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Abstract

Dengue virus (DENV) has emerged as major human pathogen. Despite the serious socio-

economic impact of DENV-associated diseases, antiviral therapy is missing. DENV repli-

cates in the cytoplasm of infected cells and induces a membranous replication organelle,

formed by invaginations of the endoplasmic reticulummembrane and designated vesicle

packets (VPs). Nonstructural protein 1 (NS1) of DENV is a multifunctional protein. It is

secreted from cells to counteract antiviral immune responses, but also critically contributes

to the severe clinical manifestations of dengue. In addition, NS1 is indispensable for viral

RNA replication, but the underlying molecular mechanism remains elusive. In this study, we

employed a combination of genetic, biochemical and imaging approaches to dissect the

determinants in NS1 contributing to its various functions in the viral replication cycle. Several

important observations were made. First, we identified a cluster of amino acid residues in

the exposed region of the β-ladder domain of NS1 that are essential for NS1 secretion. Sec-

ond, we revealed a novel interaction of NS1 with the NS4A-2K-4B cleavage intermediate,

but not with mature NS4A or NS4B. This interaction is required for RNA replication, with two

residues within the connector region of the NS1 “Wing” domain being crucial for binding of

the NS4A-2K-4B precursor. By using a polyprotein expression system allowing the forma-

tion of VPs in the absence of viral RNA replication, we show that the NS1 –NS4A-2K-4B

interaction is not required for VP formation, arguing that the association between these two

proteins plays a more direct role in the RNA amplification process. Third, through analysis of

polyproteins containing deletions in NS1, and employing a trans-complementation assay,

we show that both cis and trans acting elements within NS1 contribute to VP formation, with

the capability of NS1 mutants to form VPs correlating with their capability to support RNA
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replication. In conclusion, these results reveal a direct role of NS1 in VP formation that is

independent from RNA replication, and argue for a critical function of a previously unrecog-

nized NS4A-2K-NS4B precursor specifically interacting with NS1 and promoting viral RNA

replication.

Author summary

Dengue virus (DENV) is one of the most prevalent mosquito-transmitted human patho-

gens. The only licensed vaccine has limited efficacy and an antiviral therapy is not avail-

able. The multifunctional non-structural protein 1 (NS1) of DENV is secreted from

infected cells, counteracts antiviral immune response and contributes to the pathogenesis

of DENV infection. In addition, NS1 is essential for the viral replication cycle but the

underlying mechanism is unknown. Here we determined the viral interactome of NS1

and identified a novel interaction of NS1 with the NS4A-2K-4B cleavage intermediate, but

not with NS4A and NS4B. This interaction is required for RNA replication. Additionally,

we identified a domain in NS1 important for efficient secretion of this protein. Finally, we

demonstrate that NS1 is required for the biogenesis of the membranous DENV replication

organelle. This function does not require RNA replication and is independent from NS1

interaction with NS4A-2K-4B. Our results provide new insights into the role of NS1 in

DENV RNA replication and establish a genetic map of residues in NS1 required for the

diverse functions of this protein. These results should aid in the design of antiviral strate-

gies targeting NS1, with the aim to suppress viral replication as well as severe disease

manifestations.

Introduction

Dengue virus (DENV), the causative agent of dengue fever, is the most prevalent arbovirus

infecting humans worldwide. It is estimated that all four serotypes of DENV combined are

responsible for ~390 million infections annually, leading to ~20,000 deaths [1]. Despite many

efforts, no antiviral therapy against DENV is available to date and the only approved vaccine

has limited efficacy and depends on baseline serostatus of the vaccine recipient [2]. DENV

belongs to the Flavivirus genus in the Flaviviridae family and is a small enveloped virus with a

single-stranded RNA genome of positive polarity and a length of ~10,700 nucleotides. Upon

binding to various attachment factors on the cell surface, DENV enters the cell mainly via cla-

thrin-mediated endocytosis, although other entry routes have been described [3]. Upon fusion

with the endosomal membrane, the viral RNA is released into the cytoplasm and translated in

a cap-dependent manner. The translation product is a polyprotein that is cleaved co- and post-

translationally by viral and cellular proteases into 10 proteins. These are the three structural

proteins capsid (C), envelope (E) and premembrane (prM) and the seven nonstructural pro-

teins NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5. The nonstructural proteins induce mas-

sive remodeling of ER membranes, manifesting as convoluted membranes and vesicle packets

(VPs). While the function of convoluted membranes is still not clear, VPs most likely are the

site of viral RNA replication. Consistently, VPs are clustered ER membrane invaginations with

each vesicle connected to the cytoplasm via a ~11 nm pore [4,5]. Several enzymatic functions

have been identified amongst the nonstructural proteins. These comprise an RNA-dependent

RNA polymerase and a methyltransferase activity for NS5, a serine protease in the amino-
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terminal region of NS3, which requires NS2B as a protease cofactor, and helicase, NTPase and

RNA triphosphatase activities in the carboxy-terminal region of NS3. The functions of the

small transmembrane proteins NS2A, NS4A and NS4B, which are all essential for virus replica-

tion, are much less understood, although they have been proposed to participate in the modifi-

cation of intracellular membranes and organelles [6–9] and in counteracting host immune

response [10–15].

DENV NS1 exerts an amazing array of different functions. On one hand it is required for

RNA replication and assembly/release of virus particles [16–19]; on the other hand NS1 is

secreted from infected cells as lipid-containing hexamer [20]. This extracellular form of NS1

plays a critical role in immune evasion of the complement system and contributes to dengue

pathogenesis, most likely by triggering the release of vasoactive cytokines from immune cells.

These cytokines are thought to induce vascular leakage, which is a hallmark of severe dengue

[21].

NS1 is inserted into the ER lumen via a 24 amino acid residues long signal sequence corre-

sponding to the carboxy-terminus of E. Upon removal of the signal sequence by the host cell

signalase and cleavage by an unknown protease at the NS1-NS2A junction, NS1 rapidly dimer-

izes [22]. The structure of the NS1 dimer is composed of three distinct domains (Fig 1A): first,

a “β-roll” domain (amino acids 1 to 29) composed of two β-hairpins; second, the “Wing”

domain (amino acids 30 to 180) formed by the α/β subdomain (amino acids 38 to 151) and the

connector subdomains (amino acids 30 to 37 and 152 to 180); and third, the central “β-ladder”
domain (amino acids 181 to 352) [23]. The connector subdomain and the β-roll domain create

a hydrophobic surface likely allowing NS1 interaction with the ER membrane [23].

Although many studies confirmed that NS1 is indispensable for viral RNA replication, the

underlying mechanism remains obscure. NS1 colocalizes with dsRNA in infected cells and

clusters closely to VPs, presumably at the ER luminal surface of the VPs [24], or even inside

the vesicles [24,25]. Given this localization and the ability of NS1 to remodel liposomes, NS1

was proposed to participate in the formation or stabilization of membranous viral replication

organelles, possibly by interaction with NS4B and/or NS4A [19,23,26,27]. In addition, multiple

cellular proteins interacting with NS1 have been identified, including ribosomal proteins, sub-

units of the oligosaccharyltransferase and the chaperonin TRiC/CCT complex [28,29], suggest-

ing that functions executed by NS1 are mediated, at least in part, by recruited cellular proteins.

With the aim to decipher the mechanism by which NS1 supports the DENV replication

cycle we have previously performed a genetic screen and identified a set of mutants that are

either impaired in the production of infectious virus particles or RNA replication [17]. While

in this previous study we unraveled how NS1 contributes to virus particle assembly and

release, in the present study we investigated replication-impaired NS1 mutants with respect to

interaction with viral proteins, NS1 secretion and the formation of VPs. We identified a NS1 –

NS4B genetic complementation group and determined the viral NS1 interactome. Moreover,

we identified a novel interaction between NS1 and the NS4A-2K-4B cleavage intermediate and

characterized the role of this interaction for viral RNA replication, NS1 secretion and VP for-

mation. Overall, our results provide a comprehensive map of NS1 determinants required for

the multi-functionality of this protein in the DENV replication cycle and demonstrate the

indispensable role of NS1 in the formation of the viral membranous replication organelle.

Results

A forward genetic screen identifies a NS1 –NS4B complementation group

With the aim to establish a genetic complementation map of DENV NS1 that might inform

about its viral interaction partners, we took advantage of 18 alanine substitutions in NS1 that
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Fig 1. A forward genetic screen identifies pseudoreversions in NS4A and NS4B compensating replication-inactivating mutations in NS1. (A) Homology
model of the NS1 dimer based on the DENVNS1 structure (PDB 4O6B) with missing residues modelled according to the ZIKV NS1 structure (PDB 5K6K). The
model was built using the MOE 2015 software package and molecular graphics were prepared with UCSF Chimera [66].Wing, β-ladder and β-roll domains are
shown in blue, turquoise and orange, respectively. The connector subdomains inWing domain are shown in dark blue. The membrane is indicated with a
horizontal line. (B) Left panel: schematic of the experimental approach used to select for pseudoreversions rescuing replication of NS1 mutants. Point mutations in
NS1 were inserted into a selectable subgenomic DENV replicon (sgDVH2A) encoding a hygromycin phosphotransferase gene (HygroR) downstream of by the
cyclisation sequence residing in the capsid-coding region (CS) and upstream of the 2A protease of Thosea asigna virus (2AP) and the signal sequence of NS1
corresponding to the last 24 amino acid residues of E (ET). VeroE6 cells were electroporated with selectable replicon RNAs containing given mutations and
cultured in the presence of hygromycin B. After three to four weeks, single cell clones were propagated; total RNA was extracted and amplified for sequence
analysis. Right panel: number of hygromycin B-resistant cell colonies obtained after selection for each primary mutation in NS1 (indicated at the bottom) with the
color of the bar corresponding to the color of the NS1 domain into which the respective mutation was introduced. (C) Schematic summarizing the localization of
second site mutations in the NS4A-2K-NS4B polyprotein that is drawn according to its hypothetical membrane topology [7,36]. The circle color of primary
mutations in NS1 (lower left) corresponds to pseudoreversions identified for each respective mutant.

https://doi.org/10.1371/journal.ppat.1007736.g001
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severely impair virus replication [17]. We selected for second-site compensatory mutations by

using a selectable subgenomic DENV replicon encoding the hygromycin phosphotransferase

gene (sgDVH2A) (Fig 1B, left panel). Single amino-acid substitutions in NS1 that inhibit RNA

replication were inserted into this replicon and in vitro transcribed RNAs were transfected

into VeroE6 cells cultured in the presence of hygromycin B. After three to four weeks, growth

of well-isolated single cell clones became apparent for mutants Y32A, R62A, D136A, W150A,

Y158A, G161A, W168A, K189A, D197A, W311A, P319A, P320A, E334A and R336A, however

in the case of W150A, W311A, E334A and R336A no viable cell clones were successfully prop-

agated. For mutants W8A, L153A, S252A and T317A a high number of colonies was obtained

and therefore those mutants were excluded from subsequent analyses (Fig 1B, right panel).

