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ABSTRACT Autonomous driving is a crucial issue of the automobile industry, and research on lane change

is its significant part. Previous works on the autonomous vehicle lane change mainly focused on lane change

path planning and path tracking, but autonomous vehicle lane change decision making is rarely mentioned.

Therefore, this paper establishes an autonomous lane change decision-making model based on benefit,

safety, and tolerance by analyzing the factors of the autonomous vehicle lane change. Then, because of

the multi-parameter and non-linearity of the autonomous lane change decision-making process, a support

vectormachine (SVM) algorithmwith the Bayesian parameters optimization is adopted to solve this problem.

Finally, we compare a lane change model based on rules with the proposed SVM model in the test set, and

results illustrate that the SVM model performs better than the rule-based lane change model. Moreover,

the real car experiment is carried out to verify the effectiveness of the decision model.

INDEX TERMS Autonomous vehicle, lane change decision making, support vector machine, Bayesian

optimization, drivers’ habits.

I. INTRODUCTION

Autonomous driving can change people’s lifestyle in the

future, and it can improve the utilization rate of cars, traf-

fic capacity, enhance the mobility of people with mobil-

ity difficulties, alleviate driver fatigue, and reduce traffic

accidents caused by drivers’ fault [1]–[3]. Therefore, its

related issues have become hot topics recently, and self-

driving cars have attracted great social attention in recent

years. Advanced Driving Assistance Systems (ADAS) con-

tain Adaptive Cruise Control (ACC), Autonomous Emer-

gency Braking (AEB), Lane Keep Assistant (LKA) and

other features, which can help drivers individually in the

longitudinal and lateral directions and can realize low-level

autonomous driving. However, lane change maneuver is a

complex and potentially dangerous traffic behavior, which

The associate editor coordinating the review of this manuscript and
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involves vehicle longitudinal and lateral coupling control.

About 539,000 two-lane traffic accidents occurred every year

in the United States [4]. Therefore, this paper focuses on the

lane change analysis.

Conventional lane change researches were mainly about

lane change warning system (LCWS) or microscopic traf-

fic simulation. In LCWS, in order to provide safety warn-

ing to drivers when lane change operation may occur,

some scholars have studied driver’s lane change inten-

tion recognition. Li et al. [5] combined Hidden Markov

Model (HMM) and Bayesian Filtering (BF) models and

used the HMM model to decompose driving behavior into

sub-behavior. Besides, Tang et al. [6] proposed an adaptive

fuzzy neural network to predict the driver’s steering angle.

Rehder et al. [7] used Bayesian Network (BN) to predict

the probability of lane change. In microscopic traffic simu-

lation lane change research, Gipps [8] put forward a set of

rules based on six factors: safe gap distances, the location of
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permanent obstructions, existence of transit lanes, the driver’s

intended turning movement, existence of heavy vehicles,

and vehicle speed. Moreover, Kesting et al. [9] proposed

the rule of Minimizing Overall Braking Induced by Lane

Changes (MOBIL), which adopted the parameter of polite-

ness to make lane change behavior more cooperative.

Singh and Li [10] used the data of loop detector to esti-

mate the traffic density of frequent lane-change roads and

introduced Markov chain to describe lane change behavior

in the state space model. Toledo and Katz [11] integrated the

invisible Markov model into a switching model, proposed the

state-dependent lane change model.

Though research about lane change assistance or micro-

scopic traffic simulation model can be found in many stud-

ies, little research about autonomous lane change has been

undertaken. Autonomous lane change can be divided into

three stages: 1) lane change decision making; 2) trajectory

planning; 3) path tracking. Lane-change decision making

aims to determine when to implement lane change process.

However, present works on autonomous vehicle lane change

mainly focused on path planning and path tracking, lane

change decision making is rarely mentioned. Luo et al. [12]

and Yang et al. [13] optimized the lane change trajectory by

considering the dynamic collision problem in the lane change

process. These studies were carried out at the basis of assum-

ing that the lane change decision has been generated, but how

the lane change decision is generated was not described in

detail. Nilsson et al. [14] assumed that autonomous driving

was equippedwith an autonomous decision-making system in

his research on trajectory planning. Balal et al. [15] designed

a binary decision model for autonomous lane changing based

on fuzzy inference system, but it required the driver of the

subject vehicle indicates his/her desire to change lane and

the selected target lane by turning the vehicle’s turn indicator

(also known as turn signal). Thus, previous researches on

lane change of autonomous driving often assume that lane

change decisions have been made or drivers need to show

his/her lane change intentions. To the best of our knowledge,

seldom studies exist that allows a vehicle to make lane change

decision autonomously without the driver’s explicit initiation.

