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Abstract—In this paper, in order to improve the Student’s t-
matching accuracy, a novel Kullback-Leibler divergence (KLD)
minimization-based matching method is firstly proposed by min-
imizing the upper bound of the KLD between the true Student’s
t-density and the approximate Student’s t-density. To improve the
Student’s t-modelling accuracy, a novel KLD minimization-based
adaptive method is then proposed to estimate the scale matrices
of Student’s t-distributions, in which the modified evidence lower
bound is maximized. A novel KLD minimization-based adaptive
Student’s t-filter is derived via combining the proposed Student’s
t-matching technique and the adaptive method. A manoeuvring
target tracking example is provided to demonstrate the effective-
ness and potential of the proposed filter.

Index Terms—Adaptive filter, Kullback-Leibler divergence
minimization, Student’s t-distribution, upper bound minimization,
lower bound maximization.

I. INTRODUCTION

T
HE non-Gaussian filtering problem of a state-space model
(SSM) with heavy-tailed noises has been attracting more

and more attention. The non-Gaussian heavy-tailed noises,
which are often induced by unknown outliers, stochastic impulse
interferences, and uncertain modelling errors, may be encoun-
tered in some engineering contexts, such as positioning, navi-
gation and target tracking [1], [2]. Such non-Gaussian filtering
is always a challenging problem since the non-Gaussian pos-
terior probability density function (PDF) cannot be recursively
formulated by a non-Gaussian PDF in a closed form [3].

As a popular non-Gaussian filter, the particle filter (PF) is able
to solve the non-Gaussian filtering problem with heavy-tailed
noises [4]. In the PF, the non-Gaussian heavy-tailed noises are
modelled by non-Gaussian heavy-tailed distributions, and the
posterior PDF is represented by a sufficiently large number of
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weighted particles, from which an approximate non-Gaussian
filtering estimate can be achieved [4]–[6]. In theory, the PF
can achieve an optimal filtering estimate for this non-Gaussian
filtering problem when an infinite number of particles are uti-
lized [4]. However, the PF is prone to particle degeneracy and
dilution when a finite number of particles are employed [4].
To guarantee the filtering accuracy, a large number of particles
are required by the PF, especially for a high-dimensional SSM,
which results in substantial computational complexity [7]. As
an alternative non-Gaussian filter, the Gaussian sum filter can
also be employed to solve the non-Gaussian filtering problem
with heavy-tailed noises [8]. In the Gaussian sum filter, a set
of weighted Gaussian distributions are employed to model the
non-Gaussian heavy-tailed noises, and then the non-Gaussian
posterior PDF can be updated as a weighted sum of Gaussian
PDFs that are achieved by running a group of sub Kalman filters
(KFs) [8]–[10]. Unfortunately, the non-Gaussian heavy-tailed
noises are very difficult to model based on a limited number
of fixed Gaussian distributions since the true noise distributions
are often unknown in engineering contexts, which degrades the
filtering accuracy of the Gaussian sum filter dramatically.

In recent decades, a large number of computationally-efficient
noise-robust Kalman filtering variants have been proposed to
acquire a tradeoff between the computational complexity and the
filtering accuracy. As a well-known outlier-robust technique, the
M-estimate, which employs the influence function approach to
resist the observation outliers, has been successfully employed
to design an outlier-robust KF [11]. Many outlier-robust KFs
have been derived on the basis of the M-estimate technique
by selecting a robust cost function to restrain the one-step
prediction error and estimated residual error [12]–[14]. As the
most successful extension of the M-estimate to the KF setting,
the Huber KF (HKF) chooses a weighted sum of l1 and l2
norms as a robust cost function and provides a generalized
robust maximum likelihood estimate by minimizing the Huber
cost function [15]. The maximum correntropy KF (MCKF)
[16]–[18] is a novel noise-robust KF which has strong ability
to suppress impulsive noise interferences in many practical
applications. Essentially, the MCKF is also a variant of the
M-estimator in the KF setting since the statistical correntropy is
approximated by the sum of the Gaussian kernel functions, and
the MCKF is derived by maximising the sum of the Gaussian
kernel functions of the one-step prediction error and estimated
residual error. The heavy-tailed features inherent in noises are
ignored by the existing HKF and MCKF, which degrades the
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filtering accuracy. In order to better exploit such heavy-tailed
features, the Student’s t-distribution has been employed to model
heavy-tailed noises. Two noise-robust filters have been proposed
based on Student’s t-modelling: the robust Student’s t-based KF
(RSTKF) and the Student’s t-filter (STF) [19]–[30]. For the
STF, the predicted state and observation are jointly modelled
as Student’s t-distributed, and then the posterior filtering PDF
is recursively approximated by a Student’s t-PDF with fixed
degrees of freedom (dof) parameter based on the Bayesian rule
and moment matching method [19]–[21]. Nevertheless, for the
RSTKF, the one-step prediction PDF and the observation likeli-
hood PDF are modelled by Student’s t-PDFs and formulated as
Gaussian-Gamma mixture forms, based on which the posterior
filtering PDF is approximated by a Gaussian PDF with adap-
tively selected covariance matrix using the variational Bayesian
approach [28]–[30]. For a linear SSM with the moderately
contaminated state and observation noises, the RSTKF has better
filtering accuracy than the STF because the posterior filtering
PDF can be better approximated by the Gaussian distribution
as compared with the Student’s t-distribution [28]. On the con-
trary, for a linear SSM with strongly contaminated state and
observation noises, the STF has better filtering accuracy than
the RSTKF since the posterior filtering PDF may be approxi-
mated by the Student’s t-distribution better than the Gaussian
distribution.

Although the STF is able to address such strongly heavy-tailed
state and observation noises well, it suffers from two major
drawbacks. Firstly, the Student’s t-based measurement update
to the posterior filtering PDF is not strictly closed due to the
increase of the dof parameter in the measurement update. In
order to keep a closed update form, the moment matching
method is utilized to achieve a Student’s t-approximation with a
fixed dof parameter to the true posterior filtering PDF. However,
the moment matching method can only capture the first and
second moments of the true posterior filtering PDF, thus some
higher-order moments and non-Gaussian information are lost.
Secondly, in practical engineering applications, it is very difficult
to select accurate scale matrices to model heavy-tailed state and
observation noises well because such non-Gaussian heavy-tailed
noises are often induced by unknown outliers, stochastic impulse
interferences, and uncertain modelling errors. The above two
problems will degrade the Student’s t-approximation accuracy
to the posterior filtering PDF, which then degrades dramatically
the filtering accuracy of the existing STF.

In this paper, we aim to improve the filtering accu-
racy of the existing STF by improving the Student’s t-
matching accuracy and the Student’s t-modelling accuracy. A
novel Kullback-Leibler divergence (KLD) minimization-based
matching method is first proposed to improve the Student’s
t-matching accuracy, in which the upper bound of the KLD
between the true Student’s t-PDF and the approximate Student’s
t-PDF is minimized. To improve the Student’s t- modelling
accuracy, a novel KLD minimization-based adaptive method
is then proposed to estimate the scale matrices of the Stu-
dent’s t-distributions, in which the modified evidence lower
bound is maximized. A novel KLD minimization-based adaptive
Student’s t-filter (ASTF) is derived via combining the pro-
posed Student’s t-matching technique and the adaptive method.

Simulation examples illustrate that the proposed ASTF has im-
proved filtering accuracy over the existing HKF, MCKF, STF and
RSTKF for strongly heavy-tailed state and observation noises.

The structure of this paper is as follows. In Section II, the
problem formulation is presented. In Section III, a novel KLD
minimization-based Student’s t-matching method is proposed
to improve the Student’s t-matching accuracy. In Section IV, a
novel KLD minimization-based ASTF is proposed to improve
the filtering accuracy. In Section V, simulation results and com-
parisons with the existing HKF, MCKF, STF and RSTKF are
given. Conclusions are drawn in Section VI.

II. PROBLEM FORMULATION

Consider a linear dynamical system described by a linear
discrete-time SSM as follows

{

xk = Fkxk−1 +wk

zk = Hkxk + vk

(1)

where k is the discrete time index, xk ∈ R
n is the state vec-

tor, zk ∈ R
m is the observation vector, Fk ∈ R

n×n and Hk ∈
R

m×n are, respectively, the known state transition matrix and ob-
servation matrix, and wk ∈ R

n and vk ∈ R
m are, respectively,

state and observation noise vectors. In this paper, the initial state
vector x0, the state noise vector wk, and the observation noise
vector vk are assumed to be mutually uncorrelated and have
non-Gaussian heavy-tailed distributions, and they are modelled
as Student’s t-distributed as follows

⎧

⎪

⎨

⎪

⎩

p(x0) = St(x0; x̂0|0,P0|0, ν)

p(wk) = St(wk;0,Qk, ν)

p(vk) = St(vk;0,Rk, ν)

(2)

where St(·;µ,Σ, ω) denotes the Student’s t-PDF with mean
vector µ, scale matrix Σ and dof parameter ω, and x̂0|0 and
P0|0 are, respectively, the initial state estimate and scale matrix
of x0, and Qk and Rk are, respectively, the scale matrices of
wk and vk, and ν is the common dof parameter of x0, wk and
vk.

