the histogram of the gray level differences at

the specific distance ðdÞ. One distinct histogram exists for
each distance d. The following four statistical features were
derived from the histogram of gray level differences in the
neutrosophic domain (Table 1).

(1) Neutrosophic Image Angular Second Moment.

ASM = 〠
M

i=1

Pg gi, dð Þ
� �2

,

NSMEN = ASM Tð Þ + ASM Ið Þ + ASM Fð Þ:

ð29Þ

(2) Neutrosophic Image Contrast.

CON = 〠
M

i=1

g2i Pg gi, dð Þ,

NSMEN = CON Tð Þ + CON Ið Þ + CON Fð Þ:

ð30Þ

(3) Neutrosophic Image Mean.

MEN = 〠
M

i=1

giPg gi, dð Þ,

NSMEN =MEN Tð Þ +MEN Ið Þ +MEN Fð Þ:

ð31Þ

(4) Neutrosophic Image Entropy.

ENT = −〠
M

i=1

Pg gi, dð Þ · ln Pg gi, dð Þ,

NSENT = ENT Tð Þ + ENT Ið Þ + ENT Fð Þ:

ð32Þ

2.6. Feature Selection. The large number of texture features
causes difficulty in ranking, prolongs computational time,
and involves more memory space. Thus, the selection of fea-
tures was regarded as part of the design of the proposed sys-
tem. In our paper, the analysis of variance (ANOVA)
technique was used to reduce the dimension of data based
on its significance and variance and avoid losing too much
information (Table 2). ANOVA is a powerful tool for deter-
mining if two or more sets of data have a statistically signifi-
cant difference [50]. A normalization process on the input
feature set was performed as part of data preparation prior
to applying the ANOVA method.

2.7. Classification of Brain Tumors. Classification is a
machine learning technique in which training data are used
for building models and the model is used to predict new data
[9, 16, 21, 51, 52]. In order to evaluate algorithm perfor-
mance, the developed model is evaluated using testing data.
Classification includes a wide range of decision-making
approaches that are used in the CAD system [4]. Pixel-
based image classification techniques analyze the numerical
properties of selected image feature vectors and organize data
into categories. In this study, four different classification
techniques have been used, namely, DT-NN, SVM-NN,
KNN-NN, and NB-NN, as classifiers to classify brain tumors.

3. Experimental Results and Discussions

All experiments were conducted in MATLAB using brain
tumor images described in Section 2.1. Four pattern recogni-
tion neural network classifiers have been used. In addition,
several statistical features such as GLDS, GLRLM, and
GLCM (Table 1) were derived from different proposed sce-
narios (NS, SLT, and composite NS-SLT). The entire dataset
was divided into training and testing sets with the ratio of
80 : 20 percent with the 10-fold cross-validation procedure.
Performances of the three various scenarios were analyzed
through a number of different measures [53, 54]. Further,
performance evaluation accuracy of the statistical prediction
system can also be done by calculating and analyzing the
ROC curve. The ROC curve is a plot of the true-positive rate
(sensitivity) versus the false-positive rate (1-specificity) for
different thresholds over the entire range of each classifier
output values. In contrast with the classification accuracies

Table 2: Comparison results of selected features with ANOVA from NS, SLT, and composite (NS-SLT).

Techniques No. features
Feature selection method (ANOVA)

Scenario 1 (NS) Scenario 2 (SLT) Scenario 3 (NS-SLT)
No. features P value No. features P value No. features P value

GLDS 4 2 3:43E − 08 2 5:54E − 06 2 4:27E − 58

GLRLM 8 3 1:43E − 53 3 2:87E − 33 3 3:12E − 44

GLCM 10 4 2:05E − 56 4 1:36E − 20 2 9:50E − 10

Fusion of GLRLM and GLDS 12 6 1:07E − 46 5 1:36E − 20 5 6:61E − 38

Fusion of GLCM and GLDS 14 7 4:31E − 31 5 4:51E − 24 6 9:15E − 04

Fusion of GLCM and GLRLM 18 9 1:74E − 53 8 1:36E − 20 5 9:50E − 10

Fusion of GLCM, GLRLM and GLDS 22 10 4:81E − 49 10 7:19E − 11 7 3:46E − 05
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Figure 7: Continued.
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obtained from truth tables, ROC analysis is independent of
class distribution or error costs.