To identify second-site mutations, total RNA was extracted from single cell clones and

cDNA fragments spanning the complete non-structural genome region were amplified by

RT-PCR. The PCR products were sequenced, examining at least two independent cell clones

for each mutant (except Y32A, where only one viable cell clone could be isolated). Besides the

D136A and P319A mutations that consistently reverted to wildtype, and D197A that reverted

in one instance, the original NS1 alanine substitution was retained and a second-site mutation

was identified on the same amplicon. The only exception was the W168A mutation for which

no additional mutations were found in the sequenced region (Table 1). Interestingly, the

majority of second-site mutations mapped to the NS4B coding region (Fig 1C), an observation

that is consistent with the proposed role of the NS1—NS4B interaction in the DENV

Table 1. Summary of second-site mutations and their correspondence to primary NS1 mutations.

Original NS1 mutation Original Codon Mutated Codon Selected mutation

protein aa change nt change frequency

Y32A TAC GCC NS2A T115S ACC->TCC 1/1

R62A CGT GCC NS4B S238F TCT->TTT 1/3

NS4B G122R GGG->AGG 1/3

NS4B M172L ATG->TTG 1/3

D136A GAT GCC NS1 A136D† GCC->GAC 4/4

Y158A TAT GCC NS4B E167H CAG->CAT 1/3

NS1 M275L ATG->TTG 1/3

NS4B V219A GTG->GCG 1/3

G161A GGA GCC NS1 D180E GAC->GAA 1/3

NS4B R53K AGA->AAA 1/3

NS4B R248K AGG->AAG 1/3

K189A AAA GCA NS4B S238F TCT->TTT 1/2

NS4B F164L TTT->CTT 1/2

D197A GAT GCC NS4B S228C AGT->TGT 1/3

NS4B Y99H TAC->CAC 1/3

NS1 A197D† GCC->TCC 1/3

P319A CCA GCC NS1 A319P† GCC->CCC 3/3

P320A CCG GCC NS4A I78L ATA->TTA 1/2‡

NS5 A19S GCA->TCA 1/2‡

For each NS1 mutant, one to four cell clones were isolated and derived cDNA was subjected to nucleotide sequence analysis. Frequency indicates in how many of the

analyzed clones the respective mutation was found.
‡, these mutations arose in the same cell clone;
† reversion.

https://doi.org/10.1371/journal.ppat.1007736.t001
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replication cycle [26]. In addition, we detected second-site mutations in NS4A, NS2A and NS5

(Table 1).

With the aim to determine whether those second-site mutations might compensate the rep-

lication defect caused by the respective primary NS1 mutation, we inserted each primary

mutation together with the respective second-site mutation into a full length DENV-2 genome

encoding the Renilla luciferase (RLuc) reporter gene (DVR2A), and measured RLuc activity

upon transfection of in vitro transcribed RNA into VeroE6 cells (Fig 2). Consistent with previ-

ous data [17], all primary NS1 mutants were severely impaired in RNA replication, achieving

at most 1% of the wildtype replication level at 72 h post-transfection (Fig 2). Importantly, the

replication defects of some NS1 mutants was compensated by second-site mutations in NS4B,

while tested mutations in other viral proteins did not rescue replication (Fig 2). Although the

replication fitness of the double mutants was clearly below wildtype level, we observed a partial

restoration in the case of the NS1 mutant R62A by NS4B G122R or M172L or S238F, of the

NS1 mutant Y158A by NS4B E167H or V219A, and of the NS1 mutant K189A by NS4B F164L

or S238F (Fig 2). In addition, a partial rescue of RNA replication was also found in case of the

primary NS1 mutation D197A that was increased by insertion of the pseudoreversion S228C

in NS4B. This genetic map supports the proposed role of the NS1—NS4B interaction in the

DENV replication cycle [26] and suggests that defects caused by alanine substitutions in NS1

can be compensated, at least in part, by second site mutations in NS4B.

Establishment of the viral NS1 interactome

Although our forward genetic approach identified NS4B as primary cooperation partner of

NS1, we hypothesized that NS1 might promote viral RNA replication not only via association

with NS4B, but also via interaction with other DENV proteins. Therefore, we determined the

viral NS1 interactome by using affinity purification followed by liquid chromatography and

tandem mass spectrometry analysis of captured complexes. To this end we took advantage of a

previously reported trans-complementation system [17] allowing functional tagging of NS1 in

the context of viral infection in VeroE6 cells. We adapted this system to Huh7 cells because

these cells are of human origin and have been used extensively by us and others to study the

DENV replication cycle in detail. Huh7 cells stably expressing HA-tagged or non-tagged NS1

were infected with a DENV reporter virus containing an in-frame deletion within NS1

(DVR2ApΔNS1) (Fig 3A). In this setting, viral replication could be readily detected at 48 h p.i.

demonstrating efficient trans-complementation of NS1 also in Huh7 cells (Fig 3B).

Taking advantage of this system we isolated NS1 by HA-specific precipitation and analyzed

captured protein complexes by mass spectrometry. The specificity of the pull-down was con-

firmed by western blot from samples prepared in parallel experiments (Fig 3C). Samples from

cells expressing non-tagged NS1 were used as control to exclude proteins binding non-specifi-

cally to the resin. In addition to several host proteins (Fig 3D), NS4A and NS4B were the only

potential viral interaction partners of NS1 identified with this approach (Fig 3D and 3E), with

the NS1 –NS4B interaction being consistent with our results from the forward genetic screen.

NS1 interacts with the NS4A-2K-4B precursor, but not with fully processed
NS4A or NS4B

Focusing our analysis on viral NS1 interaction partners, we confirmed them by evaluating

HA-captured protein complexes by immunoblot using NS4B-specific antibodies. As shown in

Fig 4A (left panel, lane 1 and 2), NS4B migrates with an apparent molecular weight (MW) of

~25 kDa as a double band with the higher, less pronounced, band likely corresponding to the

uncleaved 2K-4B form. Surprisingly, none of these two NS4B species could be detected in
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Fig 2. Partial rescue of RNA replication of NS1 mutants by pseudoreversions residing in NS4B. Point mutations in NS1 were inserted
alone or together with mutations specified in the bottom of each panel into the full length genome of the DENV Renilla luciferase (RLuc)
reporter virus DVR2A. VeroE6 cells were electroporated with in vitro transcripts derived from each construct. Cells were lysed at indicated
time points after electroporation and RLuc activity was measured to quantify viral RNA replication. For each construct, values were
normalized to the 4 h-value to account for differences in transfection efficiency. Results shown are mean values from three independent
experiments performed in duplicates with two independent RNA preparations; error bars indicate SD.

https://doi.org/10.1371/journal.ppat.1007736.g002
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Fig 3. Identification of viral proteins interacting with NS1. (A) Schematic of the experimental approach. Cells stably
expressing NS1 were infected with DVR2A containing an in-frame deletion in NS1 (DVR2ApΔNS1) and processed to
measure viral RNA replication or for affinity purification of HA-tagged NS1 and subsequent analysis of protein complexes
by mass spectrometry. (B) DVR2ApΔNS1 replication in Huh7 cells stably expressing C-terminally HA-tagged or non-
tagged (nt) NS1. Cells were infected with DVR2ApΔNS1 (MOI = 1) and lysed at indicated times points post-infection. Viral
replication was measured by luciferase assay. (C) Huh7 cells stably expressing NS1_nt or NS1_HA were infected with
DVR2ApΔNS1 (MOI = 1). Seventy-two hours post infection cells were collected and subjected to HA-specific pull-down.
Immune precipitated complexes were analyzed by western blot using a NS1-specific rabbit antiserum. (D) Immune
purified complexes prepared as in (C) were subjected to mass spectrometry analysis. Four independent affinity
purifications were performed for each bait. Shown is a volcano plot displaying the average degree of enrichment by
NS1_HA over NS1_nt (ratio of Intensity-Based Absolute Quantification [iBAQ] protein intensities) and the P value
(Student’s t-test) for each protein. Significantly enriched proteins are separated from background proteins by a hyperbolic
curve (dotted grey line). Viral and host proteins specifically binding to NS1_HA are represented as red and blue dots,
respectively. (E) Heat map showing non-imputed log2-transformed iBAQ intensities for each individual replicate (see
color scale). Only the bait protein and the viral interaction partners are depicted. Gray color represents missing values
(not determined [ND]).

