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The theoretical background and the implementation of a new interval arithmetic approach for solving sets of differential-
algebraic equations (DAEs) are presented. The proposed approach computes guaranteed enclosures of all reachable states
of dynamical systems described by sets of DAEs with uncertainties in both initial conditions and system parameters. The
algorithm is based on VALENCIA-IVP,which has been developed recently for the computation of verified enclosures of the
solution sets of initial value problems for ordinary differential equations. For the application to DAEs, VALENCIA-IVP has
been extended by an interval Newton technique to solve nonlinear algebraic equations in a guaranteed way. In addition to
verified simulation of initial value problems for DAE systems, the developed approach is applicable to the verified solution
of the so-called inverse control problems. In this case, guaranteed enclosures for valid input signals of dynamical systems
are determined such that their corresponding outputs are consistent with prescribed time-dependent functions. Simulation
results demonstrating the potential of VALENCIA-IVP for solving DAEs in technical applications conclude this paper. The
selected application scenarios point out relations to other existing verified simulation techniques for dynamical systems as
well as directions for future research.
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1. Introduction

To describe and analyze the dynamics of a large num-
ber of systems in engineering, physics, and (bio-) chem-
ical as well as (bio-) medical applications, continuous-
time mathematical models are commonly used. These
continuous-time models can either be given in the form
of system models with lumped parameters or distributed
parameters.

In this article, the lumped parameter case is studied
in detail. Here, state-space models given by sets of ex-
plicit ordinary differential equations (ODEs) as well as
sets of differential-algebraic equations (DAEs) are consid-
ered. The case of distributed parameters which requires
descriptions including partial differential equations is not
studied in the following.

In contrast to mathematical system models described

by sets of ODEs, descriptions using DAEs are often more
natural, since they allow expressing directly both differen-
tial and algebraic relations between the relevant variables.
Especially algebraic equations can be used to formulate
constraints on the system dynamics. Furthermore, they
are applicable to formulate common problems in control
engineering involving optimal trajectory planning for both
open-loop and closed-loop control systems.

During the last decade, interval arithmetic techniques
have been developed as a means to compute guaranteed
enclosures of the trajectories of dynamical systems under
consideration of bounded uncertainties of system param-
eters and initial conditions (Berz and Makino, 1998; Lin
and Stadtherr, 2007; Nedialkov, 2007).

Since these techniques allow providing guaranteed
state enclosures in a single evaluation of the state equa-
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tions over the desired time horizon, they are often pre-
ferred to non-set-theoretic approaches such as Monte
Carlo simulations or grid-based techniques if worst-case
state enclosures are of interest. In contrast to inter-
val methods, Monte Carlo simulations or grid-based ap-
proaches lead to the necessity for repeated simulations of
the same mathematical model with various parameteriza-
tions. Although this results in an increased computational
effort, no guarantee can be given that worst-case bounds
are obtained for the state variables in the case of dynami-
cal systems with bounded uncertainties of parameters and
initial conditions.

In this article, a new algorithmic approach based on
interval arithmetic is presented to solve sets of DAEs with
uncertainties in both initial states and parameters. This ap-
proach is based on the verified ODE solver VALENCIA-
IVP (http://www.valencia-ivp.com) which has
been originally developed to determine guaranteed enclo-
sures of the solutions of sets of ODEs (Auer et al., 2008;
Rauh et al., 2007a).

In this context, the term guaranteed is used inter-
changeably with the commonly used terms verified and
reliable to denote the fact that the results given by the en-
closures of all reachable states are mathematically (and
not empirically) proven to be correct. However, naive im-
plementations of interval algorithms can lead to a signifi-
cant amount of overestimation (Jaulin et al., 2001; Moore,
1966). In the extreme case, this overestimation can lead to
meaningless results. To obtain tightest possible bounds of
the exact sets of all reachable states, suitable algorithmic
techniques have to be implemented in each interval arith-
metic approach to prevent the growth of the diameters of
the enclosures of the sets of all reachable states over sim-
ulation time.

In Section 2, problem formulations for both inter-
val arithmetic simulations of sets of ODEs and DAEs
are summarized. Furthermore, possible application sce-
narios and alternative simulation approaches are dis-
cussed. In Section 3, the basic algorithmic techniques
of VALENCIA-IVP for the simulation of ODEs and for
the reduction of overestimation are highlighted. Exten-
sions for the simulation of dynamical systems including
algebraic constraints, which are based on the identifica-
tion of hidden constraints in DAE systems, are derived
in Section 4. In Sections 5–7, an interval Newton tech-
nique for the solution of nonlinear algebraic equations is
described, implemented, and interfaced with VALENCIA-
IVP to compute guaranteed state enclosures for DAEs.
In Section 8, the basic properties of these routines are
demonstrated for an electrical network as a simple appli-
cation scenario. Finally, this paper is concluded with an
outlook on future research in Section 9.

2. Problem formulation

Mathematical models of continuous-time dynamical sys-
tems are usually either formulated as sets of ODEs or
DAEs. For both types of system representations, com-
monly used notations and basic problem formulations are
summarized in the following.

2.1. Ordinary differential equations (ODEs). The
classical description of a nonlinear continuous-time sys-
tem is a set of time-varying ODEs

ẋ(t) = f (x(t), t) (1)

with the state vector

x(t) :=

[
xs(t)
p(t)

]

∈ R
nx . (2)

This state vector represents a concatenation of the actual
system states xs(t) ∈ R

ns and the time-varying system
parameters p(t) ∈ R

np . From an application-oriented
point of view, the two parts of x(t) have to be distin-
guished since the components xs(t) can usually be influ-
enced in a systematic way using feedforward or feedback
control strategies, while the quantities p(t) are usually not
controllable. If the parameters p(t) are not constant, their
variation rates are described by additional ODEs

ṗ (t) = ∆p (t) . (3)

The function f : D → R
nx , D ⊂ R

ns × R
np ×

R
1 is the nonlinear state-space representation (Rauh et al.,

2007a) of the dynamical system which is assumed to be
differentiable with respect to x and t up to the orders that
are required by the specific solution approaches, which
are applied to solve initial value problems. To account for
uncertainties in the state equations (1), initial states x0 :=
x(t0) are considered that are bounded by the guaranteed
interval enclosure

[x0] := [x0; x0] =

[[
xs0; xs0

]

[
p
0
; p0

]

]

. (4)

Furthermore, for time-varying parameters

p (t) ∈
[
p (t) ; p (t)

]
(5)

the property

∆p (t) ∈
[
∆p (t) ; ∆p (t)

]
(6)

holds.
Guaranteed enclosures of the sets of all reachable

states of the system model (1) can be computed with the
help of verified ODE solvers such as VALENCIA-IVP.
The basic routines for the computation of state enclosures
implemented in this solver are summarized in Section 3.

http://www.valencia-ivp.com
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2.2. Differential-algebraic equations (DAEs). Al-
though mathematical system representations given by sets
of explicit ODEs are often easier to solve numerically than
sets of implicit ODEs or DAEs, the latter descriptions usu-
ally arise in a natural way if mathematical models for dy-
namical systems in various fields of engineering, physics,
and (bio-) chemical as well as (bio-) medical applications
are derived and identified.