The STF can be used to address the filtering problem of the
above linear SSM with non-Gaussian heavy-tailed state and
observation noises. Similar to the KF, the recursive STF is
also composed of time and measurement updates. In the time
update, the jointly predicted PDF p(xk, zk|z1:k−1) of state and
observation vectors is approximated by a Student’s t-PDF as
follows [19], [20]

p(xk, zk|z1:k−1) = St

([

xk

zk

]

;

[

x̂k|k−1

Hkx̂k|k−1

]

,

×

[

Pk|k−1 Pk|k−1H
T
k

HkPk|k−1 HkPk|k−1H
T
k +Rk

]

,ν

)

(3)

where the predicted mean vector x̂k|k−1 and the predicted scale
matrix Pk|k−1 are given by

x̂k|k−1 = Fk−1x̂k−1|k−1 (4)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk (5)
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where x̂k−1|k−1 and Pk−1|k−1 are, respectively, the mean vector
and scale matrix of the posterior PDF at time k − 1.

In the measurement update, the posterior PDF p(xk|z1:k) is
updated as a Student’s t-distribution based on the Bayesian rule
using (3) as follows

p(xk|z1:k) = St(xk; x̂
′

k|k,P
′

k|k, ν
′

) (6)

where x̂
′

k|k, P
′

k|k and ν
′
are, respectively, the mean vector, scale

matrix and dof parameter of the posterior PDF p(xk|z1:k), which
are given by

Sk = HkPk|k−1H
T
k +Rk (7)

∆k =
√

(zk −Hkx̂k|k−1)TS
−1
k (zk −Hkx̂k|k−1) (8)

Kk = Pk|k−1H
T
k S

−1
k (9)

x̂
′

k|k = x̂k|k−1 +Kk(zk −Hkx̂k|k−1) (10)

P
′

k|k =
ν +∆2

k

ν +m
(Pk|k−1 −KkHkPk|k−1) (11)

ν
′

= ν +m (12)

The Student’s t-approximation is not strictly closed for the
posterior PDF due to the increase of the dof parameter in the
measurement update. In order to keep a closed update form
for the posterior PDF, the true posterior PDF needs to be ap-
proximated as an approximate posterior PDF with a fixed dof
parameter ν, i.e.,

p(xk|z1:k) = St(xk; x̂
′

k|k,P
′

k|k, ν
′

) ≈ St(xk; x̂k|k,Pk|k, ν)
(13)

where x̂k|k and Pk|k denote the mean vector and scale matrix
of the approximate posterior PDF, respectively.

The existing STF employs the moment matching method to
achieve x̂k|k andPk|k via matching the first and second moments

of the true posterior PDF St(xk; x̂
′

k|k,P
′

k|k, ν
′
) and that of the

approximate posterior PDF St(xk; x̂k|k,Pk|k, ν) [19], [20], i.e.,

x̂k|k = x̂
′

k|k,
ν

ν − 2
Pk|k =

ν
′

ν ′ − 2
P

′

k|k (14)

The existing STF is able to cope with the strongly heavy-tailed
state and observation noises. Unfortunately, the existing STF
suffers from these two major problems as follows.
� The moment matching method used in the existing STF

cannot capture the higher order moments and some non-
Gaussian information, which results in poor Student’s t-
matching accuracy.

� In practical engineering applications, it is very difficult to
model the unknown non-Gaussian heavy-tailed state and
observation noises accurately in advance, which leads to
poor Student’s t-modelling accuracy.

The poor Student’s t-matching accuracy and Student’s t-
modelling accuracy will degrade the Student’s t-approximation
accuracy to the posterior PDF, and then the filtering ac-
curacy of the existing STF will degrade, which represents
the main research motivation of this paper. In this paper,

we aim to improve the filtering accuracy of the existing
STF by addressing the above two problems. Next, a novel
KLD minimization-based matching technique will be first pro-
posed to improve the Student’s t-matching accuracy, and a
novel KLD minimization-based adaptive method will then be
proposed to estimate the scale matrices of the Student’s t-
distributions to improve the Student’s t- modelling accuracy,
based on which a novel KLD minimization-based ASTF will be
derived.

III. A NOVEL KLD MINIMIZATION-BASED STUDENT’S

T-MATCHING METHOD

A. KLD Minimization-Based Student’s t-Matching Method

The approximation problem in (13) is formulated as a
general Student’s t-matching problem as follows. The Stu-
dent’s t-matching aims to look for an optimal Student’s t-PDF
St(x;µ2,Σ2, ν2) with a fixed dof parameter ν2 to approxi-
mate an arbitrary and known Student’s t-PDF St(x;µ1,Σ1, ν1),
where ν1 > ν2. To match more higher order moments and non-
Gaussian information, the KLD criterion is used to select an
optimal Student’s t-PDF. That is to say, the mean vector µ2 and
the scale matrix Σ2 of the optimal Student’s t-PDF is achieved
by minimizing the KLD between the true Student’s t-PDF and
the optimal Student’s t-approximation, i.e.,

{µ2,Σ2} = arg min
{µ,Σ}

KLD(p(x)||q(x)) (15)

where KLD(·||·) denotes the KLD measure, and p(x) and q(x)
denote the true Student’s t-PDF and the approximate Student’s
t-PDF with a fixed dof parameter ν2, respectively, given by

{

p(x) = St(x;µ1,Σ1, ν1)

q(x) = St(x;µ,Σ, ν2)
(16)

According to the definition of the KLD, KLD(p(x)||q(x))
can be written as [31]

KLD(p(x)||q(x)) =

∫

p(x) log
p(x)

q(x)
dx

=

∫

p(x) log p(x)dx

−

∫

p(x) log q(x)dx (17)

Considering that the term
∫

p(x) log p(x)dx is independent of
µ and Σ and using (16)–(17) in (15), the minimization problem
(15) can be reformulated as

{µ2,Σ2} = arg min
{µ,Σ}

J(µ,Σ) (18)

where the cost function J(µ,Σ) is given by

J(µ,Σ) = −

∫

St(x;µ1,Σ1, ν1) log St(x;µ,Σ, ν2)dx

(19)
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Using the definition of the Student’s t-PDF, log St(x;µ,Σ,
ν2) is written as

log St(x;µ,Σ, ν2) = log Γ

(

ν2 + n

2

)

− log Γ
(ν2
2

)

− 0.5 log |Σ| − 0.5n log(ν2π)− 0.5(ν2 + n)

× log

[

1 +
1

ν2
(x− µ)TΣ−1(x− µ)

]

(20)

where n represents the dimension of random vector x.
Employing (20) in (19) yields

J(µ,Σ) = 0.5 log |Σ|+ 0.5(ν2 + n)

∫

St(x;µ1,Σ1, ν1)

× log

[

1 +
1

ν2
(x− µ)TΣ−1(x− µ)

]

dx+ c{µ,Σ}

(21)

where cθ represents a constant independent of variable θ.
However, it is very difficult to solve the minimization problem

(18) using (21) because the nonlinear integral in (21) cannot be
analytically achieved. To address this problem, we propose to
minimize the upper bound of the cost function J(µ,Σ).

Considering that the natural logarithmic function log(·) is a
convex function and using Jensen’s inequality, we have [32]
∫

St(x;µ1,Σ1, ν1) log

[

1 +
1

ν2
(x− µ)TΣ−1(x− µ)

]

dx

≤ log f(µ,Σ) (22)

where log f(µ,Σ) is the upper bound of the nonlinear integral,
and the auxiliary function f(µ,Σ) is given by

f(µ,Σ) =

∫

St(x;µ1,Σ1, ν1)

×

[

1 +
1

ν2
(x− µ)TΣ−1(x− µ)

]

dx

= 1 +
1

ν2
tr
{

(µ− µ1)(µ− µ1)
TΣ−1

}

+
1

ν2
tr(Σ̃1Σ

−1) (23)

where Σ̃1 denotes the covariance matrix of the Student’s t-PDF
p(x) given by

Σ̃1 =
ν1

ν1 − 2
Σ1 (24)

Define a modified parameter α as follows
∫

St(x;µ1,Σ1, ν1) log

[

1 +
1

ν2
(x− µ)TΣ−1(x− µ)

]

dx

≤ α log f(µ,Σ) s.t. 0 < α ≤ 1 (25)

whereα log f(µ,Σ) represents the modified upper bound of the
nonlinear integral. Note that the modified parameter α can be
used to reduce the difference between the nonlinear integral and
the modified upper bound.