https://doi.org/10.1371/journal.ppat.1007736.g003
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Fig 4. The NS4A-2K-4B precursor polyprotein is the main interaction partner of NS1. (A) Huh7 cells stably expressing carboxy-
terminally HA tagged or non-tagged (nt) NS1 were infected with the DVR2ApΔNS1 virus (MOI = 1) or mock infected and cell lysates
prepared 72 h after infection were subjected to immunoprecipitation (IP) using beads coated with HA-specific antibodies as shown in Fig
3A. Samples were analyzed by western blot using NS4B-, NS4A- or NS1-specific antisera. Mature forms of NS4B and NS4Amigrate with an
apparent molecular weight of ~25 kDa and ~11 kDa, respectively (indicated by red arrows on the left side of each panel). The NS4A-2K-4B
precursor bands migrate at ~30 kDa and ~35 kDa and are highlighted with yellow dots. (B) Huh7 cells were infected with the DVR2A
wildtype (WT) or the DVR2A variant encoding an internally HA-tagged NS1 (NS1_HA�) and cell lysates prepared 72 h post infection were
subjected to anti-HA immunoprecipitation followed by western blot as described in (A). (C) Huh7-Lunet_T7 cells were transfected with an
NS1 to 5 polyprotein expression construct encoding either wildtype or internally HA-tagged NS1 under control of the T7 RNA polymerase
promoter. Cells were lysed 20 h post transfection and lysates were subjected to anti HA immunoprecipitation as described in (A).

https://doi.org/10.1371/journal.ppat.1007736.g004
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HA-NS1 captured immune complexes. Instead, two proteins with apparent molecular weights

of ~35 kDa and ~30 kDa, both reacting with the NS4B-specific antibody, were consistently

detected (Fig 4A, left panel, lane 6). Both protein species also reacted with a NS4A-specific

antibody (Fig 4A, right panel, lane 6), while fully processed NS4A with an apparent MW of

~10 kDa was only visible in total cell lysates from infected cells, but did not co-precipitate with

NS1 (Fig 4A, right panel, lane 1 and 2 vs 6). This result suggests that one or both of the 30 and

35 kDa protein species likely corresponds to the uncleaved precursor of NS4B, i.e. NS4A-2K-

4B. Notably, this putative precursor protein was highly enriched in HA-NS1 immune captured

complexes whereas in lysates of infected cells, mature NS4A and NS4B were the predominant

species.

In order to assure that the observed interaction was not a result of NS1 overexpression in

trans, we inserted the HA tag into NS1 in the context of a full length DENV reporter virus

genome (DVR2A-NS1_HA�). Consistent with a previous report [25], epitope-tagged virus was

replication competent, although slightly attenuated when compared to the wildtype (S1 Fig).

Strikingly, upon HA-specific pulldown the same protein species cross-reacting with NS4A and

NS4B specific antibodies were observed (Fig 4B), while no mature form of NS4A or of NS4B

could be detected.

To exclude any effect of unequal protein levels caused by the attenuation of the epitope-

tagged virus, relative to the wildtype, we expressed HA-tagged NS1 in the context of a NS1 to 5

polyprotein by using a construct encoding all NS proteins under control of the T7 RNA poly-

merase promoter. Upon expression in Huh7-Lunet_T7 cells [30], the putative NS4A-2K-NS4B

precursor was the only protein species enriched in the NS1_HA-specific complexes (Fig 4C).

Taken together these results demonstrate that the NS1 –NS4A-2K-4B interaction is not an arti-

fact arising from the individual overexpression of NS1 in trans and occurs also in DENV-

infected cells.

Aiming to further characterize the putative NS4A-2K-4B precursor species, we next ana-

lyzed the interaction between NS1 and various forms of NS4A and NS4B by using transient

expression. To this end, Huh7_T7 cells stably expressing DENV-2 NS2B-3, which is required

for polyprotein cleavage, were transfected with equal amounts of HA-tagged NS1 and NS4B or

NS4A expression constructs (Fig 5A) and cell lysates were subjected to HA-specific immuno-

precipitation. As reported previously [31], trans cleavage of the polyprotein by the DENV pro-

tease is possible, albeit with limited efficiency, giving rise to three forms of NS4B-containing

proteins in lysates of Huh7_T7_NS2B-3 cells transfected with the NS4A-2K-4B construct (Fig

5B, left panel, lane 2 and 3, MW 25–30 kDa). Those 3 forms most likely correspond to the full

length NS4A-2K-4B precursor, 2K-4B formed after cleavage by the NS2B-3 protease, and

mature NS4B released after additional cleavage by cellular signalase, respectively. Comparable

to DENV-infected cells, two protein species with apparent MW of ~30 and ~35 kDa reacting

with both NS4A- and NS4B-specific antibodies were detected in HA-NS1 immune purified

complexes, together with additional higher molecular weight species (Fig 5B, lower left panel,

lane 9). While the theoretical molecular weights for NS4A, NS4B and the NS4A-2K-4B precur-

sor are 16, 27 and 45 kDa, respectively, an abnormal migration pattern of those transmem-

brane proteins has been observed by us and others with the precursor having an apparent MW

of ~30–35 kDa [31–33]. This is consistent with the migration pattern observed here and close

to the MW of the precursor reported by others for DENV and other flaviviruses [33–35].

Therefore, we conclude that the lower band detected in the NS1 precipitates corresponds to

the monomeric uncleaved NS4A-2K-4B precursor. Importantly, no interaction with NS1 was

detected upon co-expression of NS1_HA and 2K-NS4B or NS4A_FLAG (Fig 5B, left panel,

lanes 11–14).
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To confirm that all protein species observed in NS1_HA immune captured complexes

indeed represent the uncleaved NS4A-2K-4B polyprotein, we performed the same experiment

in the absence of the DENV protease by using parental Huh7_T7 cells. Under those conditions

the NS4A-2K-4B polyprotein should not be processed, because NS2B-3-mediated cleavage at

the NS4A—2K site is a prerequisite for signalase-mediated cleavage between 2K and NS4B

[31–33,35] As shown in Fig 5B (right panel, lane 5), NS1_HA immune purified complexes

Fig 5. Characterization of the interaction between NS1 and the NS2A-2K-4B cleavage intermediate. (A) Schematic of
the experimental approach. (B) Huh7 cells stably expressing the T7 RNA polymerase and DENVNS2B-3 (with protease) or
only the T7 polymerase (w/o protease) were co-transfected with plasmids encoding carboxy-terminally HA-tagged or non-
tagged NS1 and NS4A and/or NS4B constructs indicated above each lane. Sixteen hours post transfection cell lysates were
prepared and subjected to anti-HA immunoprecipitation. Captured protein complexes were analyzed by immunoblotting
using rabbit sera reacting with DENV proteins indicated on the right.

https://doi.org/10.1371/journal.ppat.1007736.g005
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from Huh7_T7 cells contained all the NS4-reactive protein species observed in the presence of

the DENV protease. Moreover, the same protein pattern was detected by using a commercially

available NS4B-specific antibody and after treatment with PNGase (S2 and S3 Figs). These

results corroborate that the NS4-reactive proteins with an apparent molecular weight lower

than 50 kDa correspond to incompletely processed forms of the NS4A-2K-4B polyprotein,

with the higher ~35 kDa band likely representing an incompletely denatured form of the

lower, ~30 kDa species. The higher molecular weight species (above 60 kDa) might correspond

to lipid-bound NS4 protein species or a heat-stable dimer of the NS4A-2K-4B precursor. The

NS4A-2K-4B cleavage intermediate likely contains at least 6 transmembrane helices (Fig 1C)

[7,36], which could explain this abnormal migration pattern. In summary, these results show

that the NS4A-2K-4B precursor, but not mature NS4A or NS4B, constitutes the main interac-

tion partner of NS1.

Two residues in theWing connector domain are critical for NS1 interaction
with the NS4A-2K-4B cleavage intermediate

Having identified an interaction between NS1 and the NS4-2K-4B precursor, we next sought

to address the importance of this interaction for viral replication. We predicted that the point

mutations in NS1 abrogating the replication might result in loss of binding between NS1 and

this cleavage intermediate. To address this hypothesis NS1 point mutants were analyzed in the

transient transfection setting described in Fig 5A. As shown in Fig 6, the replication-impairing

G161A andW168A mutations resulted in almost complete loss of the interaction with the pre-

cursor polyprotein, arguing that the association between NS1 and NS4A-2K-4B is required for

RNA replication. Consistently, two other mutations in NS1, Y32A and E334A also reduced the

interaction, albeit to a lesser extent. Out of those four mutations decreasing the NS1 –NS4A-

2K-4B interaction, second-site mutations in NS4A or NS4B were only identified for the NS1

G161A mutant. These second-site mutations had no impact on NS1 –NS4A-2K-NS4B interac-

tion (S4 Fig), which is consistent with the very low replication rescue provided by those pseu-

doreversions (maximum 5% of wildtype levels at 72 h post transfection, Fig 2). Several other

replication-inactivating NS1 mutations had no statistically significant effect on NS1—4A-2K-

4B interaction (summarized in Table 2) suggesting that those NS1 mutants have a replication

defect that is independent from the interaction with this cleavage intermediate. In summary,

our results identify two residues in the connector region of theWing domain of NS1 that play

a crucial role for NS1 interaction with the NS4A-2K-4B precursor and indicate a previously

unappreciated importance of this cleavage intermediate for DENV replication.

Highly conserved residues in the carboxy-terminal region of NS1 are
critical for NS1 secretion

Earlier studies suggested that mutations within the connector region of theWing domain

might weaken NS1 association with ER membranes [37], potentially perturbing its secretion.