All results were first analyzed using boxplot diagrams
that provided an overview of statistical values and distribu-
tions of benign and malignant brain tumors, as shown in
Figure 7. Comparing sample medians regarding GLRLM-
SRE (Figures 7(j)–7(l)), GLCM energy (Figures 7(p)–7(r)),
and GLCM symmetry features (Figures 7(s)–7(u)), it is

clearly visible that composite NS-SLT followed by texture
feature extraction methods was significantly better compared
to NS and SLT methods individually. Also, GLRLM-GLNU
(Figures 7(g)–7(i)) and GLRLM-RP (Figures 7(m)–7(o)) fea-
tures using both composite NS-SLT and SLT methods
showed better performance than the NS-based texture
method; however, GLDS-ASM and GLDS mean features
(Figures 7(a)–7(f)) yield poor results, because an overlap of

LGG HGG

0.4

0.6

0.8

1

(m)

LGG HGG

0.02

0.04

0.06

0.08

(n)

LGG HGG

0.4

0.6

0.8

1

0.2

(o)

LGG HGG

0.8

0.9

1

(p)

LGG HGG

0.4

0.6

0.8

1

(q)

LGG HGG
0.2

0.3

0.4

0.5

0.6

(r)

LGG HGG
0.4

0.6

0.8

1

(s)

LGG HGG

0.4

0.6

0.8

1

(t)

LGG HGG

0

0.05

0.1

(u)

Figure 7: Boxplots of benign andmalignant tumors: GLDS-ASM feature using (a) NS, (b) SLT, and (c) NS-SLT; GLDSmean feature using (d)
NS, (e) SLT, and (f) NS-SLT; GLRLM-GLNU feature using (g) NS, (h) SLT, and (i) NS-SLT; GLRLM-SRE feature using (j) NS, (k) SLT, and (l)
NS-SLT; GLRLM-RP feature using (m) NS, (n) SLT, and (o) NS-SLT; GLCM energy feature using (p) NS, (q) SLT, and (r) NS-SLT; and
GLCM symmetry feature using (s) NS, (t) SLT, and (u) NS-SLT.
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statistical features was observed between benign and malig-
nant brain tumor categories in all scenarios. As a result, the
composite NS-SLT method has an effective ability for brain
tumor classification in comparison to other implemented
techniques.

For each scenario, a different composition of each group
of statistical and textural features was made. Table 2 presents
the performance of each scenario followed by various pattern
recognition classifiers (after applying ANOVA), starting by
deriving each group (GLDS, GLRLM, and GLCM) features

Table 3: Classification results obtained by GLDS, GLRLM, and GLCM features with various classifiers from NS, SLT, and composite NS-SLT
methods, respectively. The highlighted accuracy in bold indicates the best classification result.

