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Abstract

This paper has a twofold objective: (a) optimizing the production process of individual cores using Taguchi methods, and (b) reducing the

iron losses of assembled transformers, using neural networks. More speci®cally, we demonstrate the ability of the Taguchi technique

accurately to characterize and successfully to optimize the transformer core production process with the minimum of experiments.

Moreover, neural networks have been applied to predict iron losses of wound core distribution transformers at the early stages of core

construction. The intelligent iron loss model is on-line applied in order to optimally combine the individual cores so that the iron losses of

assembled transformers is reduced. # 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

High quality products and processes at low cost have

become the key to survival in today's global economy.

Driven by the need to compete on cost and performance,

many quality conscious organizations are increasingly

focusing on the optimization of product design. In industrial

environment dealing with distribution transformer construc-

tion, iron losses constitute one of the most important para-

meters of transformer quality. In case of wound core type

transformers, iron losses of individual cores signi®cantly

in¯uence the quality (iron losses) of the assembled trans-

former.

Typically, iron losses depend upon the grade of steel, its

thickness, current frequency, magnetic ¯ux density and

weight. These factors are taken into account during the

transformer design stage. A number of additional factors

affect iron losses during manufacturing, such as the kind of

lamination insulation, annealing, core construction, quality

of assembly, etc. However, it is not possible to consider all

these factors analytically and, therefore, the calculations are

traditionally based on graphs and tables obtained from past

measurements on actual transformers.

Our paper has a twofold objective: (a) optimizing the

production process of individual cores, and (b) reducing the

iron losses of assembled transformers. To achieve these

targets, Taguchi methods and arti®cial intelligence techni-

ques are used, respectively.

More speci®cally, in this paper we demonstrate the ability

of the Taguchi technique accurately to characterize and

successfully to optimize the transformer core production

process with the minimum of experiments, provided one

uses statistical techniques, which can ensure valid, and

de®nitive results. In particular, Taguchi methods are applied

in order to optimize the annealing process of cores, taking

into account the technical characteristics of today's core

materials and core designs, parameters very important, if the

evolution of standards and materials is considered. Results

from the application of the optimal conditions in the pro-

duction process of magnetic cores demonstrate the feasi-

bility of this method, since it helps reducing core losses as

well as the variability of losses and the divergence of actual

core losses from the theoretical ones.

Concerning the second objective, it should be mentioned

that there is no simple relationship among the parameters

involved in the production process that expresses analyti-

cally the transformer iron losses. Arti®cial neural networks

have the ability to automatically learn relationships between

inputs and outputs independently of the size and complexity

of the problem. Neural networks have been therefore applied

to iron loss prediction. The intelligent iron loss model (i.e.,

the model of iron losses obtained through the neural net-

work) is on-line applied in order to optimally combine the

individual cores, so that to reduce the iron losses of

assembled transformers.
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2. Optimization of core production process using

Taguchi methods

2.1. The Taguchi technique

There are two main aspects to the Taguchi technique

[1,2]:

1. The behavior of a product or process is characterized in

terms of factors (parameters), which are separated into

two types: controllable or design factors, and un-

controllable or noise factors. The values of design

factors may be set or easily adjusted by the engineer or

process engineer, while the noise factors are `̀ sources of

variation'' often associated with the production or

operational environment.

2. The controllable factors are divided into those that affect

the average levels of the response of interest, referred to

as target control factors or signal factors, and those that

affect the variability in the response, called variability

control factors.

The objective of the Taguchi method is to identify the

`̀ optimal'' settings of the controllable factors, not only to

improve the product or process, but also to reduce the

in¯uence of the noise factors.

For designing the experiments, Taguchi recommends the

use of `̀ orthogonal arrays''; such designs allow the factors to

have different numbers of test settings (levels) and also have

the pairwise balancing property: every level of a factor

occurs with every level of any of the other factors the same

number of times. `̀ Fractional'' orthogonal arrays minimize

the number of trial runs while keeping the pairwise balan-

cing property [3].

The results of the experimental trials are used to compute

statistical performance measures, which quantify quality. An

analysis of the noise performance measure (NPM), which is

a measure of the process variability, will identify the varia-

bility control factors and also their optimal combined setting

which could minimize this variability. Also, an analysis of

the target performance measure (TPM), which is a measure

of the process mean, will reveal which of the controllable

factors, that are not variability control factors, have a large

effect on the mean response Ð the target control factors;

these can subsequently be used to bring the mean response

onto the target value.

