
Journal of Intelligent Manufacturing (2020) 31:1291–1309

https://doi.org/10.1007/s10845-020-01533-w

A novel learning-based feature recognition method using multiple
sectional view representation

Peizhi Shi1 ·Qunfen Qi1 · Yuchu Qin1 · Paul J. Scott1 · Xiangqian Jiang1

Received: 19 September 2019 / Accepted: 2 January 2020 / Published online: 22 January 2020

© The Author(s) 2020

Abstract

In computer-aided design (CAD) and process planning (CAPP), feature recognition is an essential task which identifies the
feature type of a 3D model for computer-aided manufacturing (CAM). In general, traditional rule-based feature recognition
methods are computationally expensive, and dependent on surface or feature types. In addition, it is quite challenging to design
proper rules to recognise intersecting features. Recently, a learning-based method, named FeatureNet, has been proposed for
both single and multi-feature recognition. This is a general purpose algorithm which is capable of dealing with any type of
features and surfaces. However, thousands of annotated training samples for each feature are required for training to achieve
a high single feature recognition accuracy, which makes this technique difficult to use in practice. In addition, experimental
results suggest that multi-feature recognition part in this approach works very well on intersecting features with small
overlapping areas, but may fail when recognising highly intersecting features. To address the above issues, a deep learning
framework based on multiple sectional view (MSV) representation named MsvNet is proposed for feature recognition. In the
MsvNet, MSVs of a 3D model are collected as the input of the deep network, and the information achieved from different
views are combined via the neural network for recognition. In addition to MSV representation, some advanced learning
strategies (e.g. transfer learning, data augmentation) are also employed to minimise the number of training samples and
training time. For multi-feature recognition, a novel view-based feature segmentation and recognition algorithm is presented.
Experimental results demonstrate that the proposed approach can achieve the state-of-the-art single feature performance on the
FeatureNet dataset with only a very small number of training samples (e.g. 8–32 samples for each feature), and outperforms
the state-of-the-art learning-based multi-feature recognition method in terms of recognition performances.

Keywords Feature recognition · Deep learning · Multiple sectional views · Transfer learning · Data augmentation

Introduction

Computer-aided process planning (CAPP) is an impor-
tant phase which aims to generate a set of manufacturing
operations for a product according to its computer-aided
design (CAD) data. Typical CAD models only contain pure
geometry and topology information, which is considered as
low-level information, e.g. faces, edges and vertices. There-
fore, the first major task in the CAPP is called feature
recognition, that is to identify high-level machining features
(e.g. slots, holes and steps) of a CAD model from its intrin-

B Qunfen Qi
q.qi@hud.ac.uk

1 EPSRC Future Advanced Metrology Hub, School of
Computing and Engineering, University of Huddersfield,
Huddersfield HD1 3DH, UK

sic geometry and topology information. According to the
identified feature type, a sequence of instructions can then
be generated to be used in computer-aided manufacturing
(CAM). However, how to recognise the feature type in an
effective and efficient manner remains a challenging task
(Han et al. 2000; Babic et al. 2008; Gao 1998; Verma and
Rajotia 2010; Xu 2009).

In digital manufacturing, feature recognition should be
preferably performed in an automatic manner. A number
of research has been conducted to automatically recognise
the feature types of 3D CAD models with regular sur-
faces (e.g. planes, cylinders and conic) or freeform surfaces
(Sundararajan and Wright 2004; Sunil and Pande 2008;
Lingam et al. 2017). In general, these methods can be car-
ried out through either a rule-based (Babic et al. 2008)
or learning-based approach (Babić et al. 2011). In rule-
based methods, rule designers need to fully understand the

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-020-01533-w&domain=pdf
http://orcid.org/0000-0001-5936-1714

1292 Journal of Intelligent Manufacturing (2020) 31:1291–1309

natures of different types of surfaces and structures, and
then encode their knowledge into heuristic rules for feature
recognition. Those heuristic rules are ad-hoc, and depen-
dent on the feature and surface types (Henderson et al.
1994). Different rules/algorithms might be required for dif-
ferent types of features or surfaces, where great efforts
and inside knowledge are required. In addition, most rule-
based approaches adopted a search algorithm, which is
computationally intensive. In contrast to rule-based methods,
learning-based approaches construct a feature recogniser via
machine learning from human annotated dataset. Recently,
Zhang et al. (2018) proposed a promising learning-based fea-
ture recognition approach to both single and multi-feature
recognition, which is capable of addressing the issues raised
in the existing methods. In this approach, a 3D convolutional
neural network (CNN) was employed to recognise the feature
type according to a 3D voxel model. This is a general pur-
pose algorithm, where rule designers do not need to encode
their knowledge into rules. However, thousands of training
samples per class are required to train a reliable classifier,
which also incurs great human efforts. In addition, experi-
mental results suggest that the multi-feature recognition part
in this approach works very well on intersecting features
with small overlapping areas, but may fail when recognising
highly intersecting features.