Features Classifier methods Techniques
Performance metrics

Accuracy (%) Precision Sensitivity Specificity AUC

GLDS

DT-NN

NS 85:61 ± 2:83 0:8 ± 0:100 0:68 ± 0:07 0:91 ± 0:03 0:81 ± 0:06

SLT 71:40 ± 4:20 0:51 ± 0:09 0:48 ± 0:18 0:81 ± 0:06 0:70 ± 0:08

NS-SLT 80:44 ± 5:35 0:67 ± 0:13 0:68 ± 0:16 0:85 ± 0:04 0:83 ± 0:06

SVM-NN

NS 83:17 ± 3:22 0:97 ± 0:02 0:37 ± 0:12 1:00 ± 000 0:85 ± 0:10

SLT 73:76 ± 1:76 0:72 ± 0:02 0:24 ± 0:05 0:94 ± 0:01 0:81 ± 0:01

NS-SLT 81:18 ± 0:70 0:90 ± 0:03 0:41 ± 0:02 0:97 ± 0:01 0:85 ± 0:01

KNN-NN

NS 87:70 ± 3:22 0:77 ± 0:05 0:79 ± 0:12 0:90 ± 0:02 0:85 ± 0:05

SLT 74:53 ± 2:74 0:55 ± 0:08 0:59 ± 0:09 0:81 ± 0:02 0:69 ± 0:04

NS-SLT 82:76 ± 2:15 0:74 ± 0:05 0:65 ± 0:05 0:90 ± 0:02 0:77 ± 0:03

NB-NN

NS 76:08 ± 1:52 0:56 ± 0:12 0:36 ± 0:04 0:90 ± 0:01 0:72 ± 0:02

SLT 74:15 ± 1:42 0:62 ± 0:11 0:35 ± 0:03 0:90 ± 0:01 0:81 ± 0:01

NS-SLT 91:41 ± 1:74 0:93 ± 000 0:77 ± 0:04 0:97 ± 0:01 0:91 ± 0:02

GLRLM

DT-NN

NS 92:29 ± 2:29 0:87 ± 0:10 0:85 ± 0:06 0:94 ± 0:05 0:90 ± 0:05

SLT 98:57 ± 0:71 0:97 ± 0:02 0:97 ± 0:01 0:99 ± 0:00 0:98 ± 0:00

NS-SLT 98:59 ± 0:70 0:97 ± 0:02 0:97 ± 0:01 0:99 ± 0:00 0:98 ± 0:01

SVM-NN

NS 89:84 ± 1:36 0:98 ± 0:01 0:62 ± 0:01 0:99 ± 0:00 0:98 ± 0:00

SLT 90:13 ± 0:80 0:91 ± 0:03 0:71 ± 0:01 0:96 ± 0:01 0:89 ± 0:03

NS-SLT 98:94 ± 0:02 0:96 ± 0:00 1:00 ± 0:00 0:98 ± 0:00 0:99 ± 0:00

KNN-NN

NS 96:49 ± 1:04 0:96 ± 0:03 0:90 ± 0:05 0:98 ± 0:01 0:94 ± 0:03

SLT 98:22 ± 0:04 0:95 ± 0:02 0:98 ± 0:01 0:98 ± 0:00 0:98 ± 0:01

NS-SLT 98:23 ± 0:38 0:96 ± 0:01 0:97 ± 0:01 0:98 ± 0:00 0:98 ± 0:00

NB-NN

NS 83:89 ± 2:81 0:78 ± 0:15 0:62 ± 0:06 0:91 ± 0:02 0:87 ± 0:01

SLT 90:53 ± 3:16 0:88 ± 0:03 0:75 ± 0:12 0:96 ± 0:01 0:94 ± 0:02

NS-SLT 98:58 ± 0:36 0:95 ± 0:01 1:00 ± 0:00 0:98 ± 0:00 0:98 ± 0:01

GLCM

DT-NN

NS 94:75 ± 1:60 0:92 ± 0:03 0:88 ± 0:04 0:97 ± 0:01 0:95 ± 0:02

SLT 89:16 ± 2:09 0:78 ± 0:08 0:85 ± 0:10 0:90 ± 0:02 0:90 ± 0:05

NS-SLT 96:10 ± 2:11 0:94 ± 0:02 0:93 ± 0:04 0:97 ± 0:02 0:95 ± 0:01

SVM-NN

NS 93:37 ± 0:00 0:93 ± 0:00 0:80 ± 0:00 0:98 ± 0:00 0:98 ± 0:01

SLT 90:53 ± 2:52 0:98 ± 0:01 0:65 ± 0:10 0:99 ± 0:00 0:97 ± 0:00

NS-SLT 97:63 ± 0:36 0:97 ± 0:01 0:94 ± 0:01 0:98 ± 0:00 0:95 ± 0:01

KNN-NN

NS 91:21 ± 3:54 0:86 ± 0:13 0:82 ± 0:08 0:94 ± 0:03 0:88 ± 0:03

SLT 81:45 ± 1:77 0:78 ± 0:10 0:47 ± 0:07 0:93 ± 0:01 0:70 ± 0:03