For example, considering electrical circuits, a math-
ematical description consisting of a set of coupled ODEs
together with algebraic constraints is obtained from direct
application of Kirchhoff’s voltage and current laws (Chua
et al., 1990). Thus, the solution of initial value problems
for sets of differential equations which are coupled with
algebraic constraints according to

ẋ(t) = f
(
x(t), y(t), t

)
, (7a)

0 = g
(
x(t), y(t), t

)
, (7b)

with f : D → R
nx and g : D → R

ny , where D ⊂
R

nx ×R
ny ×R

1 holds, is of special practical importance.
Analogously to sets of explicit ODEs, the goal of

this paper is to derive an interval arithmetic solver for ini-
tial value problems for sets of DAEs. Using this solver,
the influence of bounded parameter uncertainties as well
as uncertainties of the initial conditions on the set of all
reachable states is analyzed without further symbolic re-
formulations of the state equations (7a) and (7b).

However, in contrast to ODEs, the solvability of ini-
tial value problems for DAEs strongly depends on the con-
sistency of the initial values x (t0) and y (t0). These ini-
tial conditions have to fulfill not only the algebraic con-
straints (7b) but also hidden constraints which can be com-
puted as the Lie derivatives of the algebraic constraints g
in the direction of the vector field f .

As in the case of ODEs, the vector x (t) of dif-
ferential state variables contains both constant and time-
varying system parameters which cannot be influenced
using the control inputs of the dynamical system. The
variation rates of these parameters are again described by
additional ODEs (3) with (6), which are assumed to be
included in (7a) with ∆p (t) = 0 and ∆p (t) �= 0, respec-
tively.

2.3. Possible applications. One reason for extending
the verified simulation tool VALENCIA-IVP to handle
sets of DAEs is to simplify the steps that have to be per-
formed between mathematical modeling and simulation,
i.e., the solution of an initial value problem.

Verified simulations of dynamical system models
providing interval enclosures of the sets of all reachable
states are a powerful tool for modern techniques in control
engineering including the design of optimal and robust
control laws (Rauh and Hofer, 2009; Rauh et al., 2009).

As shown, e.g., in (Rauh, 2008), verified solvers for
initial value problems are a prerequisite for the implemen-
tation of interval observers which allow us to identify re-
gions in the state-space that are consistent with the system
dynamics (usually described by ODEs or DAEs) and mea-
sured data with bounded uncertainties. Commonly, mea-
sured values are only available at discrete points of time.
Given that a dynamical system is completely observable,
information about all components of its state vector can
be reconstructed by measuring some of these components.
Classical, well-known non-verified approaches for this
task are, e.g., the Luenberger observer and the Kalman
filter.

A further application for verified solvers for sets of
DAEs is the solution of inverse control problems. In
this case, control variables for dynamical systems are de-
termined such that specific output signals are consistent
with predefined time-dependent functions (Czechowski
et al., 2006). Compared with a standard simulation, the
role of input and output variables is reversed.

In (Rauh et al., 2008; Rauh and Auer, 2008),
VALENCIA-IVP is applied to the verification of
the dynamics of mechanical multibody systems using
the multibody modeling and simulation environment
SMARTMOBILE.

2.4. Further simulation techniques for ODEs and

DAEs. Simulation tools for dynamical system models
can be classified into non-verified solvers on the one hand
and verified solvers on the other hand. There exists a
huge number of different non-verified numerical tools for
the computation of approximate solutions of initial value
problems for sets of ODEs. These tools are based on ex-
plicit as well as implicit single-step and multi-step solvers.
Well-known approaches rely, e.g., on Runge-Kutta meth-
ods. Ready to use routines can be found, e.g., in the GNU
GSL library, which is freely available (Galassi, 2006).

In the case of DAEs, the constraints (7b) can, in gen-
eral, be eliminated analytically such that only the resulting
set of ODEs has to be solved. To avoid this tedious work,
routines have been implemented which do not eliminate
the algebraic constraints explicitly and which solve the set
of DAEs (7) directly.

Numerical approximations for initial value problems
for sets of DAEs can be computed by algorithms like
DASSL (Petzold, 1982), GAMD (Iavernaro and Mazzia,
1998), GELDA (Kunkel et al., 1997), MEBDFI (Cash
and Considine, 1992), PSIDE (de Swart et al., 1998), or
RADAU (Hairer et al., 1989; Hairer and Wanner, 1991).
The recently developed solver DAETS (Nedialkov and
Pryce, 2008) is reported to compute more accurate ap-
proximations of the true solutions and to show improved
performance for DAE systems with higher differential in-
dices.

Up to now, no general-purpose verified solver for
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sets of DAEs exists. The only approach that is known
to the authors is based on COSY VI (Hoefkens, 2001).
However, symbolic reformulations of the set of DAEs to
be evaluated are performed in this software such that it
does not exactly match the above-mentioned goal to solve
DAEs directly.

3. VALENCIA-IVP for the calculation of

guaranteed state enclosures for ODEs

VALENCIA-IVP has been developed originally as an ini-
tial value problem solver for sets of ODEs with uncer-
tainties in the initial states and parameters (Rauh et al.,
2007a; Rauh et al., 2007b). The solution provided by
VALENCIA-IVP is an interval enclosure which contains
all reachable states of the dynamical system. There-
fore, it is guaranteed that—also under consideration of
uncertainties—there are definitely no reachable states out-
side these interval enclosures. Classical non-verified tech-
niques like grid-based approaches or Monte-Carlo meth-
ods (Hammersley and Handscomb, 1964) do not guaran-
tee the correctness of the solution.

For initial value problems for ODEs

ẋ(t) = f(x(t), t) (8)

with

x(t0) ∈ [x0] = [x0; x0] , (9)

the set of all reachable states is enclosed by the time-
varying bounds

[xencl(t)] := xapp(t) + [R(t)] (10)

for all points of time t0 ≤ t ≤ tf . Without loss of gener-
ality, t0 = 0 is assumed in the following.

The interval enclosure in (10) consists of a non-
verified approximate solution xapp(t) and guaranteed
error bounds [R(t)] which are computed iteratively.
Generally, arbitrary approximate solutions xapp(t) can
be used. Currently, VALENCIA-IVP supports the choice
between single-step or multiple-step solvers as well as
explicit or implicit techniques at this stage. Ready to use
algorithms employing, e.g., explicit Runge-Kutta meth-
ods or implicit Bulirsch-Stoer methods are implemented
in the C++ library GSL (Galassi, 2006).

Theorem 1. Consider an initial value problem as defined

in the equations (8) and (9) with f : D �→ R
nx , D ⊂

R
nx × R

1 open, f ∈ C1(D, Rnx). Then all reachable

states at the point of time t are contained in the interval

enclosure (10) if the error bounds [R (t)] are computed by

the following two-stage procedure:

1. Iterative computation of an interval enclosure of

all possible time derivatives
[

Ṙ (t)
]

of the error term by

[

Ṙ(κ+1) (t)
]

= −ẋapp (t) + f
([

x
(κ)
encl (t)

]

, t
)

= −ẋapp (t) + f
(

xapp (t) +
[

R(κ) (t)
]

, t
)

=: r
([

R(κ) (t)
]

, t
)

(11)

for 0 ≤ t ≤ T .

This iteration converges to a verified enclosure of
[

Ṙ (t)
]

if
[

Ṙ(κ+1) (t)
]

⊆
[

Ṙ(κ) (t)
]

holds. The itera-

tion (11) is continued until
[

Ṙ(κ+1) (t)
]

≈
[

Ṙ(κ) (t)
]

.