An outline of the exploratory steps that we have to take

using the available data, so that a proper statistical applica-

tion of the Taguchi technique can be assured, can be found in

[4]. An evaluation and a critique of alternative techniques to

fractional experimentation and analysis, in particular to

those recommended by Dorian Shainin, can be found in [5].

2.2. The experimental design

In our application, Taguchi methods are applied in order

to optimize the annealing process of cores. Five controllable

variables were identi®ed as potentially important:

PRA: protective atmosphere (% content of H2 in the

mixture of N2 and H2);

DCT: duration of constant temperature (in h);

TRT: temperature rising time (in h);

AFT: annealing final temperature (in 8C);

FOT: furnace opening temperature (in 8C).

For each of the controllable variables two possible levels

were considered, as shown in Table 1. The ®ve variables

were assigned to the OA8 orthogonal design. This is a

fractional and ef®cient design for dealing with up to seven

two-level factors using only eight experimental trials.

All tests were done using the same 160 kVA transformer

design and the same supplier of core magnetic material. The

magnetic steel was of grade M3, according to USA AISI,

1983, with thickness 0.23 mm. For every one of the eight

experimental trials of OA8 orthogonal design, 96 (48 small

and 48 large) individual cores were constructed. According

to this experimental design, 768 measurements were col-

lected in total. It should be noticed that all cores were

annealed at the same furnace. For each of the 768 measure-

ments, the values of the factors PRA to FOT, the position of

the core in the furnace, the theoretical and actual weight of

core, and the theoretical and actual core losses were kept.

2.3. Results

Based on the analysis of the experimental data, the

duration of constant temperature and the position of core

in the furnace are not statistically signi®cant factors for the

core losses.

The most signi®cant factors for the core losses and for the

divergence between theoretical and actual core losses are

primarily the weight of core and the protective atmosphere,

and to lower extent, the temperature rising time, the furnace

opening temperature and the annealing ®nal temperature.

The method suggested by Taguchi (i.e., analysis of NPM

and TPM) is used in order to ®nd out the factors and their

settings that optimize the core production process.

The main conclusions are the following:

1. In order to systematically have low core losses and low

divergence between theoretical and actual core losses, as

well as the smaller possible in¯uence of noise factors,

Table 1

Controllable variables and their levels

Factor Levels

1 2

PRA 2% H2 (and 98% N2) 0% H2 (and 100% N2)

DCT 2 h 3 h

TRT 3 h 4 h

AFT 8258C 8558C

FOT 2508C 3508C
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the overall optimum process setting is �PRA;DCT;

TRT;AFT; FOT� � �0% H2; 2 h; 3 h; 855�C; 350�C�.
2. The core weight signi®cantly affects results. This

in¯uence is positive for the core losses (smaller weights,

smaller losses) but negative for the core loss divergence

(smaller weights, larger divergence).

Results from the application of the optimal conditions in

the production process of magnetic cores demonstrate the

feasibility of the Taguchi method. In particular, in all the

different cases examined, the improvement (reduction) in

core losses is between 2.7 and 3.1%. This is viewed as a

signi®cant process improvement in an area where even a 1%

core loss reduction is considered of paramount importance.

Furthermore, the improvement in variability of losses is

between 32 and 42%. Finally, the reduction (improvement)

in the divergence of actual core losses from the theoretical

ones is between 30 and 38% for the small cores and 82 and

87% for the large cores.

3. Reduction of iron losses using neural networks

The ®rst step in the application of arti®cial intelligence

methods in transformer manufacturing is to collect measure-

ments during the ®rst stages of core construction. When a

satisfactory number of measurements has been collected,

these methods are applied in order to learn the information

included in the databases. This training stage is executed

of¯ine providing an iron loss prediction model. The second

stage of the method includes the on-line application of the

iron loss prediction model in order to reduce iron losses of

assembled transformers.

3.1. Iron loss prediction model

For the creation of the learning sets, the measurements

collected during the initial stages of transformer manufac-

turing are grouped according to the supplier, grade and

thickness of magnetic material. Each different supplier,

grade and thickness of magnetic material is categorized

as a different subset, called environment in the sequel.

