
 

1 
 

Emrouznejad A., G. Yang and G. R. Amin (2018) A novel inverse DEA model with application to allocate the CO2 

emissions quota to different regions in Chinese manufacturing industries,  Journal of  the Operational Research 

Society, Accepted, For published version please see: https://doi.org/10.1080/01605682.2018.1489344 

 

A novel inverse DEA model with application to allocate the CO2 

emissions quota to different regions in Chinese manufacturing industries 

Ali Emrouznejada1, Guoliang Yangb, Gholam R. Aminc 

Operations & Information Management, Aston Business School, Aston University, Birmingham, UK 

Institute of Science and Development, Chinese Academy of Sciences, Beijing 100190, China  

c Faculty of Business, University of New Brunswick at Saint John, NB E2L 4L5, Canada 

 

Abstract 

This paper aims to address the problem of allocating the CO2 emissions quota set by 

government goal in Chinese manufacturing industries to different Chinese regions. The CO2 

emission reduction is conducted in a three-stage phases. The first stage is to obtain the total 

amount CO2 emission reduction from the Chinese government goal as our total CO2 emission 

quota to reduce. The second stage is to allocate the reduction quota to different two-digit level 

manufacturing industries in China. The third stage is to further allocate the reduction quota 

for each industry into different provinces. A new inverse data envelopment analysis (InvDEA) 

model is developed to achieve our goal to allocate CO2 emission quota under several 

assumptions. At last we obtain the empirical results based on the real data from Chinese 

manufacturing industries.  

Keywords: Data envelopment analysis (DEA); Inverse DEA; CO2 emissions, Manufacturing 

Industries 

 

1. Introduction 

Since the reform and opening up policy in 1978, China's economy has maintained 

long-term rapid development and made great achievements. As reported in the China 

Statistical Yearbook 2016, between 1978 and 2015 the China's nominal Gross 

Domestic Product (GDP) grew significantly from 367.87 to 68263.51 in billion RMB 
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Yuan, an increase of about 186 times. Bian et al. (2015) also argued that China's 

nominal industrial GDP increased by 66.02 times between 1981 and 2009. At the 

same time, however, the contradiction between the rapid growth of economic 

development and the environmental problem has been increasingly prominent. The 

economic development brought about a severe pressure on the natural environment 

and resources in China, especially in recent several years. China Statistical Yearbook 

2016 shows that in year 2015 the Total Waste Water Discharged and Common 

Industrial Solid Wastes Produced reach 7353.227 and 327.079 million tons, 

respectively. In particular, the number of Days of Air Quality Equal to or Above 

Grade Ⅱ in China’s Capital city Beijing is only 186 in the year 2015. Bian et al. 

(2015) also reported the total amount of industrial solid waste produced in 2009 was 

5.42 times that of 1981. In 2007 the total consumption of energy in China in 2007 

reaches 311, 442 in millions of standard coal equivalent (SCE), and the total 

consumption of energy in China grew from 57.144 in 1978 to 430.000 in 2015 in 

million tons of SCE, which is reported clearly in China Statistical Yearbook 2016.  

To address the issues of environmental protection, especially reducing CO2 emissions, 

China government has been searching the viable solutions to balance the economic 

growth and CO2 emissions reduction. At June 30 2015, at the upcoming climate 

conference in France, Chinese Premier Li Keqiang announced China's latest voluntary 

reduction commitment: the CO2 emissions in China will reach the peak at about 2030 

and seek to reach it as early as possible.  

The Chinese government goal motivates us to investigate the problem of allocating 

the CO2 emissions quota in Chinese manufacturing industries to different Chinese 

regions. In this paper, we use a three-stage way to conduct the CO2 emission 

reduction. Firstly, we obtain the total amount CO2 emission reduction from the 

Chinese government goal as our total CO2 emission quota to reduce in the first stage. 

Secondly, we allocate the reduction quota to different two-digit level manufacturing 

industries in China. Thirdly, we further allocate the reduction quota for each industry 

into different provinces. In the CO2 emissions reduction process, we develop a new 
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inverse data envelopment analysis (InvDEA) model to achieve our goal to allocate 

CO2 emission quota under several assumptions.  