Exploiting (25) in (21) yields

J(µ,Σ) ≤ 0.5 log |Σ|+ 0.5α(ν2 + n) log f(µ,Σ) + c{µ,Σ}

(26)

We propose to achieve the approximate mean vector µ2 and
scale matrix Σ2 by minimizing the upper bound of the cost
function J(µ,Σ), i.e.,

{µ2,Σ2} ≈ arg min
{µ,Σ}

Ju(µ,Σ) (27)

where Ju(µ,Σ) is given by

Ju(µ,Σ) = 0.5 log |Σ|+ 0.5α(ν2 + n) log f(µ,Σ) + c{µ,Σ}

(28)
The first-order derivatives of Ju(µ,Σ) with respect to µ and

Σ are formulated as

∂Ju(µ,Σ)

∂µ
=

0.5α(ν2 + n)

ν2f(µ,Σ)
Σ−1(µ− µ1) (29)

∂Ju(µ,Σ)

∂Σ
= 0.5Σ−1 −

0.5α(ν2 + n)

ν2f(µ,Σ)
Σ−1Σ̃1Σ

−1 (30)

where the cross-term of (µ− µ1) and Σ in (30) is omitted for
brevity since it is always zero when (31) holds.

The optimal mean vector µ2 and scale matrix Σ2 need to
satisfy the following equations

∂Ju(µ,Σ)

∂µ
|{µ=µ2,Σ=Σ2} = 0 (31)

∂Ju(µ,Σ)

∂Σ
|{µ=µ2,Σ=Σ2} = 0 (32)

Substituting (29)–(30) in (31)–(32) yields

0.5α(ν2 + n)

ν2f(µ2,Σ2)
Σ−1

2 (µ2 − µ1) = 0 (33)

0.5Σ−1
2 −

0.5α(ν2 + n)

ν2f(µ2,Σ2)
Σ−1

2 Σ̃1Σ
−1
2 = 0 (34)

Solving equation (33) gives

µ2 = µ1 (35)

Employing (23) and (35) in (34) results in

Σ2 =
α(ν2 + n)

ν2 + tr(Σ̃1Σ
−1
2 )

Σ̃1 (36)

Equations (31)–(32) are only necessary conditions for guar-
anteeing that the optimal solutions in (35)–(36) are minimum
solutions of the cost function in (27). To be more rigorous,
the detailed verifications are provided in Appendix A, and the
theoretical results show that if the dof parameters ν1 and ν2
and the modified parameter α satisfy the conditions ν1 > 2 and
α ≥ 1

ν2+n
, then the optimal solutions in (35)–(36) will be the

minimum solutions of the cost function in (27).
It is not difficult to find thatΣ2 = Σ̃1 is an analytical solution

of equation (36) when the modified parameter is set as α = 1.
Unfortunately, such selection of the modified parameter will
introduce substantial approximation errors in the minimization
problem (27). To improve the matching accuracy, the modified
parameter needs to satisfy the condition 1

ν2+n
< α < 1, and the

fixed-point iteration method is used to solve an approximate

solution of equation (36). Specifically, the scale matrix Σ
(i+1)
2

at the i+ 1th iteration is achieved based on the scale matrixΣ(i)
2
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and modified parameter α(i) at the ith iteration using (36), i.e.,

Σ
(i+1)
2 =

α(i)(ν2 + n)

ν2 + tr(Σ̃1(Σ
(i)
2 )−1)

Σ̃1 (37)

Since the optimal Student’s t-approximation is the true Stu-
dent’s t-PDF St(x;µ1,Σ1, ν1) when the dof parameters ν1
and ν2 are identical, i.e.,St(x;µ2,Σ2, ν2) = St(x;µ1,Σ1, ν1),

then the scale matrix Σ
(i+1)
2 is equal to the scale matrix Σ1

when the dof parameter ν2 is chosen as ν1. Thus, the modified
parameterα(i) needs to satisfy the following constraint equation,
i.e.,

Σ1 =
α(i)(ν1 + n)

ν1 + tr(Σ̃1(Σ
(i)
2 )−1)

Σ̃1 (38)

Using (24) and (38), the modified parameterα(i) is formulated
as

α(i) =
(ν1 − 2)

[

ν1 + tr(Σ̃1(Σ
(i)
2 )−1)

]

ν1(ν1 + n)
(39)

Substituting (39) in (37) and using (24) yields

Σ
(i+1)
2 =

(ν2 + n)

(ν1 + n)

[

ν1 + tr(Σ̃1(Σ
(i)
2 )−1)

]

[

ν2 + tr(Σ̃1(Σ
(i)
2 )−1)

]Σ1 (40)

For the proposed fixed-point iteration, the recursive relation

between Σ
(i+1)
2 and Σ

(i)
2 is given in (40). To implement the

fixed-point iteration, a reasonable initial scale matrixΣ(0)
2 needs

to be first selected. In this paper, the initial scale matrix Σ
(0)
2

is chosen by matching the second-order moment of Student’s

t-PDFs St(x;µ2,Σ
(0)
2 , ν2) and St(x;µ1,Σ1, ν1), i.e.,

ν2
ν2 − 2

Σ
(0)
2 =

ν1
ν1 − 2

Σ1 (41)

Using (24) and (41), the initial scale matrix Σ
(0)
2 is calculated

as

Σ
(0)
2 =

ν2 − 2

ν2
Σ̃1 (42)

The KLD minimization-based Student’s t-matching algorithm
is illustrated in Table I, where Nm and ǫ denote the maximum
number of iterations and the iterative threshold, respectively.

B. Convergence Analysis of the Proposed KLD

Minimization-Based Student’s t-Matching Method

Define the following auxiliary function

g(Σ) =
(ν2 + n)

(ν1 + n)

[

ν1 + tr(Σ̃1Σ
−1)

]

[

ν2 + tr(Σ̃1Σ−1)
]Σ1 (43)

Using (40) and (43), we have the following recursive relation

between Σ
(i+1)
2 and Σ

(i)
2

Σ
(i+1)
2 = g(Σ

(i)
2 ) (44)

TABLE I
THE PROPOSED KLD MINIMIZATION-BASED STUDENT’S

t-MATCHING ALGORITHM

Considering that both the covariance matrix Σ̃1 and the scale
matrix Σ are positive define matrices, we have

tr(Σ̃1Σ
−1) > 0 (45)

Using (45) and the inequality ν1 > ν2 yields

1 <

[

ν1 + tr(Σ̃1Σ
−1)

]

[

ν2 + tr(Σ̃1Σ−1)
] <

ν1
ν2

(46)

Substituting (46) in (43) results in

(ν2 + n)

(ν1 + n)
Σ1 < g(Σ) <

(ν2 + n)ν1
(ν1 + n)ν2

Σ1 (47)

Utilizing (43), the derivative of g(Σ) with respect to Σ can
be formulated as

∂g(Σ)

∂Σ
=

(ν2 + n)

(ν1 + n)

(ν1 − ν2)Σ
−1Σ̃1Σ

−1

[

ν2 + tr(Σ̃1Σ−1)
]2 ⊗Σ1 (48)

where ⊗ denotes the Kronecker product operation.
Since ν1 − ν2 > 0 and Σ−1Σ̃1Σ

−1 and Σ1 are positive def-

inite matrices, ∂g(Σ)
∂Σ

is also a positive definite matrix, i.e.,

∂g(Σ)

∂Σ
> 0 (49)

It is observed from (47) and (49) that the auxiliary function is
monotonically increasing and has upper and low bounds. Then,

the matrix sequence {Σ
(i)
2 } has a unique limit, i.e.,

lim
i→+∞

Σ
(i)
2 = Σ2 (50)

According to (50), the proposed KLD minimization-based
Student’s t-matching algorithm has a local convergence, and it
will converge to a global optimal solution when a reasonable
initial value is selected.

C. Numerical Validation

The effectiveness and superiority of the proposed KLD
minimization-based Student’s t-matching method will be
demonstrated by a numerical simulation. The mean value, scale
parameter and dof parameter of the known Student’s t-PDF p(x)
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Fig. 1. The estimate of scale parameterΣ
(i)
2 for different numbers of iterations.

Fig. 2. The modified parameter value α(i) for different numbers of iterations.

are, respectively, set asµ1 = 0,Σ1 = 10 and ν1 = 5, and the dof
parameter of a Student’s t-approximation is selected as ν2 = 3.
According to the proposed KLD minimization-based Student’s
t-matching method, the optimal mean value of the Student’s
t-approximation is µ2 = µ1 = 0, and the scale parameter is
iteratively calculated using the proposed algorithm in Table I,
where the algorithm parameters are, respectively, selected as
Nm = 100 and ǫ = 10−98.