Motivated by the multi-view neural network (Su et al.
2015), where multiple views of a 3D model are combined
together via the neural network and result in a better 3D object
classification performance, a novel view-based approach is
proposed in this paper to address the aforementioned issues.
In the proposed approach to single feature recognition, a
novel representation based on multiple sectional views is
employed to represent a 3D model. A deep neural network
named MsvNet is implemented based on this view-based
representation. Then, transfer learning and fine-tuning are
first employed to initialise the parameters in the neural net-
work, while multiple view training is adopted to fully train
the MsvNet. During the training process, data augmentation
is used to enhance the learning performances. For multi-
feature recognition, a novel view-based feature segmentation
is adopted to capture all possible features from 2D views of a
3D model. Then, the MsvNet trained previously is employed
to recognise those segmented features. Experimental results
suggest that (1) the MsvNet can achieve the state-of-the-
art single feature recognition performance on the benchmark
dataset provided by Zhang et al. (2018) with only a small
number of training samples (e.g. 8–32 samples for each fea-
ture); (2) the training strategies employed in the MsvNet
(e.g. MSV-based representation, transfer learning and data
augmentation) increase the recognition performance by a
considerable amount; (3) the proposed view-based multi-
feature segmentation and recognition method outperforms

the state-of-the-art learning-based method on the benchmark
multi-feature dataset constructed in this paper.

The contributions of the paper are as follows: (1) A novel
learning-based single feature recognition method which
achieves good performance with only a few training sam-
ples is proposed. (2) A novel multi-feature segmentation and
recognition method which outperforms the state-of-the-art
learning-based multi-feature recognition method is pre-
sented. (3) A thorough evaluation of the proposed approach
is presented.

The rest of the paper is organised as follows. Sec-
tion “Related work” reviews the related work that motivates
the proposed approach. Section “Single feature recognition”
describes the MsvNet for single feature recognition in detail.
Section “Multi-feature recognition” discusses how to employ
MsvNet for multi-feature recognition. Section “Results for
single feature recognition” provides the results for single
feature recognition in detail. Section “Results for multi-
feature recognition” further examines the benefits of the
proposed multi-feature recognition method. Section “Con-
clusion” summarises the main contributions of the proposed
approach and discusses possible future work.

Related work

As described in section “Introduction”, two types of method-
ologies are adopted for feature recognition: rule- and learning-
based approaches. This section reviews a number of rule- and
learning-based approaches to feature recognition.

There are a variety of rule-based approaches, e.g. graph-
based method (Joshi and Chang 1988; Huang and Yip-Hoi
2002; Lockett and Guenov 2005; Kao 1993; Li et al. 2010;
Xu et al. 2015; Campana and Mele 2018), hint-based method
(Vandenbrande and Requicha 1993; Han and Requicha 1998;
Han et al. 2001b; Han and Requicha 1997), cell-based
approach (Woo 2003), ontology-based method (Wang and Yu
2014; Zhang et al. 2017), STEP-based approach (Mokhtar
et al. 2009; Venu and Komma 2017; Venu et al. 2018;
Al-wswasi and Ivanov 2019; Han et al. 2001a; Ong et al.
2003; Kannan and Shunmugam 2009a, b; Dipper et al. 2011;
Mokhtar and Xu 2011), planning approach (Marchetta and
Forradellas 2010), tree-based method (Li et al. 2002; Sung
et al. 2001), hybrid approach (Gao and Shah 1998; Rah-
mani and Arezoo 2007; Rameshbabu and Shunmugam 2009;
Hayasi and Asiabanpour 2009), and others (Zhang et al.
2014; Harik et al. 2017). A typical rule-based feature recog-
nition approach is the graph-based method (Joshi and Chang
1988), in which a feature recognition problem is formulated
as a graph matching problem. In this approach, a boundary
representation (B-rep) is employed to represent a 3D model.
Then, an adjacency attributed graph (AAG) is captured from
the model. In an AAG, a node represents a face appeared

123

Journal of Intelligent Manufacturing (2020) 31:1291–1309 1293

in the 3D model, while an edge represents the adjacency
relation between two faces. Once the AAG is constructed,
a sub-graph matching algorithm is employed to find a sub-
graph in the AAG which is isomorphic to a pre-defined graph
in a graph database. If an isomorphism exists between the
two graphs, the feature type of the 3D model can be iden-
tified accordingly. Both graph-based and other rule-based
approaches has the following limitations: (1) In general, most
rule-based approaches employ a search algorithm (e.g. sub-
graph matching algorithm) for feature recognition, which is
computationally expensive (Babic et al. 2008). (2) To design
a rule-based approach, a rule designer needs to fully under-
stand the natures of different types of surfaces and structures,
design specific rules for each feature or surface type. When
recognising a variety types of features, great human efforts
are required. For instance, the typical graph-based approach
is only suitable for negative, polyhedral 3D models (Babic
et al. 2008). To recognise models with complicated structures
(e.g. 3D models with curved faces), advanced techniques,
e.g. multi-attributed adjacency graph (Venuvinod and Wong
1995), are required. Thus, a general purpose feature recog-
nition algorithm that is suitable for all types of surface and
feature is needed. (3) Recognising intersecting features is
a challenging issue, which becomes a major bottleneck for
feature recognition (Han et al. 2000). (4) Existing rule-based
approaches are not capable of learning new rules from new
features (Sunil and Pande 2009).