NS-SLT 97:65 ± 0:38 0:96 ± 0:00 0:95 ± 0:01 0:98 ± 0:00 0:97 ± 0:00

NB-NN

NS 93:71 ± 1:39 0:90 ± 0:03 0:87 ± 0:05 0:96 ± 0:01 0:97 ± 0:01

SLT 87:00 ± 2:48 0:81 ± 0:06 0:70 ± 0:04 0:92 ± 0:02 0:95 ± 0:00

NS-SLT 95:29 ± 2:73 0:96 ± 0:00 0:88 ± 0:10 0:98 ± 0:00 0:94 ± 0:11
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individually to see which group performs better in the classi-
fication stage with the minimum number of features. The
performance metrics of NS, SLT, and composite NS-SLT sce-

narios for each of the proposed individual category of tex-
tural feature extraction corresponding to each scenario are
shown in Table 3 and Figure 8. The GLRLM features derived

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4
False positive rate (FPR)

0.6 0.8 1

T
ru

e 
p

o
si

ti
ve

 r
at

e 
(T

P
R

)

DT-NN classi�er
SVM-NN classi�er
KNN-NN classi�er
NB-NN classi�er

(a)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4
False positive rate (FPR)

0.6 0.8 1

T
ru

e 
p

o
si

ti
ve

 r
at

e 
(T

P
R

)
DT-NN classi�er
SVM-NN classi�er
KNN-NN classi�er
NB-NN classi�er

(b)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4
False positive rate (FPR)

0.6 0.8 1

T
ru

e 
p

o
si

ti
ve

 r
at

e 
(T

P
R

)

DT-NN classi�er
SVM-NN classi�er
KNN-NN classi�er
NB-NN classi�er

(c)

0.2

0.4

0.6

0.8

1

0 0.2 0.4
False positive rate (FPR)

0.6 0.8 1

T
ru

e 
p

o
si

ti
ve

 r
at

e 
(T

P
R

)

DT-NN classi�er
SVM-NN classi�er
KNN-NN classi�er
NB-NN classi�er

0

(d)

0.2

0.4

0.6

0.8

1

0 0.2 0.4
False positive rate (FPR)

0.6 0.8 1

T
ru

e 
p

o
si

ti
ve

 r
at

e 
(T

P
R

)

DT-NN classi�er
SVM-NN classi�er
KNN-NN classi�er
NB-NN classi�er

0

(e)

0.2

0.4

0.6

0.8

1

0 0.2 0.4
False positive rate (FPR)

0.6 0.8 1
T

ru
e 

p
o

si
ti

ve
 r

at
e 

(T
P

R
)

DT-NN classi�er
SVM-NN classi�er
KNN-NN classi�er
NB-NN classi�er

0

(f)

DT-NN classi�er
SVM-NN classi�er
KNN-NN classi�er
NB-NN classi�er

0.2

0.4

0.6

0.8

1

0 0.2 0.4
False positive rate (FPR)

0.6 0.8 1

T
ru

e 
p

o
si

ti
ve

 r
at

e 
(T

P
R

)

0

(g)

DT-NN classi�er
SVM-NN classi�er
KNN-NN classi�er
NB-NN classi�er

0.2

0.4

0.6

0.8

1

0 0.2 0.4
False positive rate (FPR)

0.6 0.8 1

T
ru

e 
p

o
si

ti
ve

 r
at

e 
(T

P
R

)

0

(h)

DT-NN classi�er
SVM-NN classi�er
KNN-NN classi�er
NB-NN classi�er

0.2

0.4

0.6

0.8

1

0 0.2 0.4
False positive rate (FPR)