The remainder of the paper is organized as follows: Section 2 summarizes the existing 

literatures on CO2 emissions and DEA models. Section 3 describes the dataset and 

input/output indicators of Chinese manufacturing industries in our study. Section 4 

gives the detailed information on our proposed InvDEA method and the empirical 

results of CO2 emission quota allocation. Section 5 concludes this paper and provides 

some remarks for future research.  

2. Literature review on CO2 emission and DEA 

In this section we provide latest development on measuring CO2 emission using DEA 

models. 

2.1. Literatures of using DEA for CO2 emission 

Regarding the efficiency analysis with respect to CO2 emissions, Murty et al. (2007) 

estimated the technical and environmental efficiency and  firm-specific shadow 

prices of pollutants of some coal-fired thermal power plants in India based on 

directional output distance function with the given resources and technology. 

Mukherjee (2010), Riccardi et al. (2012) and Vlontzos et al. (2014) respectively 

examined the efficiency considering reduction of CO2 emissions in Indian 

manufacturing sector, 21 industrialized countries and EU member state countries, 

using directional distance function or non-radial DEA model allowing for 

non-proportional adjustments of outputs. 

Further, Molinos-Senante et al. (2014) who applied measured the efficiency of 

wastewater treatment plants and estimated the pure and mixed environmental 

performance indices for a sample of 60 Spanish wastewater treatment plants using 

DEA models. Sueyoshi and Goto (2014a) and Sueyoshi and Goto (2014b) applied a 

radial-based DEA model which is shaped by the Debreu-Farrell and Cui and Li (2015) 

proposed a new virtual frontier DEA model to measure unified environmental 

efficiency.  
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Currently, China has become one of the world’s largest contributors of CO2 emissions, 

so the environmental efficiency including CO2 emission in Chinese industries has 

been a popular research topic. Some of previous studies on Chinese environmental 

efficiency have been reported Table 1. 
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Table 1. Previous studies on Chinese environmental efficiency. 

 
Note: (1) ML index denotes Malmquist–Luenberger productivity index; (2) SBM denotes 

slack-based measure 

 

2.2. Inverse DEA   
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This section briefly reviews the origin and development of the inverse DEA 

methodology. The origin of inverse DEA is inverse optimization. Unlike normal 

optimization where the objective is finding an optimal solution, in an inverse 

optimization a feasible solution, which is not necessarily optimal, is given and the 

objective is to perturb the original data as less as possible in order to make that 

solution optimal (Ahuja and Orlin, 2001). Burton and Toint (1992) first studied an 

inverse problem in network flows specifically for the shortest path problems. Since 

then inverse optimization has been continuously enriched by new applications and a 

variety of inverse optimization problems in combinatorial optimization have been 

studied by researchers in the operations research community (Jiang et al. 2011; 

Pibernik et al. 2011; Ruiz et al. 2013; Wang et al. 2014). However, there are few 

articles about inverse continuous optimization like inverse linear programming and 

inverse DEA. Zhang and Liu (1996) investigated the first inverse linear programming 

model in the literature. Further research studies on inverse linear programming 

problems are given in Zhang and Liu (1999) and Huang and Liu (1999). One of the 

few applications of inverse linear programming in the literature is for predicting more 

accurate forecasting parameters developed in Amin and Emrouznejad (2007). The first 

inverse DEA methodology as a special case of the general inverse linear programming 

suggested in Wei et al. (2000) and further developed in Yan et al. (2002). Unlike the 

standard DEA whose objective is to find the efficiency score, the InvDEA assumes the 

efficiency given and aims to find the levels of inputs and outputs that are required to 

realize the desired efficiency score. Despite the potential applicability of the standard 

DEA in different contexts, there are few applications of inverse DEA that are reported 

in the literature such as application in resource allocation suggested in Hadi-Vencheh 

et al. (2008). Further recent of inverse DEA studies can be found in Jahanshahloo et al. 