Figs. 1 and 2 show the estimate of scale parameter Σ
(i)
2

and the estimate of modified parameter value α(i) for different
numbers of iterations, respectively. It can be observed from

Fig. 1 that the estimate of scale parameter Σ(i)
2 increases with

the increase of the number of iterations, and the estimate of
scale parameter Σ

(i)
2 converges to 9.468 when the number of

iterations is greater than 4. We can observe from Fig. 2 that
the modified parameter value α(i) always satisfies the constraint
0 < α(i) < 1 and decreases with the increase of the number of
iterations, and the modified parameter value converges to 0.676
when the number of iterations is greater than 4.

The probability density curves of the true Student’s
t-distribution, the Student’s t-approximation based on the mo-
ment matching method, and the Student’s t-approximation based

Fig. 3. The probability density curves of the true Student’s t-distribution and
Student’s t-approximations.

on the proposed KLD minimization-based Student’s t- match-
ing technique are shown in Fig. 3. It is observed from Fig. 3
that the Student’s t-approximation based on the proposed KLD
minimization-based Student’s t-matching method is much closer
to the true Student’s t-distribution as compared with the Stu-
dent’s t-approximation based on the moment matching method.
The KLD between the true Student’s t-distribution and the Stu-
dent’s t-approximation based on the moment matching method
is 0.029, and the KLD between the true Student’s t-distribution
and the Student’s t-approximation based on the proposed KLD
minimization-based Student’s t-matching method is 0.011. As
compared with the existing moment matching method, the
improvement of the proposed method is 62.07%. Thus, the
proposed KLD minimization-based matching method can fit
the true Student’s t-distribution much better than the existing
moment matching method.

IV. A NOVEL KLD MINIMIZATION-BASED ASTF

In practical engineering applications, it is very difficult to
select accurate scale matrices Qk and Rk to model the non-
Gaussian heavy-tailed state and observation noises in advance
because such noises are often induced by unknown outliers,
stochastic impulse interferences, and uncertain modelling errors.
As a result, the STF exhibits poor filtering accuracy when
inaccurate scale matrices are used to achieve recursive filtering
estimates. Next, a novel KLD minimization-based ASTF is
proposed to solve this problem.

A. KLD Minimization-Based Adaptive Estimation Scheme

To mitigate the effects of inaccurate scale matrices, the con-
ventional idea is to jointly estimateQk andRk using an adaptive
method. Unfortunately, the scale matrix Qk is very difficult to
estimate directly when only one-step observation information
is used. Building upon our previous work [1], [28], [29], [33],
we propose to jointly estimate the state vector xk together with
the scale matricesPk|k−1 andRk, where the one-step prediction
scale matrixPk|k−1 is derived from the state prediction equation
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and state noise model, and treated as a random matrix. To this
end, the joint posterior PDF p(Θk|z1:k)will be calculated based
on the KLD minimization, where the parameter setΘk is defined
as follows

Θk �
{

xk,Pk|k−1,Rk

}

(51)

The true joint posterior PDF p(Θk|z1:k) is approximated by a
posterior PDF with free factored form q(xk) q(Pk|k−1)q(Rk),
i.e.,

p(Θk|z1:k) ≈ q(xk)q(Pk|k−1)q(Rk) (52)

and the approximate posterior PDFs q(xk), q(Pk|k−1) and
q(Rk) are given by the KLD minimization as follows

{

q(xk), q(Pk|k−1), q(Rk)
}

= argminKLD
(

q(xk)q(Pk|k−1)q(Rk)||p(Θk|z1:k)
)

(53)

Similar to the standard variational Bayesian approach, the
KLD in (53) can be formulated as [34], [35]

KLD
(

q(xk)q(Pk|k−1)q(Rk)||p(Θk|z1:k)
)

= log p(z1:k)− L(q(xk), q(Pk|k−1), q(Rk)) (54)

where L(q(xk), q(Pk|k−1), q(Rk)) denotes the evidence lower
bound given by

L(q(xk), q(Pk|k−1), q(Rk)) =

∫

q(xk)q(Pk|k−1)q(Rk)

× log p(Θk, z1:k)dxkdPk|k−1dRk

−

∫

q(xk) log q(xk)dxk

−

∫

q(Pk|k−1) log q(Pk|k−1)dPk|k−1

−

∫

q(Rk) log q(Rk)dRk (55)

Considering that the log-likelihood function log p(z1:k) is
independent of the approximate posterior PDFs and using (54),
the KLD minimization problem can be transformed into the
evidence lower bound maximization problem as follows

{

q(xk), q(Pk|k−1), q(Rk)
}

= argmaxL(q(xk), q(Pk|k−1), q(Rk)) (56)

Unfortunately, there are not conjugate prior distributions for
the scale matrices of Student’s t-distributions since the Student’s
t-distribution doesn’t belong to an exponential family. As a
result, the standard variational Bayesian approach cannot be
employed to achieve the evidence lower bound maximization
formulated in (55)–(56). To cope with this problem, we propose
to achieve approximate posterior PDFs by maximizing the lower
bound of L(q(xk), q(Pk|k−1), q(Rk)).

B. KLD Minimization-Based ASTF

Using (2)–(3), the one-step prediction PDF p(xk|z1:k−1) and
the likelihood PDF p(zk|xk) can be written as follows

p(xk|z1:k−1,Pk|k−1) = St(xk; x̂k|k−1,Pk|k−1, ν) (57)

p(zk|xk,Rk) = St(zk;Hkxk,Rk, ν) (58)

where the one-step predicted state x̂k|k−1 is given in (4).
The prior distributions of the inaccurate scale matricesPk|k−1

and Rk are chosen as the inverse Wishart distributions, respec-
tively, as follows

p(Pk|k−1|z1:k−1) = IW(Pk|k−1; t̂k|k−1, T̂k|k−1) (59)

p(Rk|z1:k−1) = IW(Rk; ûk|k−1, Ûk|k−1) (60)

where IW(·;ω,Σ) denotes the inverse Wishart PDF with dof
parameter ω and inverse scale matrix Σ.

To fit the prior information of the scale matrices Pk|k−1 and
Rk, the expectations of P−1

k|k−1 and R−1
k are chosen as the

inverses of their prior estimates, respectively, i.e.,
{

E[P−1
k|k−1] = t̂k|k−1T̂

−1
k|k−1 = P̃−1

k|k−1

E[R−1
k ] = ûk|k−1Û

−1
k|k−1 = R̃−1

k

(61)

where P̃k|k−1 and R̃k denote, respectively, the prior estimates

of the scale matrices Pk|k−1 and Rk, and P̃k|k−1 is given by

P̃k|k−1 = Fk−1Pk−1|k−1F
T
k−1 + Q̃k (62)

where Q̃k denotes the prior estimate of scale matrix Qk. Con-
sidering that in many practical contexts the state and observation
models suffer only from external contaminations for a fraction
of time, the prior estimates of scale matrices Qk and Rk can be,
respectively, set as the nominal state and observation noise co-
variance matrices, namely the covariance matrices of Gaussian
state and observation noises without contamination.

Using (61) yields

T̂k|k−1 = t̂k|k−1P̃k|k−1, Ûk|k−1 = ûk|k−1R̃k (63)

1) Calculations of Posterior PDFs: We look for optimal pos-
terior PDFs q(Pk|k−1), q(Rk) and q(xk) to maximize the lower
bound of L(q(xk), q(Pk|k−1), q(Rk)). Next, the lower bound
of L(q(xk), q(Pk|k−1), q(Rk)) will be achieved using Jensen’s
inequality, and the coordinate ascent approach will be employed
to maximize the lower bound with respect to q(Pk|k−1), q(Rk)
and q(xk).