0.6 0.8 1

T
ru

e 
p

o
si

ti
ve

 r
at

e 
(T

P
R

)

0

(i)

Figure 8: Comparison of ROC curves for GLDS, GLRLM, and GLCM features with various classifiers: ROC curve for GLDS features using (a)
NS, (b) SLT, and (c) NS-SLT; ROC curve for GLRLM features using (d) NS, (e) SLT, and (f) NS-SLT; and ROC curve for GLCM features using
(g) NS, (h) SLT, and (i) NS-SLT.
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Table 4: Classification results obtained by different combinations of GLDS, GLRLM, and GLCM features with various classifiers from NS,
SLT, and composite NS-SLT methods, respectively. The accuracy in bold indicates the best classification result.

Features Classifier methods Techniques
Performance metrics

Accuracy (%) Precision Sensitivity Specificity AUC

GLDS+GLRLM

DT-NN

NS 86:68 ± 4:95 0:76 ± 0:11 0:77 ± 0:08 0:90 ± 0:05 0:87 ± 0:06

SLT 98:59 ± 0:35 0:97 ± 0:01 0:97 ± 0:00 0:99 ± 0:00 0:98 ± 0:00

NS-SLT 98:23 ± 0:71 0:97 ± 0:02 0:97 ± 0:01 0:98 ± 0:00 0:98 ± 0:00

SVM-NN

NS 84:23 ± 0:35 1:00 ± 0:00 0:40 ± 0:01 1:00 ± 0:00 0:99 ± 0:00

SLT 90:55 ± 0:06 0:93 ± 0:04 0:69 ± 0:00 0:98 ± 0:00 0:94 ± 0:01

NS-SLT 98:92 ± 0:03 0:97 ± 0:00 1:00 ± 0:00 0:98 ± 0:00 0:99 ± 0:00

KNN-NN

NS 92:30 ± 1:78 0:91 ± 0:03 0:80 ± 0:05 0:96 ± 0:01 0:92 ± 0:02

SLT 90:89 ± 2:06 0:85 ± 0:03 0:81 ± 0:06 0:94 ± 0:01 0:87 ± 0:03

NS-SLT 97:88 ± 0:39 0:95 ± 0:00 0:97 ± 0:00 0:98 ± 0:00 0:97 ± 0:00

NB-NN

NS 76:92 ± 1:73 0:59 ± 0:13 0:44 ± 0:04 0:88 ± 0:02 0:80 ± 0:02

SLT 90:17 ± 1:77 0:84 ± 0:04 0:78 ± 0:02 0:94 ± 0:01 0:92 ± 0:01

NS-SLT 98:57 ± 0:39 0:96 ± 0:00 1:00 ± 0:00 0:98 ± 0:00 0:98 ± 0:00

GLDS+GLCM

DT-NN

NS 83:14 ± 3:80 0:71 ± 0:07 0:64 ± 0:07 0:89 ± 0:04 0:80 ± 0:05

SLT 85:61 ± 3:52 0:73 ± 0:08 0:76 ± 0:07 0:89 ± 0:02 0:86 ± 0:07

NS-SLT 96:04 ± 2:08 0:94 ± 0:04 0:92 ± 0:06 0:97 ± 0:01 0:96 ± 0:01

SVM-NN

NS 83:17 ± 0:00 0:97 ± 0:00 0:37 ± 0:00 0:99 ± 0:00 0:85 ± 0:01

SLT 91:92 ± 1:40 0:97 ± 0:01 0:71 ± 0:05 0:99 ± 0:00 0:97 ± 0:00

NS-SLT 97:64 ± 0:39 0:97 ± 0:00 0:94 ± 0:01 0:98 ± 0:00 0:95 ± 0:02

KNN-NN

NS 75:06 ± 2:47 0:54 ± 0:07 0:42 ± 0:08 0:86 ± 0:03 0:64 ± 0:04

SLT 82:84 ± 2:45 0:77 ± 0:12 0:53 ± 0:04 0:93 ± 0:03 0:73 ± 0:02

NS-SLT 96:86 ± 1:41 0:96 ± 0:02 0:93 ± 0:04 0:98 ± 0:00 0:95 ± 0:02

NB-NN

NS 79:29 ± 1:42 0:62 ± 0:08 0:51 ± 0:04 0:89 ± 0:02 0:83 ± 0:01

SLT 90:54 ± 1:72 0:87 ± 0:05 0:77 ± 0:03 0:95 ± 0:02 0:96 ± 0:00

NS-SLT 97:63 ± 1:74 0:97 ± 0:00 0:94 ± 0:02 0:98 ± 0:00 0:98 ± 0:01

GLRLM+GLCM

DT-NN

NS 81:45 ± 6:72 0:66 ± 0:15 0:68 ± 0:14 0:86 ± 0:05 0:81 ± 0:08