(2015), Ghobadi and Jahangiri (2015), Ghiyasi (2017) and Amin et al. (2017a). In 

addition, Zhang and Cui (2016) discussed an extension of the inverse DEA model and 

Lim (2016) addressed the frontier change for setting a new product target using a new 

inverse DEA method. Gattoufi at al. (2014) extended the concept of inverse DEA to 

the context of mergers and acquisitions (M&A). The proposed inverse DEA in 

http://www.sciencedirect.com/science/article/pii/S0264999308000126
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Gattoufi et al. (2014) determines the optimal levels of inputs and outputs that are 

required from merging decision making units (DMUs) in order to allow the merged 

entity to realize a predefined efficiency target. More recently, Amin and 

Al-Muharrami (2016) addressed new inverse DEA models for mergers with negative 

data. Moreover, the potential of the inverse DEA has been used in Amin et al. (2017b) 

to anticipate whether a given restructuring between a group of DMUs makes a minor 

or a major consolidation. The successful result of the inverse DEA in M&A shows the 

potential power of this methodology in other sectors. In this paper we introduce an 

inverse DEA for allocation of CO2 emissions reduction goal into different two-digit 

manufacturing industries and different regions. 

3. Dataset and indicators 

The country level data of Chinese manufacturing industries in 2012 used in this study 

is mainly derived from China Statistical Yearbook 2013 and China Energy Statistical 

Yearbook 2013. The province level data is from 31 statistical yearbooks of each 

province in 2013 respectively. We select the two-digit manufacturing industries in 

China as the DMUs. According to the new standard on Industrial Classification for 

National Economic Activities (GB/T4754-2011) enforced by National Bureau of 

Statistics of China (NBS) from 2012, the number of two-digit manufacturing 

industries changed to 31. See the following Table 2. The industry statistics cover all 

industries above designated size, which is 20 million yuan of annual revenue from 

primary business.  

In this paper, we use three indicators including Labor, Asset and Energy as the inputs 

and two indicators as the outputs, including Gross Industrial Output Value (GIOV) as 

the desirable output and CO2 emissions as the undesirable one.  
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Table 2. The two-digit manufacturing industries in China.  

 

The variables used in this study are as follows: (1) Labor refers to the amount of labors in 

Chinese manufacturing industries. Due to the mobility of Labor, the amount of labor variable 

is different at different time in one year, so the number of annual average employed persons is 

taken as the indicator. (2) Asset refers to the amount of total assets. Data on this indicator are 

obtained by the year-end figures of total assets in the Assets and Liability Table of accounting 
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records of enterprises. (3) Energy refers to the total consumption of energy of various kinds 

by the production sectors in the country in a given period of time. (4) In this paper the 

GIOV is used as a desirable output. This variable has been estimated by dividing 

Industrial Sales Output Value (ISOV) to Sales Ratio of Products (SRP), as both 

variables are available for each sub-level manufacturing industry for the year 2013. (5) 

The CO2 emission is the undesirable output in our study, which is also estimated based on the 

consumption of different types of energy. For details on data collection please see 

Emrouznejad and Yang (2016a, 2016b). The descriptive statistics for the country level 

dataset can be found also in Emrouznejad and Yang (2016a, 2016b).  

 

4 Methodology and empirical results  

Our main idea in this paper is to conduct the CO2 emission reduction in a three-stage 

way. The first stage is to obtain the total amount CO2 emission reduction from the 

Chinese government goal, denoted by 𝐶𝑂2𝑡𝑜𝑡𝑎𝑙, as our total CO2 emission quota to 

reduce. The second stage is to allocate the reduction quota 𝐶𝑂2𝑡𝑜𝑡𝑎𝑙 to different 

manufacturing industries, denoted by 𝐶𝑂2𝑖, where 𝑖 denotes different two-digit Chinese 

manufacturing industries, which satisfy ∑ 𝐶𝑂2𝑖 = 𝐶𝑂2𝑡𝑜𝑡𝑎𝑙𝑖 . The third stage is to further 

allocate the reduction quota for each industry 𝐶𝑂2𝑖 into different provinces, denoted by 

𝐶𝑂2𝑖𝑗, where 𝑗 denotes different provinces and the following formula holds: ∑ 𝐶𝑂2𝑖𝑗 =𝑗

𝐶𝑂2𝑖.  

 

4.1 Determining the total amount of CO2 emission in Chinese manufacturing 

industries 

In manufacturing industries, the Gross Industrial Output Value (GIOV) plays the same 

role as GDP for the country. Chinese State Council released officially the "National 

Climate Change Plan (2014-2020)” in the September 2014 and announced China's 

CO2 emissions to gross domestic product in 2020 would be reduced by 40% to 45% 

on the basis of 2005. At the world climate conference in France in June 2015, Chinese 

Premier Li Keqiang announced China's latest voluntary reduction commitment: China 

government aim to cut its greenhouse gas emissions intensity by 60-65% (per unit of 

http://www.theguardian.com/world/china
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gross domestic product) from 2005 levels. Based on the above goal, we can propose 

CO2 reduction goal as CO2 emission/GIOV decrease 60% to 65% based on the level 

of 2005. The CO2 emission/GIOV in China from 2004 to 2012 is listed in the 

following Table 3.   