For example, the environment #1 is characterized by mag-

netic material of grade M3, thickness 0.23 mm, while the

supplier of material was SUP_A (Supplier A).

Extensive experiments have shown, however, that the

performance of the neural networks is unacceptable, if

samples of all environments were used as training set.

Almost similar results have been observed even if the

parameters of the environment (i.e., the supplier, grade

and thickness of the magnetic material) are used as neural

network input vectors. Hence, the training set is divided into

subsets each corresponding to a speci®c environment. This

approach has provided very satisfactory results. For exam-

ple, the environment #1 consists of 2240 actual industrial

measurement sets (samples). 1680 of them are used as

training data in the learning process of the neural network,

while the rest (560) as test set (TS). As validation set, we

have used the one-fourth of the samples of the learning set.

A multilayer feedforward neural network structure with

one input layer, one hidden layer and a single output neuron

was found to provide satisfactory results. The input neurons

correspond to eight attributes selected by applying decision

trees [6]. These attributes include the rated magnetic induc-

tion as well as the magnetic material average speci®c losses

of the four individual cores at 15 000 and at 17 000 Gauss.

Moreover, attributes such as the ratio of actual over theore-

tical total weight of the four individual cores and the ratio of

actual over theoretical total iron losses of the four individual

cores are also selected. The rest three attributes are formed

by the combination of other measurements. The number of

neurons of the hidden layer was selected so that the general-

ization performance of the network to be satisfactory for

each given environment. For example, for the #1 environ-

ment, one hidden layer of ®ve neurons was found completely

adequate. The activation function for all neurons is the

sigmoid function.

Figs. 1 and 2 present the quantile±quantile (Q±Q) plots of

the speci®c iron losses, for the environment #1, using the

typical loss curve [7] and the proposed neural network

method, respectively. According to the Q±Q plot method

the data of real speci®c iron losses are plotted versus the

predicted ones. Perfect prediction lies on a line of 458 slope.

It is observed that the neural network method provides more

accurate results than the typical loss curve. This is due to the

learning capabilities of the neural network approach as well

as due to the fact that more parameters (attributes) are taken

into consideration. In all the environments examined, the

neural network method provides an improved accuracy by

more than 45% in relation to the current practice (loss

curve).

3.2. Transformer assembly

The current technique used (referred to as conventional

grouping process) to reduce iron losses of assembled trans-

formers is to pre-measure and assign a grade (quality

category) to each individual core and then combine higher

and lower graded individual cores to achieve an `̀ average''

value for the entire transformer.

In this paper, we enhance the conventional grouping

process by proposing a new algorithm which exploits the

Fig. 1. Prediction of transformer speci®c iron losses, using the loss curve.
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advantages of the neural networks. Assuming that, we have

L small cores and L large cores, then L/2 transformers can be

assembled. In this case, the algorithm comprises the follow-

ing steps:

1. For each of the different combinations, calculate the

neural network inputs (eight attributes) for each one of

the L/2 transformers. Using the respective neural

network weights and thresholds, calculate the network

output (i.e., the speci®c iron losses of transformer) for

each of the L/2 transformers and for all combinations.

2. For each of the different combinations and for each of

the L/2 transformers, calculate the actual iron losses by

multiplying the neural network output (speci®c iron

losses) with the respective actual weight of transformer.

3. From all combinations, select the one providing the

minimum absolute relative error in relation to the

guaranteed to the customer iron losses. However, in case

that the number of combinations is too large, only a

randomly selected small subset of them is used to ®nd a

relative minimum value.

4. For the combination selected in 3, check if there are any

transformers, which are not acceptable according to

transformer acceptability criterion considered. If it

occurs, then the respective cores should not be grouped,

waiting (if possible) other cores of better quality and of

the same production batch.

The proposed approach has been tested in different pro-

duction batches during transformer construction, providing

accurate results. In particular, the proposed neural network

based grouping process provides an average absolute rela-

tive error (AARE) in the prediction of iron losses, smaller

than 1.60% for all the production batches. This is compared

with an AARE of 3.15% in prediction of transformer iron

losses, usually observed by the current (conventional)

grouping process.
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