SLT 98:58 ± 0:36 0:97 ± 0:01 0:97 ± 0:00 0:99 ± 0:00 0:98 ± 0:00

NS-SLT 98:59 ± 1:39 0:98 ± 0:01 0:95 ± 0:03 0:99 ± 0:00 0:99 ± 0:00

SVM-NN

NS 90:54 ± 1:81 0:96 ± 0:00 0:66 ± 0:07 0:99 ± 0:00 0:98 ± 0:00

SLT 93:31 ± 1:07 0:93 ± 0:02 0:79 ± 0:04 0:98 ± 0:00 0:98 ± 0:00

NS-SLT 98:60 ± 0:72 0:96 ± 0:02 0:98 ± 0:00 0:98 ± 0:00 0:99 ± 0:00

KNN-NN

NS 83:87 ± 1:81 0:74 ± 0:09 0:61 ± 0:03 0:91 ± 0:02 0:72 ± 0:02

SLT 83:84 ± 1:07 0:78 ± 0:07 0:57 ± 0:04 0:93 ± 0:01 0:75 ± 0:01

NS-SLT 97:90 ± 0:37 0:95 ± 0:00 0:97 ± 0:01 0:98 ± 0:00 0:97 ± 0:00

NB-NN

NS 81:76 ± 1:46 0:68 ± 0:04 0:64 ± 0:04 0:88 ± 0:01 0:84 ± 0:00

SLT 92:29 ± 1:41 0:87 ± 0:04 0:84 ± 0:04 0:95 ± 0:01 0:96 ± 0:01

NS-SLT 97:89 ± 1:04 0:95 ± 0:01 0:97 ± 0:01 0:98 ± 0:00 0:97 ± 0:02

GLDS+GLRLM+GLCM

DT-NN

NS 86:34 ± 6:71 0:79 ± 0:14 0:7 ± 0:16 0:91 ± 0:05 0:85 ± 0:04

SLT 95:07 ± 3:15 0:93 ± 0:05 0:86 ± 0:08 0:98 ± 0:01 0:95 ± 0:04

NS-SLT 98:22 ± 0:72 0:98 ± 0:00 0:94 ± 0:03 0:99 ± 0:00 0:99 ± 0:00

SVM-NN

NS 95:77 ± 1:07 0:98 ± 0:00 0:85 ± 0:04 0:99 ± 0:00 0:94 ± 0:00

SLT 95:43 ± 0:72 0:95 ± 0:01 0:86 ± 0:03 0:98 ± 0:00 0:99 ± 0:00

NS-SLT 98:23 ± 0:73 0:95 ± 0:02 0:98 ± 0:00 0:98 ± 0:00 0:98 ± 0:00

KNN-NN

NS 82:82 ± 2:81 0:71 ± 0:09 0:60 ± 0:09 0:91 ± 0:03 0:75 ± 0:04

SLT 92:61 ± 1:82 0:94 ± 0:04 0:77 ± 0:06 0:98 ± 0:01 0:87 ± 0:03

NS-SLT 97:89 ± 0:37 0:95 ± 0:01 0:97 ± 0:00 0:98 ± 0:00 0:97 ± 0:00

NB-NN

NS 81:71 ± 3:16 0:65 ± 0:11 0:59 ± 0:04 0:89 ± 0:02 0:90 ± 0:01

SLT 86:33 ± 8:42 0:85 ± 0:11 0:73 ± 0:13 0:90 ± 0:08 0:91 ± 0:05

NS-SLT 97:52 ± 1:07 0:93 ± 0:02 0:98 ± 0:00 0:97 ± 0:01 0:96 ± 0:02
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Figure 9: Continued.
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by composite NS-SLT recorded the highest average classifica-
tion accuracy rate with SVM-NN classifier 98.94% and an
AUC of 0.99. As with all classifiers, GLRLM and GLCM fea-
tures derived from composite NS-SLT achieved excellent
average classification accuracy except for the GLDS features
which achieved the lowest average classification results with
KNN-NN and DT-NN classifiers, respectively.

This part of the results is concerned with showing the
effect of combining texture features which are derived from
NS, SLT, and composite NS-SLT techniques. The experimen-
tal results and comparison of ROC curves on fusion of tex-
ture features were mentioned in Table 4 and Figure 9. It
was noticed that the classification performance using com-
posite scenario yielded excellent results which go beyond