To ensure that the observed loss of interaction with the precursor was not due to increased

NS1 secretion, we examined the secretion efficiency for each NS1 mutant. To this end, cells

that had been transfected with constructs encoding for various NS1 mutants, and correspond-

ing culture supernatants, were assessed by quantitative western blot (Fig 7). Of note, the two

mutations completely blocking the NS1 –NS4A-2K-4B interaction, i.e. G161A andW168A,

did not affect NS1 secretion, indicating that the effect of these alanine substitutions on precur-

sor binding was not due to lower intracellular abundance of NS1 as a result of enhanced NS1

release. Interestingly, several other point mutations, mostly residing in the carboxy-terminal

region of the β-ladder domain, i.e. W311A, P319A, E334A and R336A almost completely
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Fig 6. Two residues in the connector region of theWing domain are essential for NS1 interaction with the NS4A-
2K-4B precursor. (A) Huh7 cells stably expressing the T7 RNA polymerase and proteolytically active DENVNS2B-3
were co-transfected with constructs encoding HA-tagged wildtype or mutated NS1 and the NS4A-2K-4B polyprotein
construct. Cell lysates were processed as described in Fig 4B and immunoblots were probed with NS1- and NS4B-
specific antisera. A representative result of four independent experiments is shown. (B) Quantification of NS1 and
NS4B-specific signals from all four experiments. In the case of NS4B, the signals of the two bands at ~30 and ~35 kDa
were added and used to calculate pull down efficiency. Cells expressing non-tagged NS1 were used to determine the
background of the assay that was subtracted from the NS1_HA values. Bars represent the means of the NS4B/NS1
signal ratio, normalized to the wildtype, from four independent experiments. Error bars indicate SEM. �, p<0,002. In
all other cases, the difference to the wildtype was not significant (ns).

https://doi.org/10.1371/journal.ppat.1007736.g006

Interaction between DENV NS1 and NS4A-2K-4B precursor

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007736 May 9, 2019 13 / 34

https://doi.org/10.1371/journal.ppat.1007736.g006
https://doi.org/10.1371/journal.ppat.1007736


blocked NS1 secretion (Fig 7). While this could be due to structural defects possibly resulting

in ER-associated degradation of these NS1 variants, intracellular abundance of these proteins

was not strongly affected, arguing that they were not targeted for degradation because of mis-

folding or destabilization. Instead, they might have a defect in self-interaction or routing to the

secretory pathway.

Replication-inactivating mutations in NS1 do not affect polyprotein
cleavage

We next asked whether the alanine substitutions we had inserted into NS1 might have an

impact on DENV polyprotein processing, especially the production of fully cleaved NS4B.

Therefore, we inserted the alanine substitutions into an expression construct encoding the

complete DENV polyprotein that was expressed by a T7 promoter-based system to allow repli-

cation-independent protein production (Fig 8A). Huh7-Lunet_T7 cells were transfected with

these constructs and 18 h later cells were lysed and NS1, NS2B, NS3, NS4B and NS5 expression

was detected by western blot. None of the point mutations in NS1 had an obvious impact on

polyprotein processing (Fig 8B), at least under steady state conditions, demonstrating that the

inhibitory effects exerted by these mutations (block of RNA replication, NS4A-2K-4B interac-

tion and NS1 secretion) did not result from improper polyprotein cleavage.

Formation of vesicle packets is independent from interaction between NS1
and the NS4A-2K-4B cleavage intermediate

One of the proposed mechanisms by which NS1 supports DENV RNA replication is the for-

mation of membranous replication organelles, i.e. the VPs. Since both NS4A and NS4B are

Table 2. Summary of the effects of point mutations in NS1 on NS1—NS4A-2K-4B interaction and NS1 secretion.

Mutation Domain NS1—NS4A-2K-4B interaction (fold of WT) NS1 secretion (fold of WT)

WT - 1.00 ± 0.00 1.00 ± 0.00

W8A β-roll 0.99 ± 0.21 0.85 ± 0.18

Y32A Wing (connector) 0.31 ± 0.02 0.91 ± 0.22

R62A Wing (α/β subdomain) 3.97 ± 0.26 0.75 ± 0.16

D136A Wing (α/β subdomain) 0.21 ± 0.08 0.00 ± 0.02

W150A Wing (α/β subdomain) 0.38 ± 0.09 0.61 ± 0.05

L153A Wing (connector) 1.67 ± 0.67 0.84 ± 0.15

Y158A Wing (connector) 3.01 ± 0.77 0.99 ± 0.16

G161A Wing (connector) 0.07 ± 0.02 0.99 ± 0.16

W168A Wing (connector) 0.02 ± 0.01 0.97 ± 0.18

K189A β-ladder 1.33 ± 0.38 0.87 ± 0.11

D197A β-ladder 4.09 ± 0.94 1.09 ± 0.23

S252A β-ladder 3.18 ± 1.02 1.12 ± 0.14

W311A β-ladder 0.31 ± 0.13 0.03 ± 0.01

T317A β-ladder 2.08 ± 0.67 0.58 ± 0.06

P319A β-ladder 0.37 ± 0.11 0.03 ± 0.02

P320A β-ladder 0.86 ± 0.18 0.09 ± 0.03

E334A β-ladder 0.18 ± 0.05 0.02 ± 0.02

R336A β-ladder 0.26 ± 0.10 0.03 ± 0.02

Mutations in NS1 impairing NS4A-2K-4B precursor binding (below 0.1 of WT) and NS1 secretion (below 0.1 of WT) are highlighted in light and dark gray,

respectively. Data are mean from at least 3 independent experiments, shown as fold of WT ± SEM. Data correspond to Figs 6 and 7.

https://doi.org/10.1371/journal.ppat.1007736.t002
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transmembrane proteins with membrane remodeling properties [7,33], interaction between

NS1 and the NS4A-2K-4B precursor might be important for establishment or stabilization of

those membrane structures. Therefore, we wanted to determine whether the two mutations

abrogating NS1 interaction with this cleavage intermediate (G161A andW168A) also block

VP formation. Thus far, the biogenesis of these membranous structures could only be studied

in systems supporting viral replication, making it impossible to determine the impact of repli-

cation-impairing mutations on VP formation. To overcome this limitation, we employed a

polyprotein expression approach (Fig 9A). In this system, the sole expression of the DENV

polyprotein in Huh7-Lunet_T7 cells resulted in the formation of membrane invaginations that

closely resemble VPs observed during DENV infection (Fig 9A, left panel) in ~25% of the cells

(Fig 9B). The diameter of the vesicles was ~75 nm (Fig 9C), which is comparable to VP diame-

ter in infected cells [4].

Fig 7. A cluster of conserved amino acid residues in the carboxy-terminal β-ladder of NS1 is essential for NS1 secretion.
(A) Huh7 cells stably expressing the T7 RNA polymerase were transfected with plasmids encoding HA-tagged NS1 that
contained point mutations specified above each lane. Sixteen hours later cell culture supernatants were collected and cleared
by centrifugation. Equal volumes of supernatants and cell lysates were analyzed by immunoblotting using an NS1-specific
antiserum. (B) Quantification of NS1 signals from (A). The bars are means of the ratio of secreted to intracellular NS1,
normalized to the wildtype, from three independent experiments. Error bars indicate SEM. �, p<0,002. In all other cases, the
difference to the wildtype was not significant.

https://doi.org/10.1371/journal.ppat.1007736.g007
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Taking advantage of this system, we next inserted the G161A or W168A mutations into

NS1 of this expression construct and determined abundance and morphology of vesicle forma-

tion (Fig 9). Interestingly, none of the mutations had an effect on number or size of the vesi-

cles, demonstrating that the NS1—NS4A-2K-4B interaction is not involved in VP formation.

NS1 is required for formation of VPs

We next asked whether NS1 is at all required for the biogenesis of VPs. To address this ques-

tion, we used two polyprotein expression constructs. The first contained an in-frame deletion

of 97 codons in the NS1 coding region that can be rescued by ectopic expression of NS1 in the

context of DENV infection (partial deletion of NS1, pΔNS1) [17], and the second a complete

deletion of NS1 (cΔNS1) (Fig 10A). In the cΔNS1 construct the first 5 and last 8 amino acid

residues of NS1 were retained to ensure proper polyprotein insertion into the ER membrane

and processing, respectively [38]. Huh7-Lunet_T7 cells were transfected with either mutant or

the wildtype polyprotein expression constructs and protein expression was determined by

western blot (Fig 10B). While viral protein abundance was slightly lower in the case of the two

NS1 deletion mutants, the ratio between the viral proteins was similar to the wildtype. Impor-

tantly, transfection efficiency was comparable (~40% as determined by immunofluorescence;

Fig 10C) and the subcellular distribution of NS4B and NS3 was not affected by the NS1 dele-

tions (S5 Fig). Analysis of the cells by transmission electron microscopy (EM) revealed that

Fig 8. Replication-blocking mutations in NS1 do not impact polyprotein processing. (A) A schematic of the expression cassette used to produce
the DENV-2 polyprotein. (B) Huh7-Lunet T7 cells were transfected with the polyprotein expression constructs harboring mutations in NS1
specified above each lane. Eighteen hours post transfection cells were lysed and processed for western blot by using antisera specific to DENV
proteins given in the right of each panel. GAPDHwas used as loading control. GAPDH 1 corresponds to membranes probed for NS1, NS2B and
NS5; GAPDH 2 for membranes probed with NS3 and NS4B. A representative result of three independent experiments is shown.

https://doi.org/10.1371/journal.ppat.1007736.g008
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both NS1 deletions abrogated the formation of VPs (Fig 10D and 10E) showing that NS1 is

required for VP formation.