2. Verified integration of
[

Ṙ(κ+1) (t)
]

, 0 ≤ t ≤ T ,

0 ≤ T ≤ tf , with respect to time according to

[

R(κ+1) (T )
]

⊆
[

R(κ+1) (0)
]

+

T∫

0

[

Ṙ(κ+1) (τ)
]

dτ

=
[

R(κ+1) (0)
]

+

T∫

0

r
([

R(κ) (τ)
]

, τ
)

dτ

replaced by the guaranteed bound

[

R(κ+1) (T )
]

⊆
[

R(κ+1) (0)
]

+ T · r
([

R(κ) ([0 ; T ])
]

, [0 ; T ]
)

.
(12)

These updated error bounds are required for the evalu-

ation of the formula (11) in the next iteration step. Un-

certainties of the initial conditions are accounted for by

choosing [R (0)] such that [x0] ⊆ xapp (0) + [R (0)] is

fulfilled.

Proof. Using the Picard iteration (Eijgenraam, 1981;
Deville et al., 2002),
[

B(κ+1)
]

= [x0] + [0 ; T ] · f
([

B(κ)
]

, [0 ; T ]
)

, (13)

a bounding box [B] of all states which are reachable in
the time interval t ∈ [0 ; T ] can be determined according
to Banach’s fixed-point theorem. Substituting [xencl] as
defined in (10) for the bounding box [B] on both sides
of (13) leads to the iteration formula
[

x
(κ+1)
encl ([0 ; T ])

]

= [x0] + [0 ; T ] · f
([

x
(κ)
encl ([0 ; T ])

]

, [0 ; T ]
)

.

(14)

Let the approximation error [R(t)] in (10) be defined by

[R ([0 ; T ])] := [R (0)] + [0 ; T ] ·
[

Ṙ ([0 ; T ])
]

. (15)
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Then, the iteration formula (14) is equivalent to

xapp ([0 ; T ]) +
[

R(κ+1) ([0 ; T ])
]

= [x0] + [0 ; T ] · f
([

x
(κ)
encl ([0 ; T ])

]

, [0 ; T ]
)

.

(16)

Due to the definition (15),
[

Ṙ ([0 ; T ])
]

is a conser-

vative interval enclosure of all possible time deriva-
tives of [R ([0 ; T ])] in the time interval considered.
Since the definition (15) holds in each iteration step κ,
[

Ṙ(κ+1) ([0 ; T ])
]

is a guaranteed interval enclosure of

all possible time derivatives of
[
R(κ+1) ([0 ; T ])

]
in the

time interval [0 ; T ].

Analogously, f
([

x
(κ)
encl ([0 ; T ])

]

, [0 ; T ]
)

is a

guaranteed enclosure of the time derivative of the right
hand side of (16). Therefore, differentiation with respect

to time on both sides of (16) and solving for
[

Ṙ(κ+1)
]

leads directly to the iteration formula (11). Finally, the
evaluation of the sum of the approximate solution xapp (t)
and the bounds of the approximation error using outward
rounding of the resulting interval provides a verified state
enclosure of the solution of the initial value problem. �

To prevent the growth of interval diameters of the
state enclosures over simulation time for asymptotically
stable dynamical systems, the following exponential
enclosure approach has been introduced.

Theorem 2. Consider again the initial value problem de-

fined in Theorem 1 for the nonlinear set of ODEs ẋ (t) =
f (x (t) , t) with f : D �→ R

nx , D ⊂ R
nx × R

1, f ∈
C1(D, Rnx), where the initial states are again character-

ized by x (0) ∈ [x0]. At the point of time t, 0 ≤ t ≤ T ,

0 ≤ T ≤ tf , a guaranteed enclosure of the set of all

reachable states is described by the exponential term

[xencl (t)] := e[Λ]·t · [xencl (0)] (17)

with the diagonal matrix

[Λ] = diag {[λi]} , i = 1, . . . , nx. (18)

The guaranteed state enclosure [xencl (t)] is obtained with

the help of the definition (17) by the evaluation of the iter-

ation formula

[

λ
(κ+1)
i

]

:=
fi

(

e([Λ
(κ)]·[0 ; T ]) · [xencl (0)] , [0 ; T ]

)

e

([

λ
(κ)
i

]

·[0 ; T ]
)

· [xencl,i (0)]
(19)

for all i = 1, . . . , nx.

Using this iteration formula, the entries [λi] of the

interval matrix [Λ] can be determined, if the value zero

does not belong to the set of reachable states for any xi,

i = 1, . . . , nx, in the time interval 0 ≤ t ≤ T .

Proof. The proof of Theorem 2 proceeds in a similar
way as the proof of Theorem 1 describing the basic itera-
tion formula of VALENCIA-IVP. After a substitution of
the exponential state enclosure [xencl (t)] defined in (17)
for the bounding box [B] on both sides of the Picard iter-
ation (13), the expression

e([Λ
(κ+1)]·[0 ; T ]) · [xencl (0)]

= [x0] + [0 ; T ] · f
(

e([Λ
(κ)]·[0 ; T ]) · [xencl (0)] , [0 ; T ]

)

(20)

is obtained.
Differentiation with respect to time on both sides

of (20) (see Theorem 1 and its proof for the prerequisites
for the admissibility of this differentiation) leads to

diag
{[

λ
(κ+1)
i

]}

· e([Λ(κ+1)]·[0 ; T ]) · [xencl (0)]

= f
(

e([Λ
(κ)]·[0 ; T ]) · [xencl (0)] , [0 ; T ]

)

.
(21)

If the iteration formula (19) converges, the property
[

λ
(κ+1)
i

]

⊆
[

λ
(κ)
i

]

(22)

holds for all i = 1, . . . , nx and, thus, also
[

Λ(κ+1)
]

⊆
[

Λ(κ)
]

(23)

holds.
Due to the monotonicity of the exponential function

and due to the property of inclusion monotonicity in inter-
val evaluation of analytic functions, the relation

e([Λ
(κ+1)]·[0 ; T ]) ⊆ e([Λ

(κ)]·[0 ; T ]) (24)

is obtained. Substituting this relation for the exponential
term on the left hand side of (21), the definition

diag
{[

λ̃
(κ+1)
i

]}

· e([Λ(κ)]·[0 ; T ]) · [xencl (0)]
︸ ︷︷ ︸

[

x
(κ)
encl

([0 ; T ])
]

:= f
(

e([Λ
(κ)]·[0 ; T ]) · [xencl (0)] , [0 ; T ]

)

(25)

for the intervals
[

λ̃
(κ+1)
i

]

is obtained. Due to inclusion

monotonicity of the exponential function in (24), it is

guaranteed that the intervals
[

λ̃
(κ+1)
i

]

represent verified

enclosures of the intervals
[

λ
(κ+1)
i

]

to be determined.

A division of (25) by the interval
[

x
(κ)
encl,i ([0 ; T ])

]

with component-wise notation results in the iteration for-

mula (19). In this iteration formula, the intervals
[

λ̃
(κ+1)
i

]

are used instead of
[

λ
(κ+1)
i

]

. The division on the right

hand side of (19) and, therefore, also the application of the
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exponential enclosure technique are only admissible if the
value zero is not contained in the set of reachable states for
any component of the state vector in the complete time in-
terval [0 ; T ]. This condition has to be checked using the
iteration in Theorem 1. �

The quality of the interval enclosures is influenced
by the following factors:

1. The initial approximation xapp (t) in the complete

time interval. Smaller deviations between the un-
known exact solution and its initial approximation
lead to tighter enclosures of the solution over a longer
time span with less computational effort.

2. Time span. Tighter bounds can be obtained by subdi-
viding the time span [0 ; T ]. This improves the con-
vergence of the iteration formula (11) and addition-
ally leads to smaller interval bounds; see also Step 3

in the following description of the algorithm.

3. Preconditioning of the state equations. The effi-
ciency of the iteration formulas (11) and (19) can be
improved if the wrapping effect in verified simula-
tion of ODEs is reduced by suitable preconditioning
of the state equations.