Using machine learning techniques for feature recogni-
tion has a relatively long history. Hwang (1992) presented
an approach to recognising features according to B-rep 3D
models via a single layer perceptron. In this approach, a 8D
score vector achieved from a B-rep model was employed
as the input of the network. Onwubolu (1999) implemented
a multi-layer feed-forward network for feature recognition,
where the input was a 9D score vector. One issue raised in
this approach is that it is only capable of recognising a small
number of features. Also, the number of faces appeared in the
3D model should be fixed in this approach. Sunil and Pande
(2009) proposed a learning-based method which was capa-
ble of recognising a wide range of features. In this approach,
the topology and geometry information of a feature was
encoded in a 12D score vector achieved from a B-rep model.
Then, the 12D score vector was employed as the input of the
neural network. Above learning-based approaches were pro-
posed based on the boundary representation, which might
not be generalised to other representations easily (Zhang
et al. 2018). In addition, these approaches largely rely on
well-designed score vectors as inputs. Designing a reliable
score vector for feature recognition will impose burdens
on human designers. Furthermore, these approaches are not
capable of recognising overlapping features. Most existing
learning-based approaches (Prabhakar 1990; Nezis and Vos-
niakos 1997; Ding and Yue 2004; Öztürk and Öztürk 2004;

Brousseau et al. 2008; Öztürk and Öztürk 2001) also face
the similar issues. To tackle the issues raised in existing rule-
and learning-based methods, Zhang et al. (2018) presented a
novel approach named FeatureNet to handle single and multi-
feature recognition problems. In this approach, a large dataset
that consists of 144,000 3D models of 24 types of features
was constructed. For single feature recognition, a 3D CNN
was employed to learn a mapping from a 3D voxel model onto
its feature type. In multi-feature recognition, a 3D model seg-
mentation method named watershed algorithm is employed
for multi-feature segmentation and recognition. As a gen-
eral purpose algorithm, designers do not need to design rules
or input score vectors for different features/surfaces. How-
ever, thousands of training samples per class are required
to achieve a reliable feature recogniser. In practice, a great
human efforts and time are required to attain and annotate
a large number of training data. In addition, experimental
results suggest that watershed algorithm works very well on
intersecting features with small overlapping areas, but may
fail when recognising highly intersecting features.

Single feature recognition

This section first provides the motivation for undertak-
ing this research, and offers an overview of the proposed
method for single feature recognition. Then, the repre-
sentation employed in this method and machine learning
techniques are presented in details.

Overview

As “Related work” section has specified, existing feature
recognition methods suffer from a number of issues. Moti-
vated by these research gaps, this section formulates the main
research problem as: how to implement a general purpose fea-
ture recogniser with only a few training samples via machine
learning techniques. To tackle this problem, a number of
machine learning techniques are studied and applied.

Feature recognition can be regarded as a 3D object clas-
sification problem, which is a popular research topic in the
area of computer vision. To enable effective object classi-
fication, two types of methods have been proposed: voxel-
and view-based approaches. In the voxel-based approach (Qi
et al. 2016; Zhang et al. 2018), a model was represented as a
3D occupancy grid, and used as the input of the deep neural
network. In the view-based approach (Su et al. 2015), a num-
ber of 2D view images were collected from a 3D model, and
adopted as input of the network. Experimental results sug-
gested that the view-based representation outperformed the
voxel-based representation in terms of classification accu-
racy under the same experimental settings (Su et al. 2015,
2018; Qi et al. 2016).

123

1294 Journal of Intelligent Manufacturing (2020) 31:1291–1309

Fig. 1 System diagram

In a real-world application, the number of training samples
might be limited, which can result in a poor learning perfor-
mance. In addition to the view-based representation, the other
two methods that could minimise the number of required
training samples are transfer learning (Pan and Yang 2009)
and data augmentation. Transfer learning aims to employ
the knowledge gained from one problem to solve another
different but related problem. In practice, transfer learning
reuses a pre-trained model on another dataset to initialise the
parameters in the current network. Data augmentation aims
to increase the diversity of the training set without collect-
ing new samples. This technique was first designed for 2D
images, but can also be applied to 3D models. These two sim-
ple strategies enable users to train a reliable classifier with
only a small number of training samples.

The above description implies that view-based represen-
tation, transfer learning and data augmentation would allow
for addressing the research problem effectively. To this end, a
deep learning approach to feature recognition named MsvNet
is proposed. The system diagram is illustrate in Fig. 1. It is
observed from this figure that the system consists of three
components: data processing, training stage 1 and 2. At
the data processing stage, data augmentation technique is
employed to increase the diversity of the training set, and
multiple sectional views of training samples are collected as
the input of deep neural network. At the training stage 1, a
deep neural network is created, and two learning strategies
named transfer learning (or pre-training) and fine-tuning are
employed to initialise the parameters in the neural network.
A well-initialised deep network is then constructed ready
for further training