Next, we sought to determine whether expression of NS1 in trans can rescue the VP defect

caused by the deletions within this protein. To this end, we transfected Huh7-Lunet_T7 cells

stably expressing mCherry-tagged NS1 (LunetT7_NS1-mCh) with the pΔNS1 or cΔNS1 poly-
protein expression construct and assessed VP formation (Fig 11A). Production of the viral

proteins in transfected cells was confirmed by western blot (Fig 11B). Of note, the defect of VP

formation caused by the partial deletion in NS1 could be restored by expression of NS1 in

trans (Fig 11C and 11E). By contrast, no such rescue could be observed in cells expressing the

polyprotein with the complete deletion in NS1 (Fig 11D and 11E). Remarkably, rescue of VP

formation by trans-complementation with NS1 correlated with rescue of viral replication (Fig

11F). While both the partial and the complete NS1 deletion abrogated DENV RNA replication,

Fig 9. Formation of DENV vesicle packets is independent from the interaction between NS1 and the NS4A-2K-4B precursor.Huh7-Lunet T7 cells
were transfected with the DENV polyprotein expression construct shown in Fig 8A and 18 h later, cells were fixed and processed for transmission
electron microscopy. (A) Representative images of membrane invaginations observed in cells transfected with the wildtype (WT) polyprotein, the
G161A or theW168Amutant, respectively. Scale bars (upper left of each panel) correspond to 500 nm in the overview and 100 nm in the cropped
sections that are indicated with black rectangles in the overviews. (B) Quantification of the number of cells containing VPs. Results show the mean of
two independent experiments, counting at least 20 cells per construct and experiment. The error bars indicate SD. Transfection efficiency as
determined by immunofluorescence was ~45%. (C) Quantitation of the vesicle diameter in cells transfected withWT, G161A or W168A polyprotein
construct. Scatter plots indicate the diameter of>100 vesicles from two independent experiments; horizontal lines indicate means and error bars
indicate SD.

https://doi.org/10.1371/journal.ppat.1007736.g009
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Fig 10. NS1 is essential for the formation of vesicle packets. (A) Schematic representation of the expression
constructs containing a partial deletion in NS1 (pΔNS1) or lacking NS1 completely (cΔNS1). Huh7-Lunet_T7 cells
were transfected with pΔNS1, cΔNS1 or the wildtype (WT) construct, fixed 18 h post transfection and processed for
electron microscopy, western blot or immunofluorescence. (B) Western blot of cell lysates prepared 18 h post
transfection and analyzed by using antibodies indicated on the right. A representative experiment of three repetitions
is shown. (C) Transfection efficiency of Huh7-Lunet_T7 cells as determined by immunofluorescence. Data are the
mean from three independent experiments using two independent plasmid preparations and counting each time at
least 200 cells per sample. The error bars indicate the SEM. (D) Representative transmission electron microscopy
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the provision of NS1 in trans rescued the replication of the partial NS1 deletion, but not of the

complete NS1 deletion (Fig 11F).

In summary, these results demonstrate that NS1 is indispensable for proper formation of

the DENV replication organelle, but this function is not related to interaction of NS1 with the

NS4A-2K-4B precursor. The fact that the complete NS1 deletion cannot be rescued by trans-

complementation argues that NS1 contains both cis- and trans-acting determinants involved

in VP formation.

Discussion

Despite intensive research efforts the role of NS1 in the flavivirus replication cycle remains elu-

sive. NS1 is not involved in viral entry or RNA translation but is essential for RNA replication.

This observation has originally been made during studies conducted with the yellow fever

virus (YFV), and later confirmed with several other flaviviruses [16,17,19,26,39,40]. It is

thought that NS1 is required for negative RNA strand synthesis [16,19], but the molecular

mechanism is not known.

In the present study we employed reverse and forward genetic screening, combined with

biochemical assays, to identify domains and regions within NS1 that contribute to its role in

DENV RNA replication as well as NS1 secretion. With respect to the latter, we observed a clus-

tering of secretion-inhibiting mutations in the highly conserved carboxy-terminal region of

the β-ladder, which contains the almost invariant MEIRP motif comprising amino acid resi-

dues 333–337 (Fig 12A) [41]. Intracellular retention of these mutants, which are also replica-

tion deficient, might result from improper NS1 self-interaction, or altered trafficking due to

loss of interaction with cellular transport proteins. Interestingly, the carboxy-terminal tip of

the β-ladder domain contains multiple epitopes recognized by NS1-specific antibodies, includ-

ing some that cross-react with cellular surface proteins [23,41,42]. Hence, this region might

represent an attractive drug target, offering the possibility to block viral replication, NS1 secre-

tion and the induction of antibodies possibly contributing to DENV pathogenesis.

The results of our genetic studies provide strong evidence for an interaction between NS1

and NS4B, or NS4B-containing cleavage intermediates. This conclusion is derived from the

observation that replication-inactivating mutations in NS1 can be rescued, at least in part, by

pseudoreversions residing in NS4B. This genetic NS1 –NS4B association was corroborated by

the viral NS1 proteome identifying NS4B and NS4A as predominant interaction partners of

NS1. However, further characterization of the NS1—NS4B association revealed that the main

interaction partner of NS1 is the NS4A-2K-4B precursor. This interaction, which has so far

not been reported, was consistently detected in complexes isolated from DENV-infected cells

and in different expression-based approaches. The NS4A-2K-4B intermediate has been previ-

ously detected in YFV-infected cells using pulse-chase experiments, where it was found to be

processed post-translationally with a half-life of ~10 min [34]. A subsequent study confirmed

the production of NS4A-2K-4B also in the course of DENV infection [35], however its func-

tion in virus replication has not been appreciated so far. Based on our findings, and on the

high enrichment of NS4A-2K-4B in the NS1-associated protein complexes, we conclude that

delayed cleavage of this polyprotein fragment plays an important role for interaction with NS1

images of Huh7-Lunet_T7 cells transfected with expression constructs containing a partial or complete NS1 deletion.
Scale bars (upper left of each panel) correspond to 500 nm in the overview and 100 nm in the cropped sections that are
indicated with black rectangles in the overviews. (E) Quantification of the EM analysis. The percentage of cells with
VPs is shown. Note the absence of regular VPs in cells expressing either NS1 deletion mutant. Data are based on 4
independent experiments, using two independent plasmid preparations and counting at least 20 cells per construct and
per repetition.

https://doi.org/10.1371/journal.ppat.1007736.g010

Interaction between DENV NS1 and NS4A-2K-4B precursor

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007736 May 9, 2019 19 / 34

https://doi.org/10.1371/journal.ppat.1007736.g010
https://doi.org/10.1371/journal.ppat.1007736


Fig 11. Rescue of vesicle packet formation by NS1 provided in trans. (A) Huh7-Lunet_T7 cells stably expressing NS1 with a carboxy-
terminal mCherry tag (NS1_mCh) or the empty vector were transfected with pΔNS1, cΔNS1 or the wildtype (WT) polyprotein expression
constructs. Cells were harvested 18 h post-transfection and processed for western blot and EM analysis. (B) Expression of DENV proteins in
transfected Huh7-Lunet_T7 cells. Black arrows indicate NS1 variants; the star indicates an unspecific background signal. GAPDHwas used
as loading control. GAPDH 1 corresponds to membranes probed for NS1, NS2B and NS5; GAPDH 2 for membranes probed with NS3 and
NS4B. (C) Representative electron micrographs of VPs in cells expressing NS1-mCh and transfected with the pΔNS1 polyprotein expression
construct. (D) Absence of VPs in NS1_mCh expressing cells transfected with the cΔNS1 polyprotein expression construct. Scale bars (upper
left of each panel) in (C) and (D) correspond to 500 nm in the overview and 100 nm in the cropped sections that are indicated with black
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as well as RNA replication. Such regulated cleavage has been described for several other posi-

tive-strand RNA viruses and also in those cases it critically determines RNA replication [43–

45]. For instance, for the related HCV it was found that constitutive cleavage between NS4B

and NS5A by insertion of an IRES at the cleavage site completely abrogates RNA replication

[43]. Likewise, in the case of alphaviruses processing intermediates and corresponding mature

forms were found to play distinct roles in negative and positive RNA strand synthesis, respec-

tively [44]. The importance of various polyprotein precursors is also well established for picor-

naviruses and their functions include genome circularization [46], modulation of enzymatic

activities and modification of cellular membranes (reviewed in [47]).

We speculate that delayed cleavage of DENV NS4A-2K-4B might be required for proper

membrane association of NS4A or NS4B, maturation of these proteins e.g. by post-transla-

tional modification [48] or the formation of dimeric or oligomeric complexes. Although the

exact mechanism remains to be determined, it is tempting to speculate that NS1 binding to

NS4A-2K-4B might regulate its cleavage.

Two replication-impairing point mutations in NS1, G161A andW168A, almost completely

abrogated NS4A-2K-4B precursor binding, corroborating the specificity of the observed inter-

action and its critical role in RNA replication. These mutants were stable and efficiently

secreted, demonstrating that the loss of interaction was not due to general defects in protein

structure, degradation or enhanced NS1 release. Moreover, both mutants were able to form

VPs when expressed in the context of the NS1 to 5 DENV polyprotein, implying that subcellu-

lar localization and membrane association of NS1 were not affected by these substitutions. Res-

idue G161 localizes to the so called “greasy finger” loop within theWing domain of NS1, which

has been proposed to mediate NS1 interaction with the ER membrane [23] (Fig 12B). While it

might appear surprising that a glycine to alanine substitution had such drastic effects on viral

replication and protein-protein interaction, the G159-X-G161 motif is absolutely conserved in

flaviviruses [17,49], which is indicative of a critical function of this region in the viral replica-

tion cycle. The aromatic amino acid residue at position 168 is also invariant and resides on the

NS1—ERmembrane interface, contributing to the formation of a hydrophobic “inner face” of

the NS1 dimer (Fig 12B). While several other mutants, most notably Y32A and E334A, also

showed a trend towards reduced NS1 –precursor interaction (Fig 6 and Table 2), their impact

was much weaker compared to the G161A andW168A substitutions. We therefore assume

that replication impairment caused by the Y32A and E334A substitutions is due to defects

other than impaired interaction with NS4A-2K-4B. This is also very likely for mutations in the

C-terminal region that result in loss of NS1 secretion. Of note, neither the mutation affecting

residue W8, which resides in the β-roll domain and is assumed to be directly involved in

NS1—membrane interaction [50], nor the mutation affecting Y158 directly adjacent to the

greasy finger (S6 Fig) abrogated NS1 –cleavage intermediate binding. This result further sug-

gests that the phenotype caused by G161A andW168A is not due to general alteration of the

NS1—membrane interaction, but rather to abrogation of specific contact sites between NS1

and the NS4A-2K-4B cleavage intermediate that are formed by the two residues.