Algorithm. In the following, the key components of
VALENCIA-IVP for ODEs are summarized. More details
are given in (Auer et al., 2008).

Step 1. Calculation of reference solutions.

VALENCIA-IVP can make use of both analytical
and numerical approximations xapp (t) for initial value
problems of ODEs. In this paper, we only discuss the use
of numerical approximations since they enable the user
to apply VALENCIA-IVP to a wider class of systems
without the necessity for system-specific modifications.

Consider a non-verified numerical approximation
{
xN

i

}
, i = 0, . . . , L, for the original initial value prob-

lem with the point interval xN
0 = mid ([x0]) as the ini-

tial condition. This numerical approximation is computed
over a grid {ti} with tL = T by an arbitrary non-verified
IVP solvers. In the iteration formula (11), an analytic ex-
pression is required for xapp (t) and its time derivative
ẋapp (t). This expression is determined by minimizing
a distance measure between the numerically determined
points

{
xN

i

}
and the approximate solution xapp (t) of the

solution of the initial value problem.
For this purpose, VALENCIA-IVP currently uses a

linear interpolation between the grid points according to

xapp (t) = xN
i +

xN
i+1 − xN

i

ti+1 − ti
· (t − ti) (26)

with

ẋapp (t) =
xN

i+1 − xN
i

ti+1 − ti
(27)

and t ∈ [ti ; ti+1], i = 0, . . . , L − 1. The advantage of
this method is that xapp (t) is obtained with small compu-
tational effort. The step sizes ti+1 − ti, i = 0, . . . , L − 1,
are determined by the non-verified solver.

Analogously, higher-order interpolations between
the numerically calculated grid points expressed by pa-
rameterizable functions xapp (t) can be included in the
source code of this solver instead of linear interpolation.
On the one hand, the deviation between the approximate
and exact solutions of IVP is reduced by these improved
approximations. On the other hand, the dependency on
time of these higher-order interpolations is always nonlin-
ear. Since the iteration formula (11), which is based on
the nonlinear state equations, has to be evaluated for time
intervals and not only for infinitesimally short points of
time in the following Steps 2–4, the influence of overes-
timation is growing, if such interpolations are used. Due
to these two effects, a compromise has to be found be-
tween the improvement of the initial approximation and
the computational effort, which is necessary to reduce the
arising overestimation. For techniques aiming at the re-
duction of overestimation, see the discussion of advanced
interval methods in Step 4.

Step 2. Initialization of the iteration scheme. To
start the iteration (11), initial interval approximations for

[R (t)] and
[

Ṙ (t)
]

are required. Afterwards, in the first it-

eration step κ = 0,
[

Ṙ(1) (t)
]

is calculated. The iteration

is continued, if
[

Ṙ(1) (t)
]

⊆
[

Ṙ(0) (t)
]

. Otherwise, the

initial guesses for [R (t)] and
[

Ṙ (t)
]

have to be modified.

Note that the interval enclosure [R (0)] for the initial point
of time has to be chosen such that all possible initial states
are included, i.e., [x0] ⊆ xapp (0) + [R (0)].

Step 3. Subdivision of the time span into several time

intervals. If the time span [0 ; T ] is split into several
shorter time intervals to improve the convergence of the it-
eration and to reduce the width of the error bounds, again

verified integration of
[

Ṙ(κ+1)
]

is necessary to obtain a

guaranteed enclosure for the error term. As follows di-
rectly from (12), the integration with respect to time is
performed by

[

R(κ+1) (ti+1)
]

=
[

R(κ+1) (0)
]

+

i∑

j=0

(tj+1 − tj) · r
([

R(κ) ([∆tj ])
]

, [∆tj ]
)

(28)

with
[∆tj ] := [tj ; tj+1] (29)
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for all {ti}, i = 0, . . . , L− 1. For numerical reference so-
lutions with the linear interpolation (26) between the grid
points, {ti} is determined by the non-verified ODE solver
which has been applied in Step 1. Note that the grid on
the time axis does not have to be equally spaced.

Step 4. Calculation of the state enclosures. The width
of the state enclosure [x (t)] ⊆ xapp (t) + [R (t)] deter-
mines whether improved initial approximations in Step 1
and smaller time intervals [∆tj ] in Step 3 are necessary to
reduce overestimation in the interval enclosures.

In the evaluation of (11) and (19), overestimation re-
sults from multiple occurrence of identical interval vari-
ables. This overestimation is reduced by mean-value rule
evaluation of the right hand side of the iteration formu-
las (11) and (19) as well as iterative improvement of the
range of the expression on the right hand side includ-
ing monotonicity tests. In VALENCIA-IVP, all partial
derivatives required for these interval techniques are de-
termined by automatic/algorithmic differentiation using
FADBAD++ (Bendsten and Stauning, 2007).

(a) Mean-value rule evaluation of iteration formula.

Since natural interval evaluation of nonlinear expressions
often leads to overestimation, the iteration formula (11) is
evaluated using the mean-value rule

r (z) ∈ r (zm) +
∂r

∂z

∣
∣
∣
∣
∣
z=[z]

· ([z] − zm) (30)

for all z ∈ [z] with the vector

[z] =

[
[R (ti)]

[ti ; ti+1]

]

and zm = mid ([z]) (31)

containing all interval arguments of the right hand side
of (11). To obtain the tightest possible enclosures, we use
the intersection of the results of both natural interval ex-
tension and mean-value rule evaluation in all further com-
putations.

(b) Monotonicity test. Additionally, VALENCIA-IVP
performs a monotonicity test for further reduction of over-
estimation. In the case of the monotonicity of the compo-
nent ri, i = 1, . . . , nx, with respect to at least one zj ,
j = 1, . . . , nx + 1, i.e., if the lower bound of the inter-
val evaluation of ∂ri/∂zj is strictly positive or if its upper
bound is strictly negative, the interval [zj ] can be replaced
by one of the interval bounds as summarized in Table 1.
For example, if inf(∂ri/∂zj) > 0, [zj] can be replaced
by zj to compute the infimum of the range of ri over [z]
and by zj to compute its supremum. The range of ri is
then given by the interval hull of the results of both rows
in Table 1.

Table 1. Replacement of arguments in the iteration formula of
VALENCIA-IVP in the case of monotonicity.

inf
(

∂ri

∂zj

)

> 0 sup
(

∂ri

∂zj

)

< 0

inf

{

ri (z)
∣
∣
∣
zj=ξj

}

ξj = zj ξj = zj

sup

{

ri (z)
∣
∣
∣
zj=ξj

}

ξj = zj ξj = zj

(c) Iterative calculation of the range. If the mono-
tonicity test is not successful in at least one argument of ri,
all arguments of ri with interval diameters which are sig-
nificantly larger than zero can be split into several subin-
tervals for which mean-value rule evaluation and mono-
tonicity tests are applied again. Since only tight upper and
lower bounds of ri are desired, the splitting procedure is
continued with the input intervals which lead to the small-
est infimum/largest supremum to improve the lower/upper
bounds of ri. Splitting in VALENCIA-IVP is continued
until a user-defined number of subintervals is reached or
until ri is monotonic for all input arguments. Finally, the
union of all subintervals for ri is determined to compute
the improved enclosure of its range. For numerous practi-
cally relevant dynamical systems, a small number of split-
tings is required to obtain good enclosures of the range if
monotonicity is checked for each subinterval. Thus, com-
pared to methods employing derivatives of high orders,
the advantages of this procedure are simplicity of imple-
mentation and often a smaller computational effort.