Table 3. The CO2 emission/GIOV in China from 2004 to 2012.   

 

*Source: China Statistical Yearbooks 2005 - 2013, China Energy Statistical Yearbook (Note: According 

to OECD statistics, we set Index 2010=100) 

As it is been explained in Emrouznejad and Yang (2016a, 2016b) the value of GIOV 

transform to constant price in 2010 using the Consumer Price Index (CPI) of China, 

as shown in the last column of Table 3. This transformation approach is used in many 

other researches, e.g. Oh and Heshmati (2010). The CPI data is derived from OECD 

(2010).  

Therefore in this paper we set the goal to decrease 60% to 65% of the level of CO2 

emission/GIOV in 2012 based on that in 2005. Thus CO2 emission/GIOV in 2012 

should be in the range of [0.4073, 0.4655]. However the real ratio of CO2 

emission/GIOV reaches 0.5109. If Chinese government achieves the goal of the CO2 

emission in 2012, the CO2 emission in 2012 should be [329646.7686, 376739.1641]. 

However the real amount of CO2 emission in manufacturing industries in China is 

413471.1638 (10,000 tons). Thus the CO2 emission reduction gap should be 

[36731.9997, 83824.3952] in the unit of 10,000 tons. As the CO2 emission reduction 
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of Chinese government is an interval, we use the lower bound, which is 36731.9997 

(unit: 10 thousand tons), as the minimal CO2 reduction goal in this paper.  

 

4.2. A new InvDEA model for CO2 emission quota allocation 

Assume that there are 𝑛  DMUs where the 𝑗𝑡ℎ  DMU use 𝑀  inputs 𝑥𝑖𝑗(𝑖 =

1,… ,𝑀)  and produces 𝑅  good outputs 𝑦𝑟𝑗
𝑔
 (𝑟 = 1,… , 𝑅)  and 𝑃  undesirable or 

bad outputs 𝑦𝑝𝑗 
𝑏 (𝑝 = 1,… , 𝑃), for each 𝑗 = 1, … , 𝑛. Let 𝐿 be the set of selected 

DMUs for reducing undesirable outputs. Generally in our modeling, we assume that 

𝐿 ⊆ {1, … , 𝑛} and reducing undesirable outputs from all DMUs means that 𝐿 =

{1, … , 𝑛}. Assume all the DMUs in 𝐿 would keep their efficiency scores at least the 

same as before reducing bad outputs. Moreover, let 𝛼𝑖𝑘, 𝛽𝑟𝑘, 𝛾𝑝𝑘 be the levels of 

the 𝑖𝑡ℎ input, 𝑟𝑡ℎ good output and 𝑝𝑡ℎ bad output of the 𝑘𝑡ℎ DMU, respectively, 

after reducing the bad outputs (for each 𝑖 = 1, … ,𝑀, 𝑟 = 1,… , 𝑅, 𝑝 = 1,… , 𝑃  and 

every 𝑘 ∈ 𝐿 .  

First, we propose the following assumptions for the CO2 emission reduction in our 

paper:  

Assumption 1. The efficient frontier will remain constant in the process of CO2 

emissions reduction.   

Based on this assumption, we assume 𝐹 be the set of all efficient DMUs identified 

by the following model (1). 

𝐷⃗⃗ 𝐷𝐷𝐹,𝑣
𝐺 (𝑋𝑘 , 𝑌𝑘 , 𝐵𝑘 , 𝑔𝑌, 𝑔𝐵) = 𝑚𝑎𝑥 𝛽𝑘⃗⃗⃗⃗ 

𝑠. 𝑡.