Four of the primary NS1 mutations (R62A, Y158A, K189A and D197A), all residing in the

membrane proximal region of the NS1 dimer (Fig 12C), could be compensated by

rectangles in the overviews. (E) Quantification of the number of cells containing VPs. Data are mean from 2 independent experiments,
counting at least 20 cells per condition; error bar indicates SD. (F) Replication of DVR2A containing a partial (pΔNS1) or complete (cΔNS1)
deletion of NS1 in Huh-7-Lunet_T7 cells expressing NS1_mCh or control cells (stably transduced with the empty vector). Cells were
transfected with in vitro transcribed RNA derived from the respective construct by electroporation, lysed at indicated time points post
transfection and RLuc activity was measured to quantify viral RNA replication. Results shown are mean values from two independent
experiments performed in triplicates; error bars indicate SEM.

https://doi.org/10.1371/journal.ppat.1007736.g011
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Fig 12. Overview of amino acid residues in NS1 required for NS1 secretion, interaction with the NS4A-2K-4B precursor
and RNA replication. Replication-impairing mutations that (A) abolish NS1 secretion, (B) abrogate binding between NS1 and
the NS4A-2K-4B precursor, and (C) can be complemented by second site mutations in NS4B. Upper panels show the linear
map of NS1 with mutated residues indicated by red stars; bottom panels show the homology model of the 3D structure of NS1
based on PDB entries 4O6B and 5K6K as described in Fig 1(A) with mutated residues shown as van der Waal spheres in red.
Wing, β-ladder and β-roll domains are shown in blue, turquoise and orange, respectively. Connector subdomains inWing
domain are shown in dark blue.

https://doi.org/10.1371/journal.ppat.1007736.g012
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pseudoreversions in NS4B. These primary mutations did not affect NS4A-2K-4B precursor

binding, indicating that the observed phenotype was not related to this interaction. Interest-

ingly, all of the pseudoreversions restoring replication were found in the putative transmem-

brane domains of NS4B (Fig 1C). Given this localization, the primary mutations might impair

the membrane remodeling activity of NS1 that might be restored by structural changes in

NS4B, consistent with its ability to alter ER membranes as reported for WNV [51]. However,

the rescue was only partial suggesting that additional defects, which cannot be restored by

NS4B might be caused by these alanine substitutions in NS1.

DENV replication most likely occurs within invaginations in the ER membrane designated

VPs [4]. Owing to the lack of systems to study VP biogenesis in the absence of viral replication,

little is known about viral and cellular factors involved in their biogenesis [9]. By using tran-

sient expression of a DENV polyprotein we were able to analyze VP formation with replica-

tion-deficient NS1 mutants. The following important conclusions can be drawn from our EM-

based studies: (i) NS1 is essential for the establishment of the membranous DENV replication

organelle; (ii) this function is not related to NS1 interaction with NS4A-2K-4B, because muta-

tions disrupting this interaction did not affect VP formation; (iii) at least part of NS1 acts in cis

to allow for VP formation as deduced from the observation that only the partial, but not the

complete NS1 deletion could be rescued by trans-complementation. Therefore, NS1 plays a

more sophisticated role in viral RNA amplification that goes beyond the structuring of replica-

tion complex formation as often proposed [21,52]. Since the G161A and the W168A mutation

impaired viral replication without affecting VP formation, we conclude that NS1 has at least

two distinct functions, i.e. the assembly of the membranous replication organelle and the gen-

eration of an active replicase that catalyzes the amplification of the viral RNA, the latter steps

possibly linked to the interaction of NS1 with the NS4A-2K-4B cleavage intermediate. Of note,

Akey et al. reported that mutations targeting residues 159–161 of NS1 were deleterious to viral

RNA replication, but did not affect the ability of NS1 to remodel liposomes [23]. This result is

in consistent with our notion that this region in NS1 is involved in an RNA replication-rele-

vant process that is independent from the formation of VPs.

Studies conducted with YFV andWest Nile virus revealed that trans-complementation of

NS1 replication defects depends on the degree of the deletion, with at least 54 carboxy-termi-

nal amino acid residues being required in cis for efficient rescue, whereas bigger deletions

could not be complemented [16,19,39,53]. This observation is similar to our results and sug-

gests that the carboxy-terminal region might play an important role in a cis-dominant process

such as polyprotein cleavage. Alternatively, based on the recent identification of multiple host

ribosomal proteins and chaperones as NS1 interaction partners [28], it is conceivable that this

domain might contain binding sites for host cell factors required for stability or folding of the

(immature) polyprotein, thus contributing indirectly to the formation of a functional replica-

tion complex. This hypothesis would be in agreement with the lower levels of some NS pro-

teins observed upon expression of the DENV polyprotein with the complete NS1 deletion.

Alternatively, NS1 or an NS1-2A precursor [34] might be involved in stabilizing other NS pro-

teins. Although impaired polyprotein cleavage, resulting from complete NS1 deletion, cannot

be excluded, we did not observe alterations in the ratios of polyprotein cleavage products

under steady-state conditions. Consistently, it has been reported that the last 8 amino acid resi-

dues of NS1 are sufficient for NS1-2A cleavage [54]. In any case, the observation that the par-

tial deletion in NS1 can be rescued by trans-complementation clearly shows that remaining

parts of NS1 are also indispensable for VP biogenesis. Though underlying mechanisms remain

to be clarified, observed functions of NS1 might result from an intrinsic membrane-bending

ability of the central region in NS1, its affinity for lipids that are recruited to the site of the viral

replicase or interactions with host proteins mediating these or some other function.
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In summary, our study identifies a novel interaction between NS1 and the NS4A-2K-NS4B

cleavage intermediate which plays a critical role in the DENV replication cycle. In addition, we

provide evidence for a contribution of NS1 to the formation of the membranous replication

organelle that is independent from viral RNA replication. Finally, we establish a comprehen-

sive map of regions and domains involved in the various functions of NS1. The multitude of

roles fulfilled by NS1, including its contribution to the pathogenesis of dengue [21], identifies

NS1 as a highly promising target for direct acting antivirals aiming to suppress viral replication

and severe disease manifestations [55]. Although further investigations will be needed to

mechanistically define the various functions NS1 exerts in the viral replication cycle, the

genetic map established in the present study offers a starting point for the design of antiviral

agents targeting this DENV “Swiss Army Knife” [56].

Materials andmethods

Cell lines

All cell lines were maintained in Dulbecco’s modified Eagle medium (DMEM; ThermoFisher

Scientific, Darmstadt, Germany) supplemented with 2 mM L-glutamine, nonessential amino

acids, 100 U penicillin/ml, 100 μg streptomycin/ml, and 10% fetal calf serum. VeroE6 cells [57]

were obtained from Progen (Heidelberg Germany). Huh7 cells [58] were obtained from the

laboratory of Heinz Schaller (Center for Molecular Biology, Heidelberg). These cells served as

founder for the production of all Huh7 derived subclones. Huh7_T7 and Huh7-Lunet_T7 cells

[30] were generated by lentiviral transduction to allow stable expression of the bacteriophage

T7 RNA polymerase. Huh7_T7_NS2B3 cells that in addition stably express full length DENV

NS2B-3 were described previously [31]. Huh7_NS1_HA and Huh7_NS1_nt were generated by

transduction with lentiviral vectors encoding DENV-2 NS1 with a carboxy-terminal HA-tag

or non-tagged NS1, respectively [17]. Huh7-Lunet_T7_NS1-mCh cells stably expressing NS1

with a carboxy-terminal mCherry tag were generated by transduction with lentiviral vectors

encoding NS1-mCherry [17]; control Huh7-Lunet_T7_ cells were generated by transduction

with the empty pWPI vector. Huh7_T7 and Huh7-Lunet_T7 cells were maintained in medium

containing 5 μg/ml zeocin. Huh7-T7_NS2B3, Huh7-Lunet-T7_NS1-mCh and Huh7-Lu-

netT7_vector cells were cultured in medium containing 5 μg/ml zeocin and 1 μg/ml puromy-

cin and Huh7_NS1_HA and Huh7_NS1_nt cells in medium containing 1 μg/ml puromycin.

All cell lines are routinely tested for mycoplasma contamination using the MycoAlert myco-

plasma detection kit (Lonza, Basel, Switzerland).

Plasmids

The plasmids pFK_DVR2A containing a DENV genome based on the 16881 strain and

encoding a Renilla luciferase (RLuc) reporter gene as well as pFK_sgDVH2A containing a

hygromycin-B selectable DENV subgenomic replicon were described previously [59]. The

plasmid pFK_DVR2ApΔNS1 containing an in-frame deletion of 97 amino acids in NS1 was

described previously [17]. The DVR2A construct containing an HA-tag within NS1

(pFK_DVR2A-NS1_HA�) was based on the insertion site reported earlier [25] and generated

by overlap PCR followed by insertion of the amplicon via KasI and MluI restriction sites into

pFK_DVR2A. DVR2A constructs containing pseudoreversions identified in this study were

created by overlap PCR and insertion of PCR products into wildtype DVR2A or DVR2A con-

taining a specified primary NS1 mutation. All NS1 constructs used in this study contain the

last 72 nucleotides of E (ET) immediately upstream of the NS1 sequence to ensure proper

insertion into the ER membrane and signalase cleavage. Lentiviral expression constructs

pWPI_puro_NS1_HA, pWPI_NS1_mCh and pWPI_puro_NS1_nt containing the DENV-2
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(16681) NS1 sequence with or without carboxy-terminal tag were described previously [17].