Analogously, the techniques (a)–(c) are applied to the
exponential enclosure technique (Theorem 2) in which the

intervals
[

λ
(κ+1)
i

]

are computed iteratively.

In (Rauh et al., 2007a), the authors have demon-
strated the applicability of VALENCIA-IVP to the simu-
lation of dynamical systems with both uncertain param-
eters and uncertain initial states. In further extensions
of VALENCIA-IVP, consistency tests based on backward
integration of subintervals of the state enclosure [xencl (t)]
have been implemented. These consistency tests aim
at the reduction of overestimation by the detection and
elimination of subintervals of [xencl (t)] which certainly
result from overestimation (Rauh et al., 2007a; Rauh
et al., 2007b). Finally, physical conservation properties
can be exploited as further constraints to detect and re-
duce overestimation (Rauh et al., 2008).

4. Application of interval Newton

techniques to ensure the consistency of

the state variables of DAEs

Interval Newton methods are fundamental techniques for
the solution of sets of DAEs using VALENCIA-IVP.
In this section, the computation of guaranteed interval
enclosures of steady states—under the assumption of
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time-invariant uncertain parameters and constant control
inputs—as well as approaches for the verification of the
consistency of initial states are demonstrated. These ap-
proaches are extended to the verification of the dynamics
of sets of DAEs in Section 5.

4.1. Computation of guaranteed enclosures of steady

states. To compute guaranteed interval enclosures of the
sets of steady states, the state equations (7a) and (7b) have
to be evaluated for ẋ = 0. Then, interval Newton tech-
niques, such as the Krawczyk iteration (Krawczyk, 1969),
see also the Appendix, can be applied to search for all
combinations of x and y in a predefined region which ful-
fill the resulting nonlinear algebraic equations.

Example 1. To demonstrate this property, the pendulum
example from (Nedialkov, 2007) rewritten as a set of first
order differential equations

ẋ1 = x3,

ẋ2 = x4,

ẋ3 = −x1y,

ẋ4 = −x2y + 1,

g (x) = x2
1 + x2

2 − 1 = 0

(32)

is considered. Assuming the interval boxes

[x] =

⎡

⎢
⎢
⎣

[−5 ; 5]
[−5 ; 5]
[−5 ; 5]
[−5 ; 5]

⎤

⎥
⎥
⎦

and [y] = [−5 ; 5] (33)

as the a priori given search space, enclosures of both con-
sistent steady states x〈1〉, y〈1〉 and x〈2〉, y〈2〉 are computed.
These steady states (which can easily be determined ana-
lytically) are given by

x〈1〉 =
[
0 −1 0 0

]T
, y〈1〉 = −1

and
x〈2〉 =

[
0 1 0 0

]T
, y〈2〉 = 1.

The corresponding interval enclosures are obtained using
the Krawczyk iteration with diameters smaller than 10−40.

�

4.2. Consistency test for the initial conditions of

DAEs. Usually, the information provided by the alge-
braic constraints (7b) is not sufficient to verify the consis-
tency of initial states of a set of DAEs. In this case, ad-

ditional hidden constraints are necessary to restrict the set
of feasible solutions and to verify the consistency of x (t0)
and y (t0). For that purpose, those constraints gi (x) are
considered, which do not depend explicitly on y. Differ-

entiation with respect to time leads to

djgi (x)

dtj
=

(

∂Lj−1
f gi (x)

∂x

)T

· f (x, y)

= Lj
fgi (x) = 0

(34)

with
L0

fgi (x) = gi (x) . (35)

The Lie derivatives Lj
fgi (x) are computed by

FADBAD++ providing automatic differentiation
and automatic calculation of Taylor coefficients. The
differentiation is continued up to the smallest order j > 0
for which Lj

fgi (x) depends on at least one component
of y (i.e., up to the differentiation index of DAEs).
The computation of these Lie derivatives is based on
a procedure published in (Röbenack, 2002). To our
knowledge, the author of (Röbenack, 2002) has not used
this approach in an interval arithmetic framework to
account for uncertainties in ODEs and DAEs.

Example 2. To illustrate the use of the hidden con-
straints (34), the above-mentioned example (32) is consid-
ered again. For this system, symbolic evaluation of (34)
which is avoided in VALENCIA-IVP due to the use of
automatic differentiation gives the constraints

dg (x)

dt
= 2 (x1ẋ1 + x2ẋ2)

= 2 (x1x3 + x2x4)
!
= 0

(36)

and

d2g (x)

dt2
= 2 (ẋ1x3 + x1ẋ3 + ẋ2x4 + x2ẋ4)

= 2
(
x2

3 − x2
1y + x2

4 − x2
2y + x2

) !
= 0

(37)

corresponding to the first and second derivatives of g with
respect to time.

These expressions can be used to verify the results
obtained by automatic differentiation which show that,

for example, x (0) =
[
1 0 0 1

]T
and y (0) = 1

represent consistent initial values, while certainly no
consistent initial conditions are included in x (0) ∈
[
[−0.5 ; 0.5] [−0.5 ; 0.5] [−0.5 ; 0.5] [−1.0 ; 1.0]

]T

for y (0) = 1. �

4.3. Structural analysis of DAEs for automatic com-

putation of consistent initial states. An extension of
the consistency test for initial states is automatic modifi-
cation of these enclosures to ensure consistency. For that
purpose, the user of VALENCIA-IVP can specify which
components of the state vectors x and y are fixed and
therefore not allowed to be modified automatically and
which components are free and allowed to be changed
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Table 2. Interval enclosures of possible consistent initial states.

[x1] [x2] [x3]

candidate 1 [ 0.7716 ; 0.8016] [−0.6362 ; −0.5979] [ 0.7535 ; 0.8162]

candidate 2 [−1.0010 ; −0.9995] [−0.0312 ; 0.0291] [−0.0315 ; 0.0294]

candidate 3 [−0.8016 ; −0.7708] [−0.6361 ; −0.5979] [−0.8162 ; −0.7535]

candidate 4 [ 0.9995 ; 1.0009] [−0.0312 ; 0.0291] [−0.0294 ; 0.0315]

Results of the Krawczyk iteration up to four decimal digits; lower interval bounds are

rounded towards minus infinity, upper bounds towards plus infinity.

within user-defined interval bounds. To solve this prob-
lem, the Krawczyk iteration, which is applied to the al-
gebraic constraints and their Lie derivatives, is modified
such that the fixed components are treated as constant in-
terval parameters, while the solver only determines new
enclosures for the free variables.

Example 3. Consider again the pendulum example with
the initial state enclosures

[x] =

⎡

⎢
⎢
⎣

[−5.0 ; 5.0]
[−5.0 ; 5.0]
[−5.0 ; 5.0]
[0.99 ; 1.01]

⎤

⎥
⎥
⎦

and [y] = [0.99 ; 1.01] (38)

for which the components x4 and y have been specified
to be fixed. All four interval enclosures in which consis-
tent initial states for x1, x2, and x3 are contained can be
computed using VALENCIA-IVP. The corresponding en-
closures [x1], [x2], and [x3] are listed in Table 2. �

5. VALENCIA-IVP for the calculation of

guaranteed state enclosures for DAEs

For the computation of interval enclosures of the trajecto-
ries of the states x (t) and y (t) of DAEs, the semi-explicit
representation

0 = −ẋ(t) + f
(
x(t), y(t), t

)
, (39a)

0 = g
(
x(t), y(t), t

)
(39b)

is considered. According to (10), interval enclosures

[xencl(t)] := xapp(t) + [Rx(t)], (40a)