{
  
 

  
 

∑ 𝜆𝑗𝑋𝑗 ≤ 𝑋𝑘
𝑛
𝑗=1

∑ 𝜆𝑗𝑌𝑗 ≥ (1 + 𝛽𝑘⃗⃗⃗⃗ )𝑌𝑘
𝑛
𝑗=1

∑ 𝜆𝑗𝐵𝑗 = (1 − 𝛽𝑘⃗⃗⃗⃗ )𝐵𝑘
𝑛
𝑗=1

∑ 𝜆𝑗 = 1
𝑛
𝑗=1

𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝑛

                        (1) 

Based on the results from model (1), we can have the inefficient DMUs as the targets 

of our CO2 emission reduction.  

The proposed inverse DEA method in this paper is the first attempt in the literature to 
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determine optimal allocation of CO2 emissions. The base DEA model for the inverse 

problem can be any DEA model developed for undesirable output. In this paper, we 

consider the directional distance DEA model (1) as the base model simply because it 

is more relevant to the application. 

It should be noted that there is enough space for CO2 emission reduction goal of 

Chinese government using the inefficient DMUs as the reduction targets in this paper. 

Therefore, we can assume the Assumption 1 holds. Otherwise, if we cannot achieve 

the government goal of reducing CO2 emissions by inefficient DMUs only, we need to 

consider to reduce CO2 emissions from efficient DMUs, which means the efficient 

frontiers will shift towards the direction of more desirable output(s) and less 

undesirable output(s). In such case, the problem will be more complex. A possible 

solution is to assume all the DMUs reduce further the same proportion of CO2 

emissions to achieve this goal, which technically means the frontiers shift in an 

average way.    

Assumption 2: The efficiencies of all DMUs will not decrease in the process of CO2 

emissions reduction.   

This assumption indicates the CO2 emissions reduction will not damage the DMUs' 

efficiencies including both efficient and inefficient ones. Thus, the efficiency of none 

of DMUs will be deteriorated after the CO2 emissions reduction.  

Assumption 3:  There exist the possible policy thresholds for certain input or output.  

In the real scenario of policy making, the policy makers often need to consider some 

policy thresholds for certain input or output indicators. For example, in China, it is 

very difficult to fire too much employee in the manufacturing industries. Furthermore, 

the gross industrial output value (GIOV) cannot be reduced too much, because the 

Chinese government needs to keep the growth rate of gross domestic product (GDP) 

at a certain level. Therefore, in our model we consider such types of policy thresholds 

to make our model more reasonable and flexible.  

Based on the above three assumptions, we propose the following InvDEA model for 
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allocation the given amount of bad outputs reductions to different DMUs.  

Remark 1. In certain case, we have to shift the efficient frontier in the process of CO2 

emissions reduction to meet the CO2 emission reduction targets. We will discuss this 

issue in the following subsection 4.4.  

1 1
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The objective of the InvDEA model (2) is to minimize the sum of the amount of the 

inputs that should be kept and minimizing the amount of good outputs that should be 

dropped from each DMU in L in a way that the amount of  𝑎𝑝 from the 𝑝𝑡ℎ 

(𝑝 = 1,… , 𝑃) bad output of DMUs in L should be reduced. There is also limitation 

on the amount of reduction of good outputs shown by the constraints (1 − 𝑐𝑟𝑘)𝑦𝑟𝑘
𝑔
≤

𝛽𝑟𝑘 ≤ 𝑦𝑟𝑘
𝑔

 (∀𝑘 ∈ 𝐿, 𝑟 = 1,… , 𝑅) where 𝑐𝑟𝑘 is a constant given by decision makers. 

For instance, a policy of reducing at most 5% of good outputs in order to reduce a 

given amount of bad outputs, if feasible, can be employed by considering 𝑐𝑟𝑘 = 0.05. 

Furthermore, 𝛽̂𝑘 is a parameter that guarantees the efficiency scores of DMUs in L 

would not be decreased after bad outputs reduction since 0 ≤ 𝛽̂𝑘 ≤ 𝛽𝑘
∗⃗⃗⃗⃗ , where 𝛽𝑘

∗⃗⃗⃗⃗  is 

the optimal value of DEA model (1).  
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It should be noted that the Assumptions 1-3 are given to simplify the implementation 

of the suggested inverse DEA model (2). In fact, the non-linear model (2) can be 

simplified to a linear programming problem (3). Assumption 1 guarantees that there 

would be no frontier change after CO2 emission reduction and this would simplify the 

non-linear model to a linear model. The following theorem shows the possibility of 

this relaxation.  