NS or SLT techniques alone; also, the better precision and
sensitivity parameters are achieved in most of the cases.

In all three scenarios, we also concluded that GLRLM fea-
tures alone derived from the composite method gives supe-

rior results of 98.94% accuracy and an AUC of 0.99 with
the SVM-NN classifier and by employing fewer number of
features (only three features) whereas combining the GLRLM
and GLDS together attains a highest prediction accuracy of
98.92% with an AUC of 0.99 whereas the classification accu-
racy of fused GLCM and GLDS features derived from NS was
the lowest scoring 75.06% with an AUC of 0.64 with the
KNN-NN classifier. Also, it is noticed that employing com-
posite NS-SLT, NS, and SLT along with combining all the
statistical texture features increases the overall accuracy in
the case of the SVM-NN classifier but with the cost of
employing 7, 10, and 10 features, respectively, and hence
increasing system complexity.

As a result of the comparison made between the pro-
posed composite NS-SLT with NS and SLT methods, the
GLRLM features derived from composite NS-SLT achieved
best results, with a total average accuracy of 98.59% for all
classifiers as shown in Figure 10 and the overall classification
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Figure 9: Comparison of ROC curves for different combinations of GLDS, GLRLM, and GLCM features with various classifiers: ROC curve
for fusion of GLDS and GLRLM features using (a) NS, (b) SLT, and (c) NS-SLT; ROC curve for fusion of GLDS and GLCM features using (d)
NS, (e) SLT, and (f) NS-SLT; ROC curve for fusion of GLRLM and GLCM features using (g) NS, (h) SLT, and (i) NS-SLT; and ROC curve for
fusion of GLDS, GLRLM, and GLCM features using (j) NS, (k) SLT, and (l) NS-SLT.
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Figure 10: Comparison of average accuracies for individual and combined statistical features derived from SLT-NS, SLT, and NS.
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accuracies for the seven experiments conducted using com-
posite NS-SLT which have been summarized in Table 5.
Considering the obtained results, it is obvious that the pro-
posed composite scenario outperforms others in both indi-
vidual and combined statistical and textural features with
various classifiers especially in the case of GLRLM features
(Figure 11(a)). Moreover, in the proposed system, the error
rate is less than 1.06%, 1.41%, 1.42%, and 1.77% with SVM-
NN, DT-NN, NB-NN, and KNN-NN classifiers, respectively,
as it is shown in Figure 11(b).