[yencl(t)] := yapp(t) + [Ry(t)] (40b)

can be defined which distinguish between the differential
variables [xencl(t)] and the algebraic variables [yencl(t)],
respectively. Analogously to VALENCIA-IVP for ODEs,
the enclosure of the solution consists of approximate solu-
tions xapp (t) and yapp (t) with interval enclosures of the
error terms [Rx(t)] and [Ry(t)]. By substituting the in-
terval enclosures (40) for the state vectors x (t) and y (t)

in (39), a nonlinear set of algebraic equations

0 = − ẋapp(t) −
[

Ṙx(t)
]

+ f
(

xapp(t) + [Rx(t)], yapp(t) + [Ry(t)], t
)

,

0 = g
(

xapp(t) + [Rx(t)], yapp(t) + [Ry(t)], t
)

(41)

can be derived for [Rx(t)], [Ry(t)], and [Ṙx(t)], 0 ≤ t ≤
T . As for sets of ODEs, the error bounds are defined by

[Rx(t)] := [Rx(0)] + t ·
[

Ṙx([0; t])
]

,

[Ry(t)] := [Ry(0)] + t ·
[

Ṙy([0; t])
]

.
(42)

Considering the time interval [T ] := [0;T ], the nonlinear
algebraic equations

0 = − ẋapp([T ]) −
[

Ṙx([T ])
]

+f
(

xapp([T ]) + [Rx(0)] + [T ] ·
[

Ṙx([T ])
]

,

yapp([T ]) + [Ry(0)] + [T ] ·
[

Ṙy([T ])
]

, [T ]
)

,

0 = g
(

xapp([T ]) + [Rx(0)] + [T ] ·
[

Ṙx([T ])
]

,

yapp([T ]) + [Ry(0)] + [T ] ·
[

Ṙy([T ])
]

, [T ]
)

(43)

have to be solved for [Ṙx([T ])] and [Ṙy([T ])] using a suit-
able verified approach. As in the previous section, interval
Newton techniques are applied for that purpose.

6. Solving DAEs with VALENCIA-IVP

In Section 5, the basic approach of VALENCIA-IVP has
been extended to handle sets of DAEs. Using the equa-
tions (43), an interval enclosure for an initial value prob-
lem of a set of DAEs can be computed if suitable approx-
imate solutions xapp(t) and yapp(t) are available which
are determined using DASSL or DAETS. For the initial
point of time t0 = 0, the error term is defined by

[R(0)] = [zencl(0)] − zapp(0) (44)
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with

[zencl(0)] :=
[
[xencl(0)]T [yencl(0)]T

]T
(45)

and
zapp(0) :=

[
xapp(0)T yapp(0)T

]T
. (46)

Now the set of equations (43) has to be solved in a
verified way. This is possible using interval Newton tech-
niques like the Krawczyk iteration (Krawczyk, 1969), see
the Appendix. However, solving for [Ṙy([T ])] is not pos-
sible directly since, as shown below, the equations (43) are
structurally singular for t = 0.

Hence, the Krawczyk iteration is applied to deter-
mine the zeros of the expressions

hx

(

[Ṙx([T ])], [Ry([T ])]
)

:= −ẋapp([T ]) − [Ṙx([T ])] + f
(

[x̃], [ỹ], [T ]
)

,

(47a)

hy

(

[Ṙx([T ])], [Ry([T ])]
)

:= g
(

[x̃], [ỹ], [T ]
)

(47b)

with

[x̃] :=
(

xapp([T ]) + [Rx(0)] + [T ] ·
[

Ṙx([T ])
] )

,

(48a)

[ỹ] :=
(

yapp([T ]) + [Ry([T ])]
)

(48b)

to compute the interval enclosures [Ṙx([T ])]
and [Ry([T ])] with Ṙx ∈ R

nx and Ry ∈ R
ny .

If the time derivative [Ṙy(t)] was used as an argu-
ment of the functions hx and hy, the partial derivatives

∂hx

(

Ṙ(t)
)

∂Ṙ(t)

∣
∣
∣
∣
∣
∣
Ṙ(t)∈[Ṙ([T ])]

= −I(nx,nx+ny) +
∂f
(

[z̃], [T ]
)

∂[z̃]
· ∂[z̃]

∂[Ṙ([T ])]
︸ ︷︷ ︸

=[T ]·I(n,n)

,

(49a)

∂hy

(

Ṙ(t)
)

∂Ṙ(t)

∣
∣
∣
∣
∣
∣
Ṙ(t)∈[Ṙ([T ])]

=
∂g
(

[z̃], [T ]
)

∂[z̃]
· ∂[z̃]

∂[Ṙ([T ])]
︸ ︷︷ ︸

=[T ]·I(n,n)

(49b)

with the interval vectors

[R([T ])] :=

[
[Rx([T ])]
[Ry([T ])]

]

and [z̃] :=

[
[x̃]
[ỹ]

]

are structurally singular at least for the initial point of time
in the interval [T ] := [0 ; T ]. In (49a) and (49b), the

identity matrix I(p,q) ∈ R
p×q is defined according to

Ii,j =

{

1 for i = j,

0 otherwise.
(50)

Using (47), the algebraic equations are not structurally
singular as shown by the inner derivative

∂[z̄]

∂

[

[Ṙx([T ])]
[Ry([T ])]

] =

[

[T ] · I(nx,nx) O(nx,ny)

O(ny ,nx) I(ny,ny)

]

(51)

with

[z̄] :=

[

xapp([T ]) + [Rx(0)] + [T ] ·
[

Ṙx([T ])
]

yapp([T ]) + [Ry([T ])]

]

.

(52)
This new definition avoids structural singularity of the
derivative

∂h
(

[Ṙx([T ])], [Ry([T ])]
)

∂

[
[Ṙx([T ])]
[Ry([T ])]

] , h (·) :=

[
hx (·)
hy (·)

]

(53)

of (47). The zero matrix O(p,q) ∈ R
p×q is of dimen-

sion p × q.
However, the information provided by these equa-

tions is not always sufficient to solve for [Ṙx ([T ])] and
[Ry ([T ])]. Considering the pendulum example in the pre-
vious section, the equations are still singular for small step
sizes T → 0. This singularity is related to differentiation
indices of DAEs which are greater than one. In this case,
the Lie derivatives of the algebraic constraints which have
been introduced to determine sets of feasible initial condi-
tions have to be considered to ensure the solvability of the
problem.

To deal with problems related to higher differential
indices of DAEs, a suitable extension of VALENCIA-IVP
is to treat the intervals [Ry ([T ])] as constant interval pa-

rameters in a first stage and to solve the non-algebraic
equations for [Ṙx ([T ])]. In a second stage, the consis-
tency of the solution has to be proven with the help of the
algebraic equations and their time derivatives by showing
that feasible solutions are guaranteed to be contained in
the interior of [Ry ([T ])].

7. Implementation

VALENCIA-IVP for sets of DAEs is implemented as a
C++ program. In Fig. 1, the basic structural diagram of
this program is shown.

As pointed out in Section 2, the extension of
VALENCIA-IVP has only been discussed for semi-
explicit DAEs. This is due to the fact that the computa-
tion of time derivatives of pure algebraic constraints is im-
plemented for this special case. However, the Krawczyk
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VALENCIA-IVP — Algorithm for solving sets of DAEs

use_Krawczyk = 1

Check for consistency of the initial states x(0) and y(0)

Computation of consistent enclosures of initial states based on the
definition of free and fixed initial conditions

Initialization of the computation of an approximate solution for the
initial value problem

❩
❩

❩Yes Use DAE-Solver?
✚

✚
✚

No

Compute approximate solution
using DASSL/ DAETS

Compute approximate solution
using GSL routines

Automatic identification of differential variables of the set of DAEs

❩
❩

❩Yes
Applicability of ValEncIA-IVP for ODEs?