Theorem 1: The NLP InvDEA model (2) can be simplified to the following relaxed 

LP InvDEA model.  

1 1

min

. .

0, , 1, ,

ˆ(1 ) 0, , 1, ,

ˆ(1 ) 0, , 1, ,

1, (3)
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   =
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Proof: We first assume that L contains only inefficient DMUs. This means that  none 

of the DMUs in L can be a benchmark for itself and/or other DMUs, implying that  

𝜆𝑗
𝑘∗ = 0 for all 𝑘, 𝑗 ∈ 𝐿 in any optimal solution of the InvDEA model (2). The NLP 

InvDEA Model (2) can be similarly relaxed to model (3) even if some of the 

inefficient DMUs in L targeted to be fully efficient after reducing bad outputs, or 

equivalently 𝛽̂𝑘 = 0  for some 𝑘 ∈ 𝐿. In fact, these new efficient DMUs fall on the 

efficiency frontier and therefore can be presented in terms of the a convex 

combination of the existing efficient DMUs.  
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Now, consider a case when reducing bad outputs from an efficient DMUk is at 

concern or equivalently 𝑘 ∈ 𝐿. According to the assumption we have 0 ≤ 𝛽̂𝑘 ≤ 𝛽𝑘
∗⃗⃗⃗⃗ =

0, and  so 𝛽̂𝑘 = 0. Therefore, DMUk is efficient before and after reducing bad 

outputs and therefore can be presented in terms of DMUk itself. This concludes that  

𝑦𝑝𝑘
𝑏 − 𝛾𝑝𝑘

∗ = 0, 𝑝 = 1,… , 𝑃 

Or equivalently reducing bad outputs from an efficient DMU would be zero. It worth 

noting that this would be the case if we wouldn't change the efficiency frontier. This 

completes the proof. ■  

It should be noted that in certain situations, there may be the cases that model (3) will 

not have feasible solutions because of the setting of policy thresholds. For example, as 

we mentioned above, there is a limitation on the amount of reduction of good outputs 

shown by the constraints (1 − 𝑐𝑟𝑘)𝑦𝑟𝑘
𝑔
≤ 𝛽𝑟𝑘 ≤ 𝑦𝑟𝑘

𝑔
 (∀𝑘 ∈ 𝐿, 𝑟 = 1,… , 𝑅 ) where 

𝑐𝑟𝑘 is a constant given by decision makers. Those policy thresholds may not provide 

enough space for CO2 emission reduction. Thus, we suggest to decide the lower bound 

of those thresholds 𝐶𝑟
∗ using the following model (4) as the parameters in model (3), 

which mean the decision makers have to allow to reduce the good outputs at least to 

the level of (1 − 𝐶𝑟
∗), 𝑟 = 1,… , 𝑅.  
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1
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Therefore, we use the following procedure to conduct the allocation the CO2 emission 

reduction among designated DMUs.  

Procedure 1.  

Step 1: Use model (1) to divide all DMUs into two sets of efficient and inefficient 

DMUs respectively, which are denoted as 𝐹 and 𝐿 respectively.  

Step 2: Select all inefficient DMUs in the set  𝐿 as the targets for CO2 reduction.  

Step 3: Set policy thresholds for certain input or output for CO2 reduction.  

Step 4: Use model (3) to allocate CO2 emission reduction into inefficient DMUs in the 

set 𝐿. 

Table 4. The results of model (1) and two sets. 



 

17 
 

 

 

 



 

18 
 

4.3 Allocate the CO2 emission reduction to different two-digit Chinese manufacturing 

industries 

As we discussed in subsection 4.1, we use the lower bound of CO2 reduction interval, 

which is 36732(unit: 10 thousand tons), as the minimal CO2 reduction goal in this 

paper. We use the above Procedure 1 to conduct the allocation the CO2 emission 

reduction among different two-digit Chinese manufacturing industries.  

Step 1: Two sets of efficient and inefficient two-digit Chinese manufacturing 

industries are as follows (See Table 4):  

Step 2:  We select all inefficient DMUs in set 𝐿 as the targets for CO2 reduction in 

the following Table 5. Also we assume the parameter 𝛽̂𝑘  that guarantees the 

efficiency scores of DMUs in L wouldn't be decreased after CO2 emission reduction.  