Proposition 1: Using (55), Appendix B and Jensen’s in-
equality, q(Pk|k−1) is updated as an inverse Wishart PDF

q(Pk|k−1) = IW(Pk|k−1; t̂k|k, T̂k|k) (64)

where the distribution parameters t̂k|k and T̂k|k are formulated
as

t̂k|k = t̂k|k−1 + 1, T̂k|k = T̂k|k−1 +
β(ν + n)

ν
Ak (65)

where β denotes a modified parameter, and Ak denotes
the approximate one-step prediction error covariance matrix
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given by

Ak =

∫

(xk − x̂k|k−1)(xk − x̂k|k−1)
Tq(xk)dxk (66)

Proof: See Appendix C. �

Proposition 2: Employing (55), Appendix B and Jensen’s
inequality, q(Rk) is updated as an inverse Wishart PDF

q(Rk) = IW(Rk; ûk|k, Ûk|k) (67)

where the distribution parameters ûk|k and Ûk|k are formulated
as

ûk|k = ûk|k−1 + 1, Ûk|k = Ûk|k−1 +
γ(ν +m)

ν
Bk (68)

where γ denotes a modified parameter, and Bk denotes the
approximate observation noise covariance matrix formulated as

Bk =

∫

(zk −Hkxk)(zk −Hkxk)
Tq(xk)dxk (69)

Proof: See Appendix D. �

Proposition 3: Exploiting (55), Appendix B and Jensen’s
inequality, q(xk) is updated as a Student’s t-PDF

q(xk) = St(xk; x̂
∗
k|k,P

∗
k|k, ν

∗) (70)

where the distribution parameters x̂∗
k|k, P∗

k|k and ν∗ are formu-
lated as

S∗
k = HkP

∗
k|k−1H

T
k +R∗

k (71)

∆∗
k =

√

(zk −Hkx̂k|k−1)T (S∗
k)

−1 (zk −Hkx̂k|k−1) (72)

K∗
k = P∗

k|k−1H
T
k (S∗

k)
−1 (73)

x̂∗
k|k = x̂k|k−1 +K∗

k(zk −Hkx̂k|k−1) (74)

P∗
k|k =

ν + (∆∗
k)

2

ν +m
(P∗

k|k−1 −K∗
kHkP

∗
k|k−1) (75)

ν∗ = ν +m (76)

where P∗
k|k−1 and R∗

k denote the estimated scale matrices given
by

P∗
k|k−1 =

{

E
[

P−1
k|k−1

]}−1

, R∗
k =

{

E
[

R−1
k

]}−1
(77)

Proof: See Appendix E. �

2) Calculations of the Required Expectations: Employing
(70), Ak and Bk in (66) and (69) are, respectively, calculated as

Ak =
ν∗

ν∗ − 2
P∗

k|k + (x̂∗
k|k − x̂k|k−1)(x̂

∗
k|k − x̂k|k−1)

T (78)

Bk =
ν∗

ν∗ − 2
HkP

∗
k|kH

T
k +(zk−Hkx̂

∗
k|k)(zk −Hkx̂

∗
k|k)

T

(79)

Since q(Pk|k−1) and q(Rk) are inverse Wishart PDFs as
formulated in (64) and (67), q(P−1

k|k−1) and q(R−1
k ) are Wishart

PDFs given by
{

q(P−1
k|k−1) = W(P−1

k|k−1; t̂k|k, T̂
−1
k|k)

q(R−1
k ) = W(R−1

k ; ûk|k, Û
−1
k|k)

(80)

Using (80), E[P−1
k|k−1] and E[R−1

k ] are calculated as

E
[

P−1
k|k−1

]

= t̂k|kT̂
−1
k|k, E

[

R−1
k

]

= ûk|kÛ
−1
k|k (81)

Substituting (81) in (77) yields

P∗
k|k−1 = T̂k|k/t̂k|k, R∗

k = Ûk|k/ûk|k (82)

3) Selections of Modified Parameters β and γ: Substituting
(63), (65) and (68) in (82) results in

P∗
k|k−1 =

t̂k|k−1

t̂k|k−1 + 1
P̃k|k−1 +

1

t̂k|k−1 + 1

β(ν + n)

ν
Ak (83)

R∗
k =

ûk|k−1

ûk|k−1 + 1
R̃k +

1

ûk|k−1 + 1

γ(ν +m)

ν
Bk (84)

Let

t̂k|k−1 =
1

τk
− 1, ûk|k−1 =

1

λk

− 1 (85)

where 0 < τk ≤ 1 and 0 < λk ≤ 1 denote the correction
weights.

Substituting (85) in (83)–(84), we have

P∗
k|k−1 = (1− τk)P̃k|k−1 + τk

β(ν + n)

ν
Ak (86)

R∗
k = (1− λk)R̃k + λk

γ(ν +m)

ν
Bk (87)

Since Ak and Bk are, respectively, the approximate one-step
prediction error covariance matrix and the approximate obser-
vation noise covariance matrix, ν∗−2

ν∗ Ak and ν∗−2
ν∗ Bk can be,

respectively, deemed as the adaptive estimates of scale matrices
Pk|k−1 and Rk. Normally, the estimate of the scale matrix is a
weighted sum of prior estimate and adaptive estimate. Thus, the
estimated scale matrices P∗

k|k−1 and R∗
k are, respectively, the

weighted sums of prior estimates P̃k|k−1 and R̃k and adaptive

estimates ν∗−2
ν∗ Ak and ν∗−2

ν∗ Bk, i.e.,

P∗
k|k−1 = (1− τk)P̃k|k−1 + τk

ν∗ − 2

ν∗
Ak (88)

R∗
k = (1− λk)R̃k + λk

ν∗ − 2

ν∗
Bk (89)

By comparing (86)–(89), we have

β =
ν(ν∗ − 2)

(ν + n)ν∗
, γ =

ν(ν∗ − 2)

(ν +m)ν∗
(90)

We can observe from (90) that the modified parameters β
and γ satisfy the constraints 0 < β < 1 and 0 < γ < 1. Thus,
equations (88)–(89) can be employed to calculate the estimated
scale matrices P∗

k|k−1 and R∗
k.

The calculations of posterior PDFs q(xk), q(Pk|k−1) and
q(Rk) are interdependent and mutually coupled by the nonlinear
equation. As a result, these posterior PDFs q(xk), q(Pk|k−1) and
q(Rk) cannot be analytically achieved. In this paper, the fixed-
point iteration method is used to achieve approximate solutions.
That is to say, q(i+1)(Pk|k−1) and q(i+1)(Rk) are firstly updated

based on q(i)(xk), and then q(i+1)(xk) are updated based on
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TABLE II
ONE TIME STEP OF THE PROPOSED ADAPTIVE STUDENT’S

t-FILTERING ALGORITHM

q(i+1)(Pk|k−1) and q(i+1)(Rk). Such fixed-point iterations are
continued until convergence.

The proposed adaptive Student’s t-filtering algorithm is com-
posed of two parts, including the calculations of posterior PDFs
based on the KLD-minimization and the KLD minimization-
based Student’s t-matching. The detailed implementation of the
proposed ASTF algorithm is shown in Table II, where N

′

m and
ǫ
′

denote the maximum number of iterations and the iterative
threshold, respectively, and the KLDMSTM denotes the pro-
posed KLD minimization-based Student’s t-matching algorithm
in Section III.

Note that, as an extension, an adaptive nonlinear Student’s
t-filter and an adaptive nonlinear Student’s t-smoother can be
also derived for a nonlinear system with heavy-tailed state and
observation noises based on the idea of the proposed adaptive

linear Student’s t-filter. The existing Student’s t-weighted inte-
gral rules [20], [36]–[40] can be used to implement the adaptive
nonlinear Student’s t-filter and the adaptive nonlinear Student’s
t-smoother.

V. SIMULATION STUDY

A. Simulation Description

In this section, a manoeuvring target tracking example is
utilized to demonstrate the effectiveness and superiority of the
proposed ASTF. The proposed ASTF is compared with the
standard KF with true noise covariance matrices (KFTNCM),
the Kalman filter with measurement validation gating (KF-G)
[41], the existing HKF [15], the existing MCKF [16], the existing
STF [19], and the existing RSTKF [28], where the KFTNCM
employs the true noise covariance matrices to achieve the re-
cursive filtering estimates. To better show the effectiveness and
superiority, the proposed ASTF is also compared with the PF
[4] and the optimal KF (OKF), where the PF uses the true noise
distributions to obtain the optimal filtering estimates, and the
OKF employs the instantaneous noise covariance matrices for
all time points to achieve the optimal filtering estimates. Note
that both the true noise distributions and the instantaneous noise
covariance matrices are unavailable in practical applications
with outlier interferences, and both the PF and the OKF are only
used as optimal performance references. In this simulation, the
two-sided acceptance region of the KF-G is set as 95%, and the
tuning parameter of the existing HKF is selected as a common
value of γ = 1.345 [15], and the kernel parameter of the existing
MCKF is selected as σ = 15 to achieve a tradeoff between filter-
ing accuracy and stability [16], the dof parameter of the existing
STF is set as ν = 5, and the tuning parameter and dof parameter
of the existing RSTKF are, respectively, selected as τ = 4 and
ν = 5, and 1000 particles are used in the PF. In the proposed
ASTF, the correction weights are set as τk = λk = 0.15, and
the dof parameter is set as ν = 5. Furthermore, to guarantee
the convergence of the fixed-point iterations, the maximum
number of iterations and the iterative threshold are, respectively,
selected as Nm = 100 and ǫ = 10−98 in the proposed KLD
minimization-based Student’s t-matching algorithm, and the
maximum number of iterations and the iterative threshold are, re-
spectively, set as N

′

m = 50 and ǫ
′
= 10−16 in the existing HKF,

MCKF and RSTKF and the proposed ASTF. All filtering algo-
rithms are coded with MATLAB and are executed on a computer
with Intel Core i7-3770 CPU @ 3.40 GHz. The corresponding
MATLAB codes of this paper have been made publicly available
at https://www.researchgate.net/profile/Yulong_Huang3.