✚
✚

✚

No

use_ValEncIA_ODE = 1 use_ValEncIA_ODE = 0

Initialization of the interval enclosures [R(t)] and [Ṙ(t)]

while (1)

❩
❩

❩Yes
use_Krawczyk == 1?

✚
✚

✚

No

Evaluation of the equation (47)
using the Krawczyk iteration

Abort while-loop if there is no
(significant) improvement
compared to previous
evaluation

(this path is only intended for
pure ODEs for which the
Krawczyk iteration is not
applied)

❩
❩

❩Yes
use_ValEncIA_ODE == 1?

✚
✚

✚

No

Evaluation of the iteration
formula (11) of
VALENCIA-IVP for ODEs
after the interpretation of
interval enclosures of y as
known interval parameters of
an ODE

Abort while-loop if only
differential state variables exist

Abort while-loop

Computation of [xencl(t)] := xapp(t) + [Rx(t)]

Computation of [yencl(t)] := yapp(t) + [Ry(t)]

Fig. 1. Structural diagram of VALENCIA-IVP for DAEs.

iteration can also deal with the case of general, fully im-
plicit DAE systems, as long as no derivatives of pure al-
gebraic constraints are required to solve for [Ṙx ([T ])] and
[Ry ([T ])], and if consistent enclosures of the sets of initial
states are known.

Therefore, general DAEs as well as implicit ODEs

0 = g (x (t) , ẋ (t) , y (t)) (54)

are currently transformed into sets of semi-explicit DAEs
according to

ẋ (t) = x̃ (t) ,

0 = g (x (t) , x̃ (t) , y (t))
(55)

by introducing further algebraic state variables x̃ (t).
Since ODEs are a special case of sets of DAEs, the

implementation of VALENCIA-IVP shown in Fig. 1 is
capable to solve both types of dynamical system models.
Therefore, the Krawczyk iteration can be used in addition
to the iteration formulas (11) and (19) of VALENCIA-
IVP to determine state enclosures for sets of ODEs.
The Krawczyk iteration is enabled by setting the variable
use_Krawczyk true.

For DAEs, the routines for the consistency test and
the modification of initial state enclosures as described in
Section 4 are available. Non-verified approximate solu-
tions are determined numerically with the help of DASSL
or DAETS for sets of DAEs. Routines provided by the
GSL library are available for the computation of approxi-
mate solutions for sets of ODEs.

After these initializations, guaranteed state enclo-
sures are determined as described in the previous sec-
tion. Basic interval arithmetic operations and func-
tionalities for automatic differentiation are provided by
PROFIL/BIAS (Keil, 2007) and FADBAD++ (Bendsten
and Stauning, 2007), respectively.

If the computation of guaranteed state enclosures for
DAEs using the Krawczyk iteration is successful, the en-
closures for the differential state variables x (t) can often
be refined using the iteration formulas (11) and (19) of
VALENCIA-IVP for ODEs. For that purpose, the state
variables y (t) are replaced by their interval enclosures in
each time step. These enclosures—which are formally
treated as parameters with constant interval bounds—
have been computed using the Krawczyk iteration. The
refinement of state enclosures of x (t) is activated by
use_ValEncIA_ODE = 1. It can be implemented in a
straightforward way for semi-explicit DAEs.

In general, also the case when the differential part of
a DAE system is given by

M (y (t)) · ẋ (t) = f (x (t) , y (t) , t) (56)

can be handled instead of

ẋ (t) = f (x (t) , y (t) , t) (57)
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if substituting the corresponding interval enclosures for
y (t) leads to an interval matrix [M ] with full rank. Fur-
ther structures, e.g., M (x (t) , y (t)) or general nonlinear
terms depending also on ẋ (t) have to be dealt with us-
ing (54) and (55). A possible extension is to use interval
Newton techniques to solve for ẋ (t). Then, the iteration
formulas (11) and (19) of VALENCIA-IVP can also be
used in the case of general DAEs. Furthermore, general-
izations for the computation of enclosures of the sets of
consistent initial conditions will be investigated in future
research for general DAE systems.

8. Application

In the following application scenario, a simple electrical
network is used to illustrate the use of VALENCIA-IVP
for sets of DAEs. First, as shown in Fig. 2, verified sim-
ulation of the corresponding mathematical system model
is performed for known interval bounds of the system’s
input voltage uin (t). In this case, the influence of varia-
tions of uin (t) on the output variable uout (t) = uC (t) is
quantified with the help of guaranteed state enclosures.

Fig. 2. Verified simulation of dynamical system models.

In contrast to this simulation of an initial value prob-
lem, Fig. 3 illustrates the computation of an appropriate
input signal uin (t) such that uout (t) = uC (t) is con-
sistent with a predefined time-dependent function. This
problem is often referred to as the solution of an inverse

control problem (Czechowski et al., 2006). In this case,
piecewise linear input signals uin (t) are determined, i.e.,
u̇in (t) is assumed to be piecewise constant.

Fig. 3. Solution of inverse control problems.

In both cases, the electrical network is described by
the DAEs

iC (t) = C · duC (t)

dt
,

uL (t) = L · diL (t)

dt
,

uin (t) = uR (t) + uL (t) + uout (t) ,

uC (t) = uout (t) ,

iR (t) = iL (t) = iC (t) ,

R =
uR (t)

iR (t)

(58)

derived by Kirchhoff’s voltage and current laws.
According to (7), two state vectors

x (t) =

[
uC (t)
iL (t)

]

, y (t) =

⎡

⎢
⎢
⎢
⎢
⎣

iC (t)
uL (t)
uR (t)
iR (t)

uout (t)

⎤

⎥
⎥
⎥
⎥
⎦

(59)

are defined. The system parameters are assumed to be
given by their normalized, nominal values R = 1, L = 1,
and C = 1.

8.1. Verified solution of initial value problems.

For the simulation of an initial value problem for the
DAEs (58), the initial states

x (0) =

[
0
0

]

, y (0) =

⎡

⎢
⎢
⎢
⎢
⎣

0
uin(0)

0
0
0

⎤

⎥
⎥
⎥
⎥
⎦

(60)

are considered. The input voltage uin (t) is assumed
to be an unknown parameter with uin (t) ∈ [0.9 ; 1.1].
In contrast to the pendulum example discussed in Sec-
tion 4, the set of DAEs (58) can be solved directly with-
out computing any time derivative of the algebraic con-
straints g (x (t) , y (t)) = 0.

As shown in Fig. 4, guaranteed interval enclosures
for all state variables are obtained by directly solving the
set of DAEs in VALENCIA-IVP using the Krawczyk it-
eration. The result of this verified simulation is compared
with a grid-based reference simulation obtained by a non-
verified ODE solver for which the algebraic state variables
y (t) have been eliminated symbolically.