Vallon et al. [16] proposed a lane change initiation method

based on SVM, and the SVM algorithm needs to be further

studied. Nie et al. [17] proposed a decentralized coopera-

tive lane-changing decision-making framework for connected

autonomous vehicles to improve the efficiency and stability

of traffic.

Moreover, different drivers have different lane change

strategies. Sun and Elefteriadou [18] invited 17 drivers to

participate in the group discussion and divided them into

4 categories using k-means clustering. Nine scenarios were

designed to calculate the possibility of lane change for

different types of drivers. Toledo and Katz [11] showed

that heterogeneity and state dependence have significant

effects on the change behavior. While existing lane change

decisions did not consider the habits and characteristics

of drivers [19], [20]. The benefits of advanced driver

assistance systems can be fully developed only when they

meet drivers’ requirement [21]. Autonomous lane change

will face the same problem before fully unmanned vehicles

arrive, so drivers’ habits must be considered in lane change

strategies.

Therefore, it is necessary to study the safe but learnable

autonomous lane change decision making for autonomous

vehicles to address the above-mentioned issue. The main

contributions of this paper: 1) establish an autonomous lane

change decision-making model based on benefits, safety and

tolerance, and it shows that the lane change decision is a

multi-parametric and nonlinear problem and can provides a

basis for feature selection of support vector machine (SVM)

model training; 2) propose a SVM model to solve the multi-

parametric and nonlinear autonomous lane change decision-

making model and it can promise the decision-making model

fits the driver’s habits. This paper is organized as follows.

In section II, the autonomous lane change decision-making

model is established through analyzing all impact factors of

autonomous lane change. In section III, the SVM algorithm is

adopted to address the difficulties due to the multi-parameter

and non-linearity of the model. Section IV gives the simula-

tion and experiment result, we compare a rules-based model

with our proposed SVMmodel in the test set, and results show

that the SVM model performs much better.

II. ANALYSIS OF AUTONOMOUS VEHICLE LANE CHANGE

Lane change decision is affected by various traffic fac-

tors. In order to analyze the decision-making process,

an autonomous lane change model is established, which

includes one original lane and one target lane. The model can

be simplified as shown in figure 1.WhereE is the ego vehicle,

TP, TR, and P are the preceding vehicle in the target lane,

the rear vehicle in the target lane and the preceding vehicle in

the original lane, respectively.

FIGURE 1. Autonomous vehicle lane change model. GTR , GTP , GP - the
longitudinal gap distance between E and TR, TP , P;vE , vTR , vTP , vP - the
longitudinal speed of E , TR, TP , and P .

As we all know, lane change decision is influenced by

TP, TR, and P. However, how these vehicles influence an

autonomous vehicle to abandon the original lane and choose

a new lane requires in-depth analysis. This paper will analyze

autonomous lane change from three aspects: lane change

benefit, safety and tolerance.

A. LANE CHANGE BENEFIT

The purpose of lane change is to improve driving speed or

obtain greater space ahead [22]. For autonomous vehicle,

26544 VOLUME 7, 2019



Y. Liu et al.: Novel Lane Change Decision-Making Model of Autonomous Vehicle Based on SVM

the driving speed in the future can be converted into the

speed of the preceding vehicle. Thus, the speed benefit can

be expressed as

vbenefit = min(vset − vP, vTP − vP) (1)

vset represents the speed set by autonomous vehicle.

The space ahead can be represented by the relative distance

of the preceding vehicle and can be expressed as GTP − GP.

The driving benefit model can be established as

fbenefit = f (vbenefit,GTP − GP) (2)

B. SAFETY

The safety of lane change is to avoid the collision between

the self-driving vehicle and TR. Obviously, the greater the

gap and relative speed between E and TR are, the safer the

lane change process is. In addition, lane change requires a

minimum safe gap. Thus, the following safety model can be

established as follows

fsafety =

{

−∞, GTR < GTRmin

f (GTR, vE − vTR), GTR ≥ GTRmin

(3)

GTRmin > 0 is the minimum safe gap between E and TR.

C. TOLERANCE

When the benefit and safety of the lane change process are

high enough, the autonomous vehicle may decide to operate

lane change with above benefit and safety function, but the

distance between E and Pmay be pretty large, it might cause

frequent lane change of autonomous vehicle if lane change is

also decided in this case, Therefore, it is necessary to establish

the tolerance model. When E is close to P, the autonomous

vehicle will follow P in ACC mode, and the expect distance

is determined by the speed and the time headway. Thus,

tolerance model can be established as

ftolerance = f (GP − vE · th) (4)

where th > 0 is the time headway.