Expression constructs pTM_NS1_HA (containing a carboxy-terminal HA-tag) and

pTM_NS1_nt were generated by PCR using pCDNA_NS1_HA and pCDNA_NS1_nt as tem-

plate, respectively. XmaI and BamHI restricted amplicons were inserted into the pTM expres-

sion vector [60]. Expression constructs pTM_NS4A-2K-4B and pTM_2K-4B were described

previously [31]. Plasmid pTM_FLAG_NS4A was generated by PCR using pTM_NS4A-2K-4B

as template followed by insertion of the NcoI and BamHI restricted PCR products into the

pTM vector. NS1 point mutations were inserted into the construct pSM3-DVs_CAE_NS1-3’

encoding the complete DENV polyprotein under the control of the T7 RNA polymerase pro-

moter by using the DVR2A constructs containing the desired mutations and transfer of

MluI—KasI DNA fragments or by overlap PCR in the case of mutations located upstream of

the MluI site. The polyprotein construct containing an internally HA-tagged NS1 (pSM3-

DVs_CAE_NS1-3’_NS1_HA�) was generated by inserting the NS1-NS2A fragment isolated

from pFK_DVR2A-NS1_HA� via KasI and MluI sites into pSM3-DVs_CAE_NS1-3’. The

polyprotein construct containing a complete NS1 deletion (pSM3-DVs_CAE_NS1-3’_cΔNS1)
was obtained by overlap PCR, generating a DNA fragment containing the last 24 codons of E

and the first 5 codons of NS1 directly fused to last 8 codons of NS1 that was inserted via

BamHI and KasI sites into pSM3-DVs_CAE_NS1-3’ plasmid. The polyprotein construct con-

taining a partial deletion in NS1 (pSM3-DVs_CAE_NS1-3’_pΔNS1) was created by inserting

the NS1-NS2A fragment from pFK_DVR2ApΔNS1 via MluI and KasI sites into pSM3-

DVs_CAE_NS1-3’. The plasmid pFK_DVR2AcΔNS1 was generated by overlap PCR using

pSM3-DVs_CAE_NS1-3’_cΔNS1 and pFK_DVR2A as templates and insertion of BamHI and

KasI digested PCR products into pSM3-DVs_CAE_NS1-3’. A complete list of primers used in

this study is available upon request.

Antibodies

Rabbit antisera raised against various DENV proteins (NS1, NS2B, NS3, NS4A, NS4B and

NS5) have been described previously [4] and were used at a 1:1,000 dilution. In addition, the

following primary antibodies were used for immunofluorescence staining: rabbit polyclonal

anti-NS4B antibody, mouse monoclonal anti-NS3 antibody, mouse monoclonal anti-NS1 anti-

body (all from GeneTex, Irvine, CA, USA), mouse monoclonal anti-reticulon 3 antibody

(Santa Cruz, Dallas, TX, USA), and anti-protein disulfide isomerase rabbit polyclonal antibody

(Cell Signaling Technology, Danvers, MA, USA). The mouse monoclonal anti-GAPDH anti-

body, as well as anti-rabbit and anti-mouse secondary antibodies conjugated to horseradish

peroxidase were purchased from Sigma-Aldrich (Tufkirchen, Germany).

In vitro transcription and viral RNA transfection

For in vitro transcription, 5 or 10 μg of plasmid DNA was linearized using the XbaI restriction

enzyme and purified using NucleoSpin Gel and PCR Clean-up (Macherey-Nagel, Düren,

Germany). In vitro transcription was carried out using the SP6 RNA polymerase as described

previously [59]. In vitro transcripts were purified by phenol-chloroform extraction and resus-

pended in RNase-free water. RNA integrity was confirmed by agarose gel electrophoresis. For

RNA transfection VeroE6 or Huh7-derived cells were trypsinized, harvested in complete

DMEM and washed once with PBS. Cells were resuspended in cytomix (120 mM KCl, 0.15

mM CaCl2, 10 mM potassium phosphate buffer, 2 mM EGTA, 5 mMMgCl2, 25 mMHEPES

[pH 7.6], 2 mM ATP and 5 mM glutathione, the latter two freshly added) at a density of

1.5x107 Vero cells/ml or 1x107 Huh7-derived cells and 400 μl of the cell suspension were

mixed with 5 μg of in vitro transcripts. Cells were transferred into a 0.2 cm gap width
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electroporation cuvette (BioRad Hercules, CA, USA), pulsed once with 166 V and 500 μF,

resuspended in pre-warmed complete DMEM and seeded as required for subsequent assays.

Viral replication assays

Stocks of the DVR2ApΔNS1 virus containing an in-frame deletion of 97 amino acids in NS1

were produced in VeroE6 helper cells stably expressing NS1 and titrated by focus forming

assay as previously described [17]. Virus stocks of DVR2A and DVR2A-NS1_HA� were pro-

duced as described previously [31] and titrated by plaque assay. Viral replication was measured

in cells infected or transfected with DVR2A by using RLuc assay as described elsewhere [61].

In brief, cells grown on 24-well plates were lysed in 100 μl RLuc lysis buffer (25 mMGlycine-

Glycine [pH 7.8], 15 mMMgSO4; 4 mM EGTA, 10% (v/v) glycerol, 0.1–1% (v/v) Triton X-

100, 1 mMDTT added right before use) at indicated time points after transfection/infection,

snap frozen at -70˚C and thawed prior to use. RLuc activity was measured using a Mithras LB

940 plate reader (Berthold technologies, BadWildbad, Germany) after addition of 400 μl assay

buffer (25 mMGlycine-Glycine [pH 7.8], 15 mM K4PO4 buffer [pH 7.8], 15 mMMgSO4, 4

mM EGTA) containing 1.43 μM of coelenterazine (PJK, Kleinblittersdorf, Germany). In some

cases, RLuc activity was measured with a Lumat LB9507 tube luminometer (Berthold) after

mixing 20 μl of cell lysate with 100 μl of RLuc buffer.

Selection for pseudorevertants

Single substitutions in NS1 were inserted into a selectable subgenomic DENV replicon

(sgDVH2A) containing a hygromycin phosphotransferase gene downstream of the cis-acting

elements of the capsid-coding region (CS). A 2A cleavage sequence at the carboxy-terminus

of the hygromycin phosphotransferase gene was inserted to allow proper processing of the

DENV polyprotein. VeroE6 cells were electroporated with selectable replicon RNAs and cul-

tured in the presence of 150–250 μg/ml Hygromycin B. After three to four weeks, single cell

clones were isolated and expanded and once sufficient cell numbers had been reached, total

cellular RNA was extracted using the NucleoSpin RNA II kit (Macherey-Nagel, Germany).

Viral RNA was reverse transcribed using the SuperScript III reverse transcriptase (Thermo-

Fisher Scientific) and the primer 5’-CGA CCT GAC TTC TAG CCT TGT TTC-3’. cDNA was

used to amplify a DNA fragment spanning the coding region of the DENV-2 non-structural

proteins (from nucleotide 2,422 to 10,248) using the Expand Long Template PCR System

(Roche, Mannheim, Germany), forward primer 5’-ATT AGA GCT CGA TAG TGG TTG

CGT TGT GAG CT-3’ and reverse primer 5’-ATA ATC TAG ACC ACA GAA CTC CTG

CTT CTT CC-3’. Purity and integrity of amplicons was verified by agarose gel electrophoresis

and excised fragments were subjected to nucleotide sequence analysis.

Transfection of plasmid DNA

Target cells were seeded one day prior to transfection to achieve 90–100% confluency at the

time point of transfection. After a medium change 30 min before transfection, cells were trans-

fected using the Trans-IT-LT1 transfection reagent (Mirus, Madison, WI, USA), according to

the protocol of the manufacturer, except for 10 cm-diameter culture dishes where 10 μg of

DNA, 30 μl of Trans-IT-LT1 reagent and 800 μl transfection medium were used. Reduced

serum Opti-MEMmedium (ThermoFisher Scientific) was used for preparing transfection

complexes. In the case of co-transfection of two constructs, equal amounts of each plasmid

DNA were used to reach a total DNA amount required for the given format. In the case of EM

or immunofluorescence analysis, medium was changed 4 h post transfection. Cells were lysed

or fixed 16 to 20 h after transfection and processed for subsequent assays.
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Immunoprecipitation

Infected or transfected cells were washed twice with PBS, lysed in 1 to 2 ml of immunoprecipi-

tation (IP) lysis buffer (150 mMNaCl, 50 mM Tris-HCl [pH 7.4], 0.5% Triton-X100, freshly

supplemented with 1% cOmplete protease inhibitor cocktail (Roche)), and incubated on ice

for 1 h. Lysates were centrifuged at 21,000 x g for 1 h. In some cases, cells were collected in PBS

and dry cell pellets were stored at -80˚C prior to processing for cell lysis. Pre-cleared cell lysates

were normalized to the sample with lowest total protein concentration as measured by Brad-

ford assay [62]; 10% of total normalized cell lysate was saved as input and the rest was added to

20 μl of HA-specific agarose beads slurry (Sigma-Aldrich, St. Louis, MO, USA). After incuba-

tion for 3 to 5 h at 4˚C with gentle agitation, the resin was washed extensively with lysis buffer

and samples were eluted once with 3% SDS in PBS and once with PBS. Eluates were collected,

pooled and subjected to overnight acetone precipitation. Samples were centrifuged for 1 h at

21,000 x g, pellets were resuspended in 2 x SDS-PAGE loading buffer (230 mM Tris-HCl [pH

6,8], 120 mM SDS, 200 mMDTT, 3.5% glycerol, 0.1% bromophenol blue) and denatured by 5

min incubation at 98˚C. In the case of DVR2A_NS1_HA�-infected cells the same procedure

was employed but using Pierce anti-HA magnetic beads (Thermo Fisher Scientific) and direct

processing of eluates without the acetone precipitation step.

Determination of the NS1 viral interactome by quantitative LC-MS/MS
proteomics

For mass spectrometry (MS) analysis, cells were processed for HA-specific affinity purification

as described above. After washing with lysis buffer, proteins bound to the resin were washed

additionally 3 times in lysis buffer without detergent and protease inhibitors. Bound proteins

were denatured by incubation in 20 μl guanidinium chloride buffer (600 mMGdmCl, 1mM

Tris[2-carboxyethyl] phosphine–HCl, 4mM chloroacetamide, 100 mM Tris-HCl [pH 8.0]).

After digestion with 1 μg LysC (WAKO Chemicals USA) at room temperature for 3 h, the sus-

pension was diluted in 100 mM Tris-HCl [pH 8.0], and the protein solution was digested with

trypsin (Promega) overnight at room temperature. Peptides were purified on stage tips with

three C18 Empore filter discs (3M, Maplewood, MN, USA) and analyzed by liquid chromatog-

raphy coupled to MS on an Orbitrap XL instrument (Thermo Fisher Scientific) as described

previously [63]. Raw MS data were processed with the MaxQuant software package, version

1.5.3 [64] using the built-in Andromeda search engine to search against the human proteome

(UniprotKB, release 2012_01) containing forward and reverse sequences concatenated with

the DENV polyprotein (Uniprot ID: P-29990) with the individual viral open reading frames

manually annotated, and the label-free quantitation algorithm as described previously [65].