A problem of tracking an agile target is considered in this
simulation. The horizontal positions and velocities are selected
as state variables, and the real-time positions of the agile target
are observed in clutter and used as measurements, based on
which the linear SSM of the tracking problem can be formulated
as (1). The resultant state transition matrix is Fk = [ I2 T I2

0 I2
],

and the observation matrix isHk = [ I2 0 ], where I2 represents
the 2-D identity matrix and the sampling interval is set as T =
1s. The outlier contaminated state and observation noises are

https://www.researchgate.net/profile/Yulong_Huang3
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generated as follows [1]
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

wk ∼

{

N(0,Q) w.p. 0.95

N(0, U1Q) w.p. 0.05

vk ∼

{

N(0,R) w.p. 0.95

N(0, U2R) w.p. 0.05

(91)

where Q =
[

T
3

3
I2

T
2

2
I2

T2

2
I2 T I2

]

and R = 100I2 are, respectively, the

nominal state and observation noise covariance matrices. The
conditions in (91) mean that the state and observation noise
covariance matrices are, respectively, magnified by scalar factors
U1 andU2 with a probability of 5%, whereU1 ≫ 1 andU2 ≫ 1.
Such a setup can simulate a scenario of state and observation
outliers, which is often encountered in practical engineering
applications, and the resultant state and observation noises have
non-Gaussian heavy-tailed distributions.

In this simulation, the true initial state vector is x0 =
[0, 0, 10, 10]T, and the initial state estimation error covari-
ance matrix is chosen as P0 = diag([100, 100, 100, 100]).
To guarantee a fair comparison, 1000 Monte Carlo runs are
performed, and in each Monte Carlo run, the initial state estimate
is randomly selected from a Gaussian distribution, i.e., x̂0|0 ∼
N(x0,P0), and the initial state estimates and corresponding
initial estimation error covariance matrices of all filtering algo-
rithms are set as x̂0|0 andP0. The simulation time is set as 100s in
each Monte Carlo run. To compare the filtering accuracy of the
proposed ASTF and the existing filters, the root mean square
errors (RMSEs) and averaged RMSEs (ARMSEs) of position
and velocity are used as performance metrics and they are,
respectively, abbreviated as RMSEpos, RMSEvel, ARMSEpos

and ARMSEvel, whose definitions are given in the literature
[28].

B. Simulation Comparisons

To better compare the proposed ASTF and the existing filters,
we consider two explanatory cases: the moderately contami-
nated state and observation noises and the strongly contaminated
state and observation noises.

1) Case 1: In this case, we consider the moderately contam-
inated state and observation noises, and the magnified factors
in (91) are set as U1 = 100 and U2 = 100. Such a setup can
simulate a scenario of moderately heavy-tailed state and obser-
vation noises. The RMSEs of position and velocity from the
proposed ASTF and the existing noise-robust filters for case 1
are illustrated in Fig. 4–Fig. 5. The run time in a single step and
the ARMSEs of position and velocity for case 1 are listed in
Table III.

It is seen from Fig. 4–Fig. 5 and Table III that the proposed
ASTF has smaller RMSEs and ARMSEs of position and ve-
locity than the existing KFTNCM, KF-G, HKF, MCKF and
STF, and the proposed ASTF has similar RMSEs and ARM-
SEs of position and velocity with the existing PF. It can be
also seen from Fig. 4–Fig. 5 and Table III that the proposed
ASTF has slightly larger RMSEs and ARMSEs of position
and velocity than the existing RSTKF, which is because the
Gaussian approximation to the posterior PDF is better than

Fig. 4. RMSEpos of the proposed ASTF and the existing noise-robust filters
for case 1.

Fig. 5. RMSEvel of the proposed ASTF and the existing noise-robust filters
for case 1.

the Student’s t-approximation for moderately heavy-tailed state
and observation noises. Moreover, we can see from Table III
that the proposed ASTF needs more implementation time than
the existing KFTNCM, KF-G, HKF, MCKF, STF and RSTKF
but significantly less implementation time than the existing PF.
Thus, for moderately contaminated state and observation noises,
the proposed ASTF has significantly better filtering accuracy
than the existing KFTNCM, HKF, MCKF and STF and slightly
worse filtering accuracy than the existing RSTKF and similar
filtering accuracy with the existing PF with 1000 particles, and
the proposed ASTF has higher computational burden than the
existing KFTNCM, KF-G, HKF, MCKF, STF and RSTKF but
significantly higher computational efficiency than the existing
PF with 1000 particles.

2) Case 2: In this case, we consider the seriously contami-
nated state and observation noises, and the magnified factors in
(91) are set asU1 = 1000 andU2 = 1000. Such a setup can sim-
ulate a scenario of strongly heavy-tailed state and observation
noises. The RMSEs of position and velocity from the proposed
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TABLE III
RUN TIME IN A SINGLE STEP AND ARMSES OF POSITION AND

VELOCITY FOR CASE 1

Fig. 6. RMSEpos of the proposed ASTF and the existing noise-robust filters
for case 2.

Fig. 7. RMSEvel of the proposed ASTF and the existing noise-robust filters
for case 2.

ASTF and the existing noise-robust filters for case 2 are shown
in Fig. 6–Fig. 7. The run time in a single step and the ARMSEs
of position and velocity for case 2 are given in Table IV.

It is observed from Fig. 6–Fig. 7 and Table IV that the
proposed ASTF has significantly smaller RMSEs and ARMSEs
of position and velocity than the existing KFTNCM, KF-G,

TABLE IV
RUN TIME IN A SINGLE STEP AND ARMSES OF POSITION AND

VELOCITY FOR CASE 2

HKF, MCKF, STF and RSTKF, and the proposed ASTF has sig-
nificantly smaller RMSEs and ARMSEs of position but slightly
larger RMSEs and ARMSEs of velocity than the existing PF.
Note that, in the case of strongly heavy-tailed state and ob-
servation noises, the Student’s t-approximation to the posterior
PDF is better than the Gaussian approximation so the proposed
ASTF has smaller RMSEs and ARMSEs of position and velocity
than the existing RSTKF. We can also see from Table IV that
the proposed ASTF needs greater implementation time than the
existing filters except for the existing PF with 1000 particles.
Thus, for strongly contaminated state and observation noises,
the proposed ASTF has significantly better filtering accuracy
but higher computational burden than the existing KFTNCM,
KF-G, HKF, MCKF, STF and RSTKF, and the proposed ASTF
has significantly better filtering accuracy of position and higher
computational efficiency than the existing PF with 1000 parti-
cles.

In the cases 1 and 2, the KF-G is often found to diverge, which
may be because some beneficial measurements are discarded
based on misjudgments. In theory, the PF can achieve optimal
filtering estimates when infinite particles are used. However,
for the case of heavy-tailed non-Gaussian noises, the use of a
limited number of particles is generally insufficient to capture
the heavy tails of state and observation noises so the filtering
accuracy degrades, especially for strongly heavy-tailed state
and observation noises, as shown in Fig. 4–Fig. 7. Although
the estimation accuracy of the PF can be further improved by
increasing the number of particles, its computational complexity
also increases dramatically.

VI. CONCLUSION

In this paper, a novel KLD minimization-based matching
method was first proposed to improve the Student’s t-matching
accuracy, in which the upper bound of the KLD between the
true Student’s t-PDF and the approximate Student’s t- PDF is
minimized. To improve the Student’s t-modelling accuracy, a
novel KLD minimization-based adaptive method was then pro-
posed to estimate the scale matrices of Student’s t-distributions,
in which the modified evidence lower bound is maximized. A
novel KLD minimization-based ASTF was derived by combin-
ing the proposed Student’s t-matching technique and an adaptive
method. Simulation results showed that the proposed ASTF has
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improved filtering accuracy but higher computational burden
than the existing HKF, MCKF, STF and RSTKF for strongly
heavy-tailed state and observation noises.