D. RULES-BASED MODEL

To establish a simple lane change maneuver, we first assume

that the above three models and influencing factors are linear.






fbenefit = a · vbenefit + b(GTP − GP)

ftolerance = c(GP − vE · th)

fsafety = d(GTR−GTRmin)+e(vE−vTR), GTR≥GTRmin
(5)

where a, b, c, d, e are coefficient value.

The rules-based decision-making model can be established

as follows

if fsafety > 0 and fbenefit − θ ftolerance > 0

fLC = yes

else

fLC = no

end
where θ is weight factor and fLC is lane change decision.

However, autonomous vehicle lane change decision mak-

ing is a multi-parametric, nonlinear problem, it is difficult

to establish a specific mathematical formula model. Thus,

the lane change decision-making model of autonomous vehi-

cle should be expressed as

fLC= f (vincome,GTP−GP,GTR, vE−vTR,GP−vE · th) (6)

The Gaussian kernel SVM is adopted to solve the multi-

parametric and nonlinear problem of autonomous lane

change decision-making process, and make sure the model

fits the driver’s habits. The schematic of the proposed method

in the paper is showed in figure 2.

FIGURE 2. Schematic of the proposed method in the paper.

III. DATA EXTRACTION AND SVM MODEL

A. DATA EXTRACTION

Next Generation Simulation (NGSIM) [23] is the most

detailed and accurate field data set collected by the Fed-

eral Highway Administration (FHWA) for traffic micro-

simulation research and development. The vehicle trajectory

data is collected by digital cameras, and the precise position

of each vehicle on the road segment of 0.5 to 1.0 km is

recorded every tenth of a second. It includes real road data

such as US 101 in Los Angeles, California, and I-80 interstate

in the San Francisco bay area, California. These datasets

consist of detailed vehicle trajectory, wide-area detector, and

supporting data for researching driver behavior.

According to Balal et al. [15], the candidate lane change

trajectories can be selected. Generally, vehicles making mul-

tiple lane changes are excluded, because that is more like

mandatory lane change. The starting point of lane change

execution by drivers is usually the starting point of track

change, as shown in figure 3. The most accurate method is

to calibrate the position of lane change point according to

each track. However, such data processing is cumbersome,

and it is difficult to obtain large number of lane change data

for machine learning model training.

In the first 5 seconds of lane ID change, when the lateral

velocity is greater than 0.6096m/s for the first time, it is taken

as the starting point of lane change execution. In order to

verify the correctness of the extraction method, 156 groups of

lane change points selectedmanually were compared with the

proposed extraction method, and the time error distribution

is shown in figure 4. Most of the data are concentrated near

the ordinate origin, indicating that the extraction method is
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FIGURE 3. Schematic of the proposed method in the paper.

close to manual pick, so this criterion is used to determine

the execution point of lane change in data extraction. Only

the data before lane change is used for the not change lane

data. Compared with other invariant lane data, the data before

lane change is close to the lane change environment. Only by

distinguishing the choice of lane change conditions of drivers

before and after lane change can the autonomous driving

decision be more meaningful.

FIGURE 4. Time error distribution.

Among all lane change data extracted, there are some data

that the speed and relative distance of TP are both decreased

compared with P. These behaviors are more likely to be

mandatory lane changes, so these data have been excluded

Finally, 880 lane change data and 1030 counter-examples is

got for model training.

B. SVM SOLUTION

The basic theory of SVM is to find a hyperplane in the sample

space with the largest margin on training set










D = {(x1, y1), (x2, y2), · · · , (xm, ym)}

xi = [vincome,GTP − GP,GTR, vE−vTR,GP−vE · th]

yi = {−1, +1}

(7)

The hyperplane is formula (5) and can be expressed as

ω
T
x+ b = 0 (8)

whereω = (ω1; ω2; ···; ωd ) is the normal vector, which deter-

mines the direction of the hyperplane; b is the displacement

term, which determines the distance between the hyperplane

and the origin of coordinates.