Additionally, the intensity-based absolute quantification (iBAQ) algorithm and Match

Between Runs option were used. In MaxQuant, carbamidomethylation was set as fixed and

methionine oxidation and N-acetylation as variable modifications, using an initial mass toler-

ance of 6 ppm for the precursor ion and 0.5 Da for the fragment ions. Search results were fil-

tered with a false discovery rate (FDR) of 0.01 for peptide and protein identifications. The

Perseus software package, version 1.5.3.0 was used to further process the data. Protein tables

were filtered to eliminate the identifications from the reverse database and common contami-

nants. In analyzing MS data, only proteins identified on the basis of at least one peptide and a

minimum of three quantitation events in at least one experimental group were considered.

IBAQ protein intensity values were normalized against the median intensity of each sample

(using only peptides with recorded intensity values across all samples and biological replicas),

log-transformed and missing values filled by imputation with random numbers drawn from a

normal distribution calculated for each sample. Significant interactors were determined by
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multiple equal variance t-tests with permutation-based false discovery rate statistics. We per-

formed 250 permutations and the FDR threshold was set at 0.001. The parameter S0 was set at

2 to separate background from specifically enriched interactors. Results were plotted as Vol-

cano plot and heat map using the Perseus software package [64].

Western blots

Cells were lysed in IP lysis buffer, incubated on ice for 1 h and samples cleared by centrifuga-

tion at 21,000 x g for 1 h. Protein concentration was measured by Bradford assay, samples

were denatured by boiling for 5 min in 98˚C in SDS-PAGE buffer (120 mM Tris-HCl [pH

6.8], 60 mM SDS, 100 mMDTT, 1.75% glycerol, 0.1% bromophenol blue) and 20 to 30 μg of

total protein was loaded onto each lane of a gel. Proteins were separated by SDS-PAGE and

transferred onto a polyvinylidenfluorid membrane. After blocking of the membrane with 5%

milk in PBS-T (PBS with 0.5% Tween) or 5% BSA in PBS-T, they were incubated with primary

and secondary horse radish peroxidase-conjugated antibodies as specified in the antibody sec-

tion. Signals were developed by using the Western Lightning Plus-ECL reagent (Perkin Elmer,

Waltham, MA, USA) and visualized with a ChemoCam Imager 3.2 (Intas Science Imaging

Instruments GmbH, Göttingen, Germany). The LabImage 1D software (Intas) was used for

quantification of protein-specific signals.

Ultrastructural analysis by transmission electron microscopy

Cells grown on glass coverslips were fixed with 2% glutaraldehyde in 50 mM cacodylate buffer

[pH 7,2] containing 10 mMMgCl2, 10 mM CaCl2, 100 mM KCl and 2% sucrose. Cells were

either stored at 4˚C for up to several days or directly washed 5x with 50 mM cacodylate buffer,

incubated with 2% osmium tetroxide for 40 min on ice and 0.5% uranyl acetate, dissolved in

double distilled water, for 30 min at room temperature or 24 h at 4˚C. Samples were washed

with double distilled water for 30 min and dehydrated step-wise with 40% to 100% ethanol,

embedded in an araldite-Epon mixture (Araldite 502/Embed 812 kit; Electron Microscopy Sci-

ences) and left for one to three days at 60˚C to allow complete polymerization. After removal

of the coverslip, embedded cells were cut into 70-nm thick sections with a Leica Ultracut UCT

microtome (Leica, Wetzlar, Germany) and a diamond knife and mounted onto a mesh grid.

Retrieved sections were further incubated with 3% uranyl acetate in 70% methanol for 5 min,

followed by 2% lead citrate in distilled water for 2 min. Samples were analyzed with an EM10

transmission electron microscope (Carl Zeiss AG, Oberkochen, Germany) or a Jeol JEM-1400

(Jeol Ltd., Tokyo, Japan). For quantification of VPs, cells from randomly selected areas of the

grid were analyzed. Wildtype samples were always prepared in parallel and only experiments

where at least 20% of the wildtype cells were positive for VPs were taken under consideration.

For each experiment the number of counted cells is given in the figure legend.

Immunofluorescence

For immunofluorescence analysis cells grown and transfected as described above were fixed in

4% paraformaldehyde for 15 min and permeabilized by 15 min incubation with 0.2% Triton

X-100 in PBS. Cells were stained with primary antibodies as specified in the figure legends, fol-

lowed by staining with anti-mouse or anti-rabbit secondary antibodies, conjugated with Alexa

Fluor 488 or 568 (ThermoFisher Scientific). Coverslips were mounted on glass slides and ana-

lyzed with a Nikon Eclipse Ti microscope (Nikon, Tokyo, Japan) to assess transfection effi-

ciency, or a Leica SP8 confocal microscope (Leica) to analyze subcellular localization of DENV

proteins.

Interaction between DENV NS1 and NS4A-2K-4B precursor

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007736 May 9, 2019 28 / 34

https://doi.org/10.1371/journal.ppat.1007736


Statistical analysis and molecular graphics

Statistical analyses were performed using the GraphPad Prism 5.0 software package (LaJolla,

CA, USA). Two-tailed paired Student’s t-test with Bonferroni correction for multiple samples

comparison was used to assess statistical significance. All molecular graphics were prepared

with either MOE 2015 or UCSF Chimera software [66].

Supporting information

S1 Fig. Replication fitness of the DENV genome encoding NS1 with an internal HA tag.

Huh7 cells were electroporated with in vitro transcribed RNAs of full length DVR2A contain-

ing internally HA-tagged NS1 (NS1_HA�). (A) Cells were lysed at indicated time points after

transfection and RLuc activity was measured to determine viral replication. (B) Supernatants

from electroporated cells were harvested at indicated time points after transfection and used to

infect naïve Huh7 cells. Cells were harvested 48 h post infection and RLuc activity levels were

determined in cell lysates. The DVR2A genome with the complete NS1 deletion (DVR2A-

cΔNS1) was used to determine the background of the assay.

(TIF)

S2 Fig. Analysis of HA-NS1 immune purified protein complexes isolated from transfected

cells by using a commercial NS4B-specifc antibody.Huh7-derived cells stably expressing the

T7 RNA polymerase and DENV NS2B-3 were co-transfected with NS1_HA or non-tagged

NS1 (NS1_nt) and processed for immunoprecipitation as described in Fig 4. Captured protein

complexes were analyzed by immunoblotting using a commercial NS4B antiserum (GeneTex)

and the NS1-specific rabbit antiserum.

(TIF)

S3 Fig. Evidence that the NS4A-2K-4B precursor is not glycosylated. Given the recent report

of NS4B glycosylation, potential glycosylation of the NS4A-2K-4B cleavage intermediate was

assessed by performing PNGase-F treatment. Huh7-derived cells stably expressing the T7

RNA polymerase and DENV NS2B-NS3 were co-transfected with plasmids encoding HA-

tagged or non-tagged NS1 and NS4A-2K-4B. Cells were harvested 16 h post transfection and

lysates used for HA-specific pull-down. Eluates were concentrated by acetone precipitation.

Protein complexes were dissolved in water and treated with PNGase F (NEB, Ipswich, MA,

USA) under denaturing conditions according to the manufacturer’s protocol. Mock-treated

samples were prepared in parallel. Samples were analyzed by western blot using antibodies

specified on the right. While PNGase treatment of NS1 increased its electrophoretic mobility,

indicating removal of glycosylation, we could not observe a shift in case of the NS4B-contain-

ing proteins, suggesting that they are not glycosylated. Note that in the samples processed for

deglycosylation, the ~35 kDa precursor band (see Fig 4) was no longer visible, neither in

PNGase-treated nor control samples. Since the PNGase deglycosylation protocol requires boil-

ing of the samples at 100˚C for 10 min, we assume that this treatment results in full denatur-

ation of the ~35 kDa protein species which then migrates like the ~30 kDa protein species. The

protein with an apparent molecular weight of ~60 kDa might represent a heat stable dimer of

NS4A-2K-4B.

(TIF)

S4 Fig. Effect of second-site mutations in NS4B on NS1 –NS4A-2K-NS4B interaction.

Huh7 cells stably expressing the T7 RNA polymerase and proteolytically active DENV NS2B-3

were co-transfected with constructs encoding HA-tagged wildtype (WT) or mutated NS1 and

the wildtype or mutated NS4A-2K-4B polyprotein construct. Cell lysates were processed as
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described in Fig 4B and immunoblots were probed with NS1- and NS4B-specific antisera.

(TIF)

S5 Fig. Subcellular localization of NS3 and NS4B in cells transfected with the DENV-2

polyprotein expression constructs containing deletions in NS1.Huh7-Lunet_T7 cells were

grown on coverslips, transfected with constructs encoding the wildtype (WT), pΔNS1, or
cΔNS1 polyprotein and fixed 18 h post transfection. Proteins were detected using antibodies

against NS3 or NS4B and PDI (protein disulfide isomerase) or RTN3 (reticulon 3), which both

are ER markers, respectively. Note that two different NS4B staining patterns, i.e. diffuse or

punctuated, were observed in both WT and ΔNS1 transfected cells. Scale bar = 20 μm.

(TIF)

S6 Fig. Homology model of the NS1 dimer. The model is based on the DENV NS1 structure

(PDB 4O6B) with missing residues modelled based on the ZIKV NS1 structure (PDB 5K6K) as

described in Fig 1(A). Amino acid residues involved in interaction with the NS4A-2K-4B pre-

cursor are marked in blue. Residues required for replication and residing close to the proposed

membrane interface, but having no impact on NS1 interaction with NS4A-2K-4B are marked

in red.

(TIF)
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