Table 5. The inefficient DMUs in set 𝐿.  

 

We propose two ways to determine the parameter 𝛽̂𝑘:  

 Case 1: The first one is to keep the 𝛽̂𝑘 as the value of 𝛽𝑘
∗⃗⃗⃗⃗   in model (1), which 
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means all inefficient DMUs keep their efficiencies in the process of reducing CO2 

emission.  

 Case 2: The second one is to improve the directional distance 𝛽𝑘
∗⃗⃗⃗⃗   by 10%, 

which means that we define 𝛽̂𝑘 = 90% × 𝛽𝑘
∗⃗⃗⃗⃗  for each k L .   

Step 3: We set the policy threshold for at least 95% of the good output GIOV should 

be kept. Thus we have the following constraints in model (3):  

(1 0.05) , , 1, ,g

rk rky β k L r R−    =  

Step 4:  We use model (3) to allocate CO2 emission reduction into inefficient DMUs 

in the set L. See Table 6.    

Table 6. The CO2 emission allocation. (unit: 10 thousand tons) 
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4.4 Allocate the CO2 emission reduction to different regions  

Without loss of generality, we assume that we select the Case 2 in subsection 4.3 as 

the results for the further allocation of the CO2 emission reduction to different regions. 

That means we assume that we aim to improve the directional distance 𝛽𝑘
∗⃗⃗⃗⃗  by 10%, 

i.e., 𝛽̂𝑘 = 90%× 𝛽𝑘
∗⃗⃗⃗⃗  for each k L . Therefore we use the following procedure to 

conduct the second stage allocation of CO2 emission reduction.  

Step 1. We first select the DMUs for the second stage of allocating the CO2 emission 

reduction to different regions in China. Based on the results in the above Table 6, we 

have the following Table 7 for the further allocation of CO2 emission reduction. 

Table 7. The DMUs to be further allocated. (unit: 10 thousand tons) 

 

Step 2. We conduct the similar procedure to Procedure 1 in subsection 4.3 where we 

substitute the Chinese manufacturing in Procedure 1 for the 31 different provinces of 

China. Furthermore, we also assume that we aim to improve the directional distance, 

which is obtained from model (1) when applied to the 31 different provinces, by 10%. 

We repeat this process for DMU2, DMU9, DMU10, DMU18, and DMU29. Thus we have 

the final results as follows (See Table 8): 

It should be noted here that for the Manufacture of Foods, Manufacture of Furniture, 

Manufacture of Paper and Paper Products, and Other Manufacture, the policy 

thresholds for good output reduction are all 5%, which provides enough space for CO2 

emissions reduction. However for the Manufacture of Non-metallic Mineral Products, 

model (3) cannot find feasible solution for CO2 emission reduction with the 

constraints of the policy thresholds for good output reduction are all 5%. Therefore, 
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we first use model (4) to find the lower bound of thresholds on GIOV as 

𝐶∗ = 37.73% using model (4), which mean the decision makers have to 

allow to reduce the GIOV at least to the level of 1 − 𝐶∗ = 62.27%.  

Table 8. The CO2 emission allocation in the second stage. (unit: 10 thousand tons) 