The distance from any point x to the hyperplane can be

written as

γ =
|ωT

x+ b|

||ω||
(9)

The margin of the SVM is

γ =
2

||ω||
(10)

We can solve formula (9) to get the largest margin.

min
ω,b

1

2
||ω||2

s.t. yi(ω
T
xi + b) ≥ 1, i = 1, 2, · · · ,m

(11)

In order to facilitate the solution of the model, it is usually

highly efficient to convert formula (9) to dual problem by

using Lagrange multiplier method.

max
α

m
∑

i=1

αi −
1

2

m
∑

i=1

m
∑

j=1

αiαjyiyjx
T
i xj

s.t.

m
∑

i=1

αiyi = 0

αi ≥ 0, i = 1, 2 · · · ,m

(12)

where α = (α1; α2; · · ·; αm) is the Lagrange multiplier, and

formula (10) needs to meet the Karush-Kuhn-Tucker (KKT)

conditions.










αi ≥ 0;

yi f (xi) − 1 ≥ 0;

αi(yi f (xi) − 1) = 0

(13)

Themodel corresponding to the hyperplanewith the largest

margin is

f (x) = ω
T
x+ b

=

m
∑

i

αiyix
T
i x+ b (14)

In real tasks, there may not be hyperplanes in the original

sample space that can correctly divide the two types of sam-

ples. For this problem, the original space can be mapped to

a higher dimensional feature space, and equation (10) can be

rewritten as

max
α

m
∑

i=1

αi −
1

2

m
∑

i=1

m
∑

j=1

αiαjyiyjκ(xi, xj)

s.t.

m
∑

i=1

αiyi = 0

αi ≥ 0, i = 1, 2 · ··,m (15)

Here κ(xi, xj) is the kernel function. In this paper, Gaussian

kernel function is selected due to its powerfulmapping ability,

and its expression is as follows

κ(xi, xj) = exp(−
||xi, xj||

2

2σ 2
) (16)

σ is the bandwidth of the Gaussian kernel. The smaller σ is,

the more concentrated the Gaussian distribution is and the
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easier it is to get overfit, otherwise, the larger is, the easier

it is to get underfit.

Thus, formula (12) can be rewritten as

f (x) = ω
T
x+ b

=

m
∑

i=1

αiyiκ(x, xi) + b (17)

In real tasks, even if a kernel function is found to make

the training set linearly separable in the feature space, it may

lead to overfitting, that is, the model is very accurate in the

training set but very low in the test set. Soft margin allows

support vector machines to make some sample size errors can

alleviate this problem. The general form is

min
f

�(f ) + C

m
∑

i=1

ℓ(f (xi), yi) (18)

where, �(f ) is structure risk, which is used to describe some

properties of themodel.
∑

ℓ(f (xi), yi) is called empirical risk,

which is used to describe the compatibility between themodel

and data. C > 0 is a constant. The smaller C is, the lower

the complexity of the model will be, but the lower the fit

degree with data will be, which is easy to be underfitted. The

larger C is, the greater the complexity of the model is, the

higher the fit degree with data is, and the easier the overfitting

is. By using hinge loss, the optimization goals in formula (9)

can be rewritten as

min
ω,b

1

2
||ω||2 + C

m
∑

i=1

max(0, 1 − yi(ω
T
xi + b)) (19)

Introduce the slack variables ξi to represent the empirical

risk.

min
ω,b

1

2
||ω||2 + C

m
∑

i=1

ξi (20)

The formula (13) can be rewritten as

max
α

m
∑

i=1

αi −
1

2

m
∑

i=1

m
∑

j=1

αiαjyiyjκ(xi, xj)

s.t.

m
∑

i=1

αiyi = 0

0 ≤ αi ≤ C, i = 1, 2 · · · ,m (21)

The formula (19) still needs to satisfy the KKT condition



















αi ≥ 0;

yif (xi) − 1 + ξi ≥ 0;

αi(yif (xi) − 1 + ξi) = 0

ξi ≥ 0, µiξi = 0

(22)

µi ≥ 0 is the Lagrange multiplier.

C. BAYESIAN OPTIMIZATION ALGORITHM

As can be seen from the above, the effect of SVM is closely

related to the value of C and σ , so it is necessary to opti-

mize these two parameters. The Bayesian optimization algo-

rithm (BOA) attempts to minimize a scalar objective function

f (x) for x in a bounded domain can help to find the best

C and σ . Compared with traditional grid search, BOA can

improve the efficiency of parameter optimization. The error

rate of cross-validation f (C, σ ) is taken as the objective func-

tion, assume f (C, σ ) obeys Gaussian process.

f (x) ∼ GP(E(x),K (x, x ′), x = [C, σ ] (23)

Acquisition functions are adopted to calculate the maxi-

mum expected improvement to find the next fetching x =

[C, σ ] through Bayesian posterior probability.

EI (x,Q) = EQ[max(0, µQ(xbest ) − f (x))] (24)

xbest is the current best point, that is, the point with the lowest

error rate of cross-validation, µQ(xbest ) is the error rate of

cross-validation at the current best point, and EI (x,Q) is

expected improvement.