APPENDIX A
VERIFICATIONS OF MINIMUM SOLUTIONS (35)–(36)

In order to validate that (35)–(36) are minimum solutions, the
joint Hessian matrix of the cost function Ju(µ,Σ) with respect
to the mean vector µ and the scale matrix Σ needs to be firstly
calculated as follows

H(µ,Σ) =

⎡

⎣

∂2Ju(µ,Σ)
∂µ∂µT

∂2Ju(µ,Σ)
∂µ∂vecT(Σ)

{

∂2Ju(µ,Σ)
∂µ∂vecT(Σ)

}T
∂2Ju(µ,Σ)

∂vec(Σ)∂vecT(Σ)

⎤

⎦

(92)
where vec(·) represents the vectorization operation of a matrix.

Using (29)–(30), the sub-Hessian matrices of the cost function
Ju(µ,Σ) with respect to the mean vector µ and the scale matrix
Σ are, respectively, calculated as

∂2Ju(µ,Σ)

∂µ∂µT
=

0.5α(ν2 + n)Σ−1

ν2f(µ,Σ)
−

0.5α(ν2 + n)Σ−1

ν2[f(µ,Σ)]2

× (µ− µ1)

[

∂f(µ,Σ)

∂µ

]T

(93)

∂2Ju(µ,Σ)

∂µ∂vecT(Σ)
=

0.25α(ν2 + n)

ν2f(µ,Σ)

{

[

Σ−1(µ− µ1)
]T

⊗Σ−1

+Σ−1 ⊗
[

Σ−1(µ− µ1)
]T
}

−
0.5α(ν2 + n)Σ−1

ν2[f(µ,Σ)]2
(µ− µ1)

∂f(µ,Σ)

∂vecT(Σ)
(94)

∂2Ju(µ,Σ)

∂vec(Σ)∂vecT(Σ)
= −0.5Σ−1 ⊗Σ−1 +

0.5α(ν2 + n)

ν2f(µ,Σ)

×
{[

Σ−1Σ̃1Σ
−1
]

⊗Σ−1 +Σ−1 ⊗
[

Σ−1Σ̃1Σ
−1
]}

+
0.25α(ν2 + n)

[ν2f(µ,Σ)]2

{[

Σ−1
[

(µ− µ1)(µ− µ1)
T + Σ̃1

]

Σ−1
]

⊗
[

Σ−1Σ̃1Σ
−1
]

+
[

Σ−1Σ̃1Σ
−1
]

⊗
[

Σ−1
[

(µ− µ1)(µ− µ1)
T + Σ̃1

]

Σ−1
]}

(95)

where ⊗ denotes the Kronecker product operation.
Substitutingµ = µ2 andΣ = Σ2 in (93)–(95) and using (35)

yields

∂2Ju(µ,Σ)

∂µ∂µT

∣

∣

∣

∣

{µ=µ2,Σ=Σ2}

=
0.5α(ν2 + n)Σ−1

2

ν2f(µ2,Σ2)
(96)

∂2Ju(µ,Σ)

∂µ∂vecT(Σ)

∣

∣

∣

∣

{µ=µ2,Σ=Σ2}

= 0 (97)

∂2Ju(µ,Σ)

∂vec(Σ)∂vecT(Σ)

∣

∣

∣

∣

{µ=µ2,Σ=Σ2}

= −0.5Σ−1
2 ⊗Σ−1

2

+
0.5α(ν2 + n)

ν2f(µ2,Σ2)

{[

Σ−1
2 Σ̃1Σ

−1
2

]

⊗Σ−1
2 +Σ−1

2

⊗
[

Σ−1
2 Σ̃1Σ

−1
2

]}

+
0.5α(ν2 + n)

[ν2f(µ2,Σ2)]2

[

Σ−1
2 Σ̃1Σ

−1
2

]

⊗
[

Σ−1
2 Σ̃1Σ

−1
2

]

(98)

Employing (23)–(24) and (35)–(36) in (96) and (98) results
in

∂2Ju(µ,Σ)

∂µ∂µT

∣

∣

∣

∣

{µ=µ2,Σ=Σ2}

=
ν1 − 2

2ν1
Σ−1

1 (99)

∂2Ju(µ,Σ)

∂vec(Σ)∂vecT(Σ)

∣

∣

∣

∣

{µ=µ2,Σ=Σ2}

= 0.5

(

1−
1

α(ν2 + n)

)

×Σ−1
2 ⊗Σ−1

2 (100)

Substituting (97) and (99)–(100) in (92), the value of Hessian
matrix at µ = µ2 and Σ = Σ2 can be formulated as

H(µ2,Σ2) =

[

ν1−2
2ν1

Σ−1
1 0

0 0.5(1− 1
α(ν2+n) )Σ

−1
2 ⊗Σ−1

2

]

(101)
It is observed from (101) that the Hessian matrix H(µ2,Σ2)

is positive semi-definite if the dof parameters ν1 and ν2 and the
modified parameter α satisfy the following conditions

ν1 > 2, α ≥
1

ν2 + n
(102)

and note that the dof parameter ν1 can’t be equal to 2, i.e., ν1 = 2,
to guarantee that the covariance matrix Σ̃1 in (24) exists.

Thus, if the dof parameters ν1 and ν2 and the modified
parameter α satisfy the conditions in (102), then the optimal
solutions in (35)–(36) will be the minimum solutions of the cost
function in (27).

APPENDIX B
CALCULATION OF log p(Θk, z1:k)

Employing (57)–(60), log p(Θk, z1:k) can be formulated as

log p(Θk, z1:k) = −0.5(t̂k|k−1 + n+ 2) log |Pk|k−1|

− 0.5(ν+n) log

[

1+
1

ν
(xk−x̂k|k−1)

TP−1
k|k−1(xk−x̂k|k−1)

]

− 0.5tr
(

T̂k|k−1P
−1
k|k−1

)

− 0.5(ûk|k−1 +m+ 2) log |Rk|

− 0.5(ν +m) log

[

1 +
1

ν
(zk −Hkxk)

TR−1
k (zk −Hkxk)

]

× 0.5tr
(

Ûk|k−1R
−1
k

)

+ cΘk
(103)
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APPENDIX C
PROOF OF PROPOSITION 1

Substituting (103) in (55) and treating q(xk) and q(Rk) as
known posterior PDFs yields

L1(q(Pk|k−1)) = −

∫

q(Pk|k−1)
[

0.5(t̂k|k−1 + n+ 2)

× log |Pk|k−1|+ 0.5tr
(

T̂k|k−1P
−1
k|k−1

)

+ 0.5(ν + n)

×Y1(Pk|k−1)
]

dPk|k−1−

∫

q(Pk|k−1) log q(Pk|k−1)dPk|k−1

+ cPk|k−1
(104)

where Y1(Pk|k−1) is given by

Y1(Pk|k−1) =

∫

q(xk) log

[

1 +
1

ν
(xk − x̂k|k−1)

TP−1
k|k−1

× (xk − x̂k|k−1)

]

dxk (105)

Considering that the natural logarithmic function log(·) is a
convex function and using Jensen’s inequality, we have [32]

Y1(Pk|k−1) ≤ logU1(Pk|k−1) (106)

where U1(Pk|k−1) is given by

U1(Pk|k−1) =

∫

q(xk)

[

1 +
1

ν
(xk − x̂k|k−1)

TP−1
k|k−1

× (xk − x̂k|k−1)

]

dxk (107)

Exploiting (107), U1(Pk|k−1) can be calculated as

U1(Pk|k−1) = 1 +
1

ν
tr
(

AkP
−1
k|k−1

)

(108)

where Ak is given by (66).
Since Ak and Pk|k−1 are positive definite matrices, we have

tr
(

AkP
−1
k|k−1

)

> 0 (109)

Considering that log(1 + t) < t for arbitrary t > 0 and using
(108)–(109) results in

logU1(Pk|k−1) = log

[

1 +
1

ν
tr
(

AkP
−1
k|k−1

)

]

<
1

ν
tr
(

AkP
−1
k|k−1

)

(110)

Define a modified parameter β as follows

logU1(Pk|k−1) ≤
β

ν
tr
(

AkP
−1
k|k−1

)

s.t. 0 < β < 1 (111)

where β
ν
tr(AkP

−1
k|k−1) denotes the modified upper bound of

logU1(Pk|k−1). The modified parameterβ can be used to reduce
the difference between logU1(Pk|k−1) and the modified upper
bound.