Finally, the performance of the proposed composite sys-
tem is also compared with some existing state-of-the-art sys-
tems which used the same dataset and computing
environment as shown in Table 6. The suggested system pro-
vides a promising result especially in terms of average classi-
fication accuracy when compared to existing methods. This is
due to the integration carried out between SLT and neutroso-

phy which leads to gaining their advantages. However, the
other researchers used some huge number of features while
in the proposed system, only 3 features have been used with
best performance results achieved.

From the above results, it is clear that the proposed sys-
tem can successfully discriminate the tumor malignancy,
which might help the doctors to make up a clear diagnosis
based on their clinical expertise as well as the proposed tool
as a second opinion.

4. Conclusion

Brain tumor MR image classification is a sophisticated pro-
cess due to the variance and nonhomogeneity of tumors.
Hence, the early identification of the tumor category (benign
or malignant) is a critical issue that might save the life of
patients. In this work, we have presented a novel automated

Table 5: Classification results for individual and combined texture features derived from SLT in the neutrosophic domain (composite NS-
SLT). The accuracies in bold indicate the best classification result.

Statistical features
Classifier method

DT-NN (%) SVM-NN (%) KNN-NN (%) NB-NN (%) Average accuracy (%)

GLDS 80.44 81.18 82.76 91.41 83.95

GLRLM 98.59 98.94 98.23 98.58 98.59

GLCM 96.10 97.63 97.65 95.29 96.67

Fusion of GLRLM and GLDS 98.23 98.92 97.88 98.57 98.40

Fusion of GLCM and GLDS 96.04 97.64 96.86 97.63 97.04

Fusion of GLCM and GLRLM 98.59 98.60 97.90 97.89 98.25

Fusion of GLCM, GLRLM, and GLDS 98.22 98.23 97.89 97.52 97.97

99.30

99.60

99.90

98.40

98.10

97.80

97.50
DT-NN

Accuracy (%) 98.59 98.94 98.23 98.58
SVM-NN KNN-NN NB-NN

98.70

99.00

(a)

1.80%

1.60%

1.40%

1.20%

1.00%

0.80%

0.60%

0.40%

0.20%

0.00%

Error (%)
DT-NN
1.41% 1.06% 1.77% 1.42%

SVM-NN KNN-NN NB-NN

(b)

Figure 11: Performance of the proposed composite NS-SLT system with various classifiers: (a) accuracy and (b) error.

Table 6: Comparison of proposed classification accuracy with recent techniques.

Author Year
Techniques used on the same BraTS17 dataset

Classification accuracy (%)
Feature extraction Classifier

Banerjee et al. [10] 2017 ConvNet model DCNN 97.19

Cho et al. [51] 2018 Radiomic approach (ISZM, GLCM, SFB, and HBF) Logistic, SVM, and RF 92.92

Sharif et al. [9] 2019
Scattering transform, wavelet transform,

and local Gabor binary pattern
HCS-DBN 94.50

Raju et al. [55] 2019 SFTA and LBP MSVM 96.90

Proposed work GLRLM—composite NS-SLT
SVM-NN, DT-NN,

KNN-NN, and NB-NN
98.94
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brain tumor intelligent screening system using composite
NS-SLT features extracted from the MR images. Based on
research results and discussions, it is obviously concluded
that the GLRLM features derived from composite NS-SLT
are a promising technique to distinguish between malignant
and benign brain tumors accurately on the available dataset.
Our proposed architecture has achieved the highest predic-
tion in terms of overall accuracy by 98.94%, precision of
0.96, sensitivity of 1.00, specificity of 0.98, and an AUC of
0.99 using the SVM-NN classifier (with just three relevant
features) that are comparatively higher as compared with
the state-of-the-art techniques. Furthermore, the recorded
results have shown that our approach also achieves a high
prediction performance of 98.59%, 98.58%, and 98.23% by
using other (DT-NN, NB-NN, and KNN-NN) classifiers,
respectively. In addition, using just three features reduces
the complexity of the computation and enables fast and accu-
rate decisions given to the doctors.
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