Regions DMU2 DMU9 DMU10 DMU18 DMU29 

Beijing 0.000 0.000 0.000 309.717 0.550  

Tianjin 0.000 0.000 0.000 137.314 0.439  

Hebei 0.000 0.000 0.000 2146.731 3.054  

Shanghai 0.000 0.000 83.583 774.586 8.095  

Jiangsu 0.000 0.000 34.813 3081.870 34.393  

Zhejiang 0.000 2.151 0.000 1759.959 46.269  

Fujian 0.000 0.000 0.000 1469.718 15.602  

Shandong 0.000 0.000 0.000 0.000 17.738  

Guangdong 0.000 0.000 49.630 3787.145 87.358  

Hainan 0.000 0.000 0.000 0.000 17.074  

Liaoning 0.000 0.000 0.000 0.000 25.137  

Jilin 0.000 0.000 31.932 0.000 1.011  

Helongjiang 0.000 0.000 0.000 0.000 0.286  

Anhui 0.000 0.000 0.000 2547.221 1.023  

Jianxi 0.000 0.000 0.000 0.000 4.067  

Henan 0.000 0.000 265.378 1665.366 2.624  

Hubei 41.888 0.000 0.000 1606.724 4.764  

Hunan 0.000 0.000 131.797 1654.607 409.330  

Shanxi 0.000 0.000 0.000 0.000 4.228  

Inner Mongolia 0.000 0.000 0.000 0.000 2.672  

Guangxi 0.000 2.837 97.441 2148.201 1.579  

Chongqing 0.000 0.000 71.824 0.000 4.129  

Sichuan 119.836 0.000 206.662 3572.914 1.423  

Guizhou 0.000 0.000 3.763 1636.424 0.837  

Yunnan 0.000 0.000 59.840 2100.445 2.933  

Tibet 0.000 0.000 0.000 0.000 5.291  

Shaanxi 13.790 0.000 8.627 1387.635 0.550  

Gansu 0.000 0.000 0.000 991.986 0.439  

Qinghai 0.000 0.000 0.000 198.552 3.054  

Ningxia 0.000 0.000 54.753 364.846 8.095  

Xinjiang 0.000 0.000 9.315 1398.272 34.393  

Total CO2 emission 

reduction allocation 
175.515 4.988 1109.357 34740.234 701.904 
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For Other Manufacture, another case happens. We first use model (1) to find the 

efficient regions and inefficient regions. Here we list the inefficient DMUs in set 𝐿 

as follows (See Table 9):  

Table 9. Total CO2 emission in inefficient regions of Other Manufacture (unit: 10 thousand 

tons) 

Inefficient regions Sets CO2 emission 

CO2 emission of projections of 

inefficient regions on the 

frontier of model (1) 

Hebei 𝐿 3.250  2.606  

Shanghai 𝐿 8.394  3.965  

Guangdong 𝐿 93.845  85.944  

Liaoning 𝐿 17.743  8.855  

Henan 𝐿 4.090  0.309  

Inner Mongolia 𝐿 4.420  2.552  

Chongqing 𝐿 1.704  1.664  

Sichuan 𝐿 4.424  3.908  

Total 137.870  109.803  

From the above Table 9, we can see that the total CO2 emission is 137.870. However 

the CO2 emission reduction quota for Other Manufacture is 701.904, which means 

using only inefficient regions as the reduction targets cannot meet the requirements. 

Here we have to use the efficient regions as the CO2 emission reduction targets also. 

See Column 3 in Table 9. As mentioned in Remark 1, in certain cases we need to 

replace the Assumption 1-3 as the following Assumption 4:  

Assumption 4. The efficient frontier can be shift in the process of CO2 emissions 

reduction using an average way, which means the existing technology need to be 

improved by reducing the same proportion of CO2 emission for each DMU.   

From this assumption, we can see that, for Other Manufacture, we first find the 

amount of CO2 emission of projections of inefficient regions on the frontier of model 

(1). See Column 4 in Table 9. Therefore, we can see that if we fix the efficient frontier 

in model (1), the maximum amount of CO2 emission reduction is 28.068. There is still 

a big gap between our CO2 emission reduction target 701.904, which is 701.904 −

28.068 = 673.836.Thus we allocate this 673.836 CO2 emission to all regions using 

a proportional way and we can have the final allocation results as shown in the 
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Column 6 of Table 8. That means there is a strong need for Other Manufacture to 

improve its technology to meet the CO2 emission reduction targets.  

The conventional and inverse DEA are two different methods in nature. They solve 

two different type of problems. Being completely two different methods, the results 

are not really comparable. The conventional DEA focuses on the data and finds the 

efficiency score while the inverse DEA focuses on the efficiency and finds the data 

point.  

5. Concluding Remarks  

In this paper we tried to tackle the problem of allocating the CO2 emissions quota set 

by government goal in Chinese manufacturing industries to different Chinese regions. 

This objective is implemented using a three-stage way based on several assumptions. 

In the first stage, we obtained the total amount CO2 emission reduction from the 

Chinese government goal as our total CO2 emission quota to allocate to different 

regions to reduce. Based on this, we further allocate the reduction quota to different 

two-digit level manufacturing industries in China in the second stage. In the last stage 

we allocate the CO2 emissions reduction quota for each industry into different 

provinces. The empirical results can provide an alternative solution for the allocation 

of CO2 emissions reduction in China for policy making.  
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