The algorithm runs as the following steps:

1) Evaluate f (x) for a random point x1 in the variable

bounds;

2) Update the Gaussian process model of f (x) to obtain a

posterior distribution over functions Q;

3) Find the new point xi that maximizes the acquisition

function EI (x,Q);

4) Evaluate f (x) for xi and repeat this program until it stops.

FIGURE 5. Distribution of objective function.

IV. RESULTS

We get the best value that C = 5.2004, σ = 1.6581 after

100 iterations. As shown in figure 6, the minimum cross-

validation error has a lot to do with C and σ , and can reach

14.17% with iterations. Results of this analysis are shown

in figure 5 and figure 6.

The accuracy of each model is presented in table 1.

We compare various SVMmodels with different kernel func-

tions. Gaussian kernel has the best performance due to its

strongmapping ability. Comparedwith the linear kernel func-

tion, Gaussian kernel function can improve the accuracy of

VOLUME 7, 2019 26547



Y. Liu et al.: Novel Lane Change Decision-Making Model of Autonomous Vehicle Based on SVM

FIGURE 6. Minimum objective function after 100 iteration.

TABLE 1. Accuracy of prediction in different algorithm.

FIGURE 7. Test vehicle.

7.61% in the training set and 13.26% in the test set. The

accuracy of the BOA optimized Gaussian kernel support vec-

tor machine model (BOA Gaussian SVM) is improved with

85.33% in training set and 86.27% in test set. Rules-based

models also perform well, with more than 70% accuracy.

It should be noted that because it is real data, there still exist

many impurities in the data, so it is a great achievement to

have this accuracy.

The accuracy of true positive and false negative in the

test set of rules-based model is significantly different, with

the accuracy of true positive being only 61.31% and False

negative being 85.19%. It shows that the rules-based model

is too cautious about lane change decision and cannot reflect

the real drivers’ habit of lane change decision. The BOA

Gaussian SVM model has a relatively close accuracy of true

positive and false negative (87.43% and 86.27%, respec-

tively), which shows that it can reflect decision-making habits

of drivers, greatly.

In order to verify the effectiveness of BOA Gaussian SVM

model, we carry out vehicle verification. The test vehicle

used in the experiment is Zhongtong bus, whose model is

LCK6105GZ. It is equipped with Mobileye, millimeter wave

radar, mobile station GPS, AutoBox dSPACE, inertial navi-

gation unit and other devices, as shown in figure 7.

FIGURE 8. Vehicle trajectory and steel wheel angle.

FIGURE 9. Vehicle trajectory and steel wheel angle.

FIGURE 10. Relative distance.

During the process of experiment, the target lane is empty,

since information of the vehicle in target lane is difficult

to be accurately obtained by the test vehicle. At the begin-

ning of the experiment, the autonomous vehicle travels in

a straight line at the target speed of 28 km/h, and the

P which is 150 meters ahead of the E travels at a uni-

form speed of 10 km/h. Experimental results are shown in

figure 8, 9 and 10. At the time of 20s, P is 52 meters away

from E , and E begins to enter ACC mode and decelerate.

At 29.5 s, the vehicle speed reaches 18km/h and the relative

distance is 18 m. At this time, the BOA Gaussian SVM lane

change decision-making model decides to change lane. Then,

the autonomous vehicle changes lane successfully and the

vehicle speed gradually rises to the target speed of 28 km/h.

When there is no obstacle in front, the target speed vset is

set as the speed of P, and the maximum detection range of

radar, which is 204.7 meters, is set as gaps between E and P,

as shown in figure 9 and 10. The experiment results verifies

the correctness and validity of the BOA Gaussian SVM lane

change decision-making model.

26548 VOLUME 7, 2019



Y. Liu et al.: Novel Lane Change Decision-Making Model of Autonomous Vehicle Based on SVM

V. CONCLUSIONS

This paper mainly aims to address the autonomous lane

change decision-making problem. Firstly, an autonomous

lane change model is established through analyzing the

lane change process. We proposed related parameters which

impact the autonomous lane change by analyzing lane

change benefit, safety and tolerance model. Then, the BOA-

Gaussian-SVM-based autonomous lane change decision

model is established to solve multi-parameter and nonlinear

problem of lane change process. The effectiveness of the pro-

posed model is verified by both simulation and real vehicle

tests.

This paper proposes a novel lane change decision-making

model, but due to the complexity of real traffic and road

condition, the feasibility of the model needs to be further

researched.
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