This application scenario directly points out one nec-
essary extension for further improvement of state enclo-
sures. Each algebraic equation in a set of DAEs can be
interpreted as a constraint that allows us to detect and
eliminate overestimation at arbitrary points of time. For
example, the constraint iR (t) = iL (t) indicates that both
state variables are identical for all points of time. Using
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enclosure
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approx. solution
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0.0
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0.3
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0 0.2
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(a)

t

enclosure

interval

x
2
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) approx. solution

1.00.60.4 0.6

0.0

0.2

0.4

0.6

0.8

0.20

grid-based reference

(b)

Fig. 4. State enclosures for the simulation of an initial value
problem for the electrical network: (a) interval enclosure
for x1 (t), (b) interval enclosure for x2 (t).

the Krawczyk iteration to determine [Ṙx (t)] and [Ry (t)],
axis-aligned interval boxes are obtained for the state en-
closures. These boxes can be subdivided into smaller en-
closures from which all parts that are inconsistent with
the algebraic constraints can be eliminated, see Fig. 5
as an example. All subintervals [x̃] and [ỹ] for which
0 ∈ g ([x̃] , [ỹ]) (the white subintervals in Fig. 5) holds can
furthermore be checked for consistency by backward eval-
uation of the state equations. If subintervals are detected
which lead to state enclosures in the backward integration
which do not overlap with the results obtained in integra-
tion from t = t0 = 0 to t > t0, they are guaranteed to be
caused by overestimation. Therefore, they are discarded.

As indicated by Fig. 5, the preconditioning of the
set of state equations such that the resulting state enclo-
sures can be represented by tighter axis-aligned interval
boxes in a new coordinate system (scaling and rotating of
the state enclosures) will be considered together with the
above-mentioned consistency tests in future work.

8.2. Computation of control sequences. In addition
to the simulation of sets of DAEs, VALENCIA-IVP can

iL

iR

iL(t) = iR(t)

[x (t)], [y (t)]

example for enclosure
after preconditioning

Fig. 5. Use of algebraic constraints in consistency tests for the
identification and elimination of overestimation; gray:
inconsistent subintervals, white: possibly consistent.

also be used to compute interval enclosures of control se-
quences. In Figs. 6 and 7, two different cases are distin-
guished for

x (0) =

[
1
1

]

and y (0) =

⎡

⎢
⎢
⎢
⎢
⎣

1
−1
1
1
1

⎤

⎥
⎥
⎥
⎥
⎦

(61)

with uin (0) = 1. The desired output signal uout (t)
which is used as a time-dependent algebraic constraint in
the verified DAE solver is defined by

uout (t) = uC (t)

= 1 +
2

3

√
3 exp

(

−1

2
t

)

sin

(
1

2

√
3t

)

.
(62)

First, the case u̇in = −50 is evaluated. As shown
in Fig. 6(a), the corresponding input voltage uin (t) in
Fig. 6(b) is guaranteed to be inadmissible since the result-
ing and desired outputs of the dynamical system model do
not overlap.

Second, enclosures for the set of admissible input
signals are determined for u̇in ∈ [−50 ; 50], see Fig. 7. In
this case, the time interval t ∈ [0 ; 0.5] is subdivided into
time intervals with the fixed width 0.001. For each time
interval, a piecewise linear control input is determined,
where the following three cases are distinguished:

• The interval enclosure for xout (t) is completely in-
cluded in the interval specifying the desired output.
The corresponding input signal is guaranteed to be
admissible.

• The interval enclosure for xout (t) is completely out-
side of the interval specifying the desired output. The
corresponding input signal is guaranteed to be inad-

missible.

• All remaining subintervals are undecided. They have
to be investigated further by splitting of [u̇in (t)].

The major advantages of this approach for the com-
putation of input signals of a dynamical system are that
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Fig. 6. Identification of inadmissible control sequences: (a) in-
terval enclosure of x1 (t), (b) interval enclosure of
uin (t), u̇in = −50.

the non-existence of appropriate solutions can be proven
in a guaranteed way and that parameter uncertainties as
well as tolerances for the admissible output signals can
be handled without any modification of the computational
procedure. Both types of uncertainties can be directly con-
sidered in the interval-based framework for the evaluation
of sets of DAEs.

9. Conclusions and outlook on future

research

In this paper, VALENCIA-IVP has been presented as an
interval arithmetic solver for initial value problems for
both ODEs and DAEs. In future work, extensions will be
developed that help to deal directly with DAEs which are
not given in a semi-explicit form. Furthermore, consis-
tency tests as highlighted in Subsection 8.1, precondition-
ing strategies, and routines for automatic step size control
will be investigated and implemented.

Regarding the computation of control sequences for
dynamical systems with predefined outputs, two further

t

x
1
(t

)

0
0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.50.40.30.20.1

interval enclosure

of output

desired time response

(a)

t

initialization

after consistency

test

u
in

(t
)

0 0.50.40.30.20.1

−20

−10

0

10

20

(b)

Fig. 7. Identification of admissible control sequences: (a) inter-
val enclosure of x1 (t), (b) interval enclosure of uin (t),
u̇in ∈ [−50 ; 50].

extensions that will be considered in the future will
broaden the applicability of VALENCIA-IVP. First, the
step sizes used for switching the control inputs should be
decoupled from the step size used for the integration of
the set of DAEs. Second, coupling the routines described
above for the computation of consistent control sequences
with interval-based routines for the computation of opti-
mal control strategies (Rauh and Hofer, 2009) will be in-
vestigated.

These two tasks will provide a possibility to further
integrate verified techniques for the simulation of dynam-
ical systems in frameworks for the design of robust and
optimal controllers.
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Appendix

Krawczyk method. Like ordinary Newton techniques,
the Krawczyk iteration is used to solve algebraic equa-
tions h(x) = 0. The major difference is that both the ini-
tial guess and the computed solution are provided as inter-
val boxes. In the case of convergence, the Krawczyk iter-
ation guarantees the existence of the solution of h(x) = 0
in the interval enclosure [xzero].

After initialization with the initial guess [x
(0)
zero], the

Krawczyk iteration

[

k
([

x(κ)
zero

]) ]

:= x(κ)
m − Y · h

(

x(κ)
m

)

+

⎛

⎝I − Y · ∂h

∂x

∣
∣
∣
∣
x=
[

x
(κ)
zero

]

⎞

⎠ ·
([

x(κ)
zero

]

− x(κ)
m

)

(63)

with

Y −1 ∈ ∂h

∂x

∣
∣
∣
∣
x=
[

x
(κ)
zero

] =: [h′] (64)

is computed. Here, x
(κ)
m is the midpoint of the interval-

vector [x
(κ)
zero] and I stands for an identity matrix of ap-

propriate dimensions. The matrix Y −1 is usually defined
by mid([h′]) = 1

2

(
h′ + h′

)
with

[h′] :=
∂h

∂x

∣
∣
∣
∣
x∈[x

(κ)
zero]

. (65)

The required point matrix Y is computed by invert-
ing mid([h′]). If this matrix is singular, Y −1 can be re-
defined as an arbitrary point matrix contained in [h′].

After each iteration step κ, the result [k([x
(κ)
zero])] is

compared with [x
(κ)
zero]. If the relation

[

k
([

x(κ)
zero

]) ]

⊂
[

x(κ)
zero

]

(66)

holds, the desired solution [x] is guaranteed to be in-

cluded in the interval [x
(κ)
zero]. Hence, for the next iteration

step κ + 1,

[

x(κ+1)
zero

]

:=

[

k
([

x(κ)
zero

]) ]

(67)

can be used. If (66) is not true, there are two cases to be
distinguished. If a non-empty intersection

[

k
([

x(κ)
zero

]) ]

∩
[

x(κ)
zero

]

�= ∅ (68)

with [

k
([

x(κ)
zero

]) ]

�⊂
[

x(κ)
zero

]

(69)

exists, the initial guess for the interval-vector [x
(κ)
zero] has

to be inflated. If
[

k
([

x(κ)
zero

]) ]

∩
[

x(κ)
zero

]

= ∅ (70)

holds for the intersection, the solution [x] is certainly not

contained in [x
(κ)
zero]. Then, a new initialization has to be

chosen.
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