Substituting (106) and (111) in (104) yields

L1(q(Pk|k−1)) ≥ L
′

1(q(Pk|k−1)) (112)

where L
′

1(q(Pk|k−1)) is the lower bound of L1(q(Pk|k−1)) and
is given by

L
′

1(q(Pk|k−1)) = −

∫

q(Pk|k−1)
[

0.5(t̂k|k−1 + n+ 2)

× log |Pk|k−1|+ 0.5tr

{[

T̂k|k−1 +
β(ν + n)

ν
Ak

]

P−1
k|k−1

}]

× dPk|k−1 −

∫

q(Pk|k−1) log q(Pk|k−1)dPk|k−1 + cPk|k−1

(113)

We propose to achieve an approximate optimal q(Pk|k−1) by

maximizing the lower bound L
′

1(q(Pk|k−1)), i.e.,

q(Pk|k−1) = argmaxL
′

1(q(Pk|k−1)) (114)

Define an auxiliary PDF p̃(Pk|k−1) as follows

log p̃(Pk|k−1) = −0.5(t̂k|k−1 + n+ 2) log |Pk|k−1|

− 0.5tr

{[

T̂k|k−1 +
β(ν + n)

ν
Ak

]

P−1
k|k−1

}

+ cPk|k−1

(115)

Substituting (115) in (113) gives

L
′

1(q(Pk|k−1)) =

∫

q(Pk|k−1) log
p̃(Pk|k−1)

q(Pk|k−1)

= −KLD(q(Pk|k−1)||p̃(Pk|k−1)) ≤ 0 (116)

whereL
′

1(q(Pk|k−1)) achieves the maximum value 0 if and only
if

q(Pk|k−1) = p̃(Pk|k−1) (117)

Employing (117) in (115) yields

log q(Pk|k−1) = −0.5(t̂k|k−1 + n+ 2) log |Pk|k−1|

− 0.5tr

{[

T̂k|k−1 +
β(ν + n)

ν
Ak

]

P−1
k|k−1

}

+ cPk|k−1

(118)

According to (118), we can obtain (64)–(65).

APPENDIX D
PROOF OF PROPOSITION 2

Substituting (103) in (55) and treating q(xk) and q(Pk|k−1)
as known posterior PDFs results in

L2(q(Rk)) = −

∫

q(Rk)
[

0.5(ûk|k−1 +m+ 2) log |Rk|

+0.5tr
(

Ûk|k−1R
−1
k

)

+ 0.5(ν +m)Y2(Rk)
]

dRk

−

∫

q(Rk) log q(Rk)dRk + cRk
(119)

where Y2(Rk) is given by

Y2(Rk) =

∫

q(xk) log

[

1 +
1

ν
(zk −Hkxk)

TR−1
k

× (zk −Hkxk)

]

dxk (120)
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Considering that the natural logarithmic function log(·) is a
convex function and using Jensen’s inequality yields [32]

Y2(Rk) ≤ logU2(Rk) (121)

where U2(Rk) is given by

U2(Rk) =

∫

q(xk)

[

1 +
1

ν
(zk −Hkxk)

TR−1
k

× (zk −Hkxk)

]

dxk (122)

Utilizing (122), U2(Rk) is calculated as

U2(Rk) = 1 +
1

ν
tr
(

BkR
−1
k

)

(123)

where Bk is given by (69).
Considering that Bk and Rk are positive definite matrices,

we obtain

tr
(

BkR
−1
k

)

> 0 (124)

By the fact that log(1 + t) < t for arbitrary t > 0 and em-
ploying (123)–(124) gives

logU2(Rk) = log

[

1 +
1

ν
tr
(

BkR
−1
k

)

]

<
1

ν
tr
(

BkR
−1
k

)

(125)
Define a modified parameter γ as follows

logU2(Rk) ≤
γ

ν
tr
(

BkR
−1
k

)

s.t. 0 < γ < 1 (126)

where γ
ν
tr(BkR

−1
k ) denotes the modified upper bound of

logU2(Rk). The modified parameter γ can be used to reduce the
difference between logU2(Rk) and the modified upper bound.

Substituting (121) and (126) in (119) results in

L2(q(Rk)) ≥ L
′

2(q(Rk)) (127)

whereL
′

2(q(Rk)) represents the lower bound ofL2(q(Rk)) and
is given by

L
′

2(q(Rk)) = −

∫

q(Rk)
[

0.5(ûk|k−1 +m+ 2) log |Rk|

+0.5tr

{[

Ûk|k−1 +
γ(ν +m)

ν
Bk

]

R−1
k

}]

× dRk −

∫

q(Rk) log q(Rk)dRk + cRk

(128)

We propose to achieve an approximate optimal q(Rk) by
maximizing the lower bound L

′

2(q(Rk)), i.e.,

q(Rk) = argmaxL
′

2(q(Rk)) (129)

Define an auxiliary PDF p̃(Rk) as follows

log p̃(Rk) = −0.5(ûk|k−1 +m+ 2) log |Rk|

− 0.5tr

{[

Ûk|k−1 +
γ(ν +m)

ν
Bk

]

R−1
k

}

+ cRk
(130)

Substituting (130) in (128) yields

L
′

2(q(Rk)) =

∫

q(Rk) log
p̃(Rk)

q(Rk)

= −KLD(q(Rk)||p̃(Rk)) ≤ 0 (131)

where L
′

2(q(Rk)) achieves the maximum 0 if and only if

q(Rk) = p̃(Rk) (132)

Using (132) in (130) gives

log q(Rk) = − 0.5(ûk|k−1 +m+ 2) log |Rk|

−0.5tr

{[

Ûk|k−1 +
γ(ν +m)

ν
Bk

]

R−1
k

}

+ cRk

(133)

According to (133), we can obtain (67)–(68).

APPENDIX E
PROOF OF PROPOSITION 3

Substituting (103) in (55) and treating q(Pk|k−1) and q(Rk)
as known posterior PDFs results in

L3(q(xk)) = −

∫

q(xk) [0.5(ν + n)Y3(xk) + 0.5(ν +m)

×Y4(xk)] dxk −

∫

q(xk) log q(xk)dxk + cxk

(134)

where Y3(xk) and Y4(xk) are given by

Y3(xk) =

∫

q(Pk|k−1) log

[

1 +
1

ν
(xk − x̂k|k−1)

TP−1
k|k−1

× (xk − x̂k|k−1)

]

dPk|k−1 (135)

Y4(xk) =

∫

q(Rk) log

[

1 +
1

ν
(zk −Hkxk)

TR−1
k

× (zk −Hkxk)

]

dRk (136)

Since the natural logarithmic function log(·) is a convex
function and utilizing Jensen’s inequality results in [32]

Y3(xk) ≤ log

[

1 +
1

ν
(xk − x̂k|k−1)

T(P∗
k|k−1)

−1

× (xk − x̂k|k−1)

]

(137)

Y4(xk) ≤ log

[

1 +
1

ν
(zk −Hkxk)

T(R∗
k)

−1(zk −Hkxk)

]

(138)

where P∗
k|k−1 and R∗

k are given by (77).
Substituting (137)–(138) in (134) yields

L3(q(xk)) ≥ L
′

3(q(xk)) (139)
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where L
′

3(q(xk)) represents the lower bound of L3(q(xk)) and
is given by

L
′

3(q(xk)) = −

∫

q(xk)

[

0.5(ν + n) log

[

1 +
1

ν
(xk

− x̂k|k−1)
T(P∗

k|k−1)
−1(xk − x̂k|k−1)

]

+ 0.5(ν +m)

× log

[

1 +
1

ν
(zk −Hkxk)

T(R∗
k)

−1(zk −Hkxk)

]]

dxk

−

∫

q(xk) log q(xk)dxk + cxk
(140)

We propose to achieve an approximate optimal q(xk) by
maximizing the lower bound L

′

3(q(xk)), i.e.,

q(xk) = argmaxL
′

3(q(xk)) (141)

Define an auxiliary PDF p̃(xk) as follows

log p̃(xk) = − 0.5(ν + n) log

[

1 +
1

ν
(xk − x̂k|k−1)

T

× (P∗
k|k−1)

−1(xk − x̂k|k−1)

]

− 0.5(ν +m) log

[

1 +
1

ν
(zk −Hkxk)

T

× (R∗
k)

−1(zk −Hkxk)

]

+ cxk
(142)

Substituting (142) in (140) results in

L
′

3(q(xk)) =

∫

q(xk) log
p̃(xk)

q(xk)
dxk

= −KLD(q(xk||p̃(xk)) ≤ 0 (143)

where L
′

3(q(xk)) achieves the maximum 0 if and only if

q(xk) = p̃(xk) (144)

Employing (144) in (142) yields

log q(xk) = − 0.5(ν + n) log

[

1 +
1

ν
(xk − x̂k|k−1)

T

× (P∗
k|k−1)

−1(xk − x̂k|k−1)

]

− 0.5(ν +m) log

[

1 +
1

ν
(zk −Hkxk)

T

× (R∗
k)

−1(zk −Hkxk)

]

+ cxk
(145)

According to (145), we can obtain (70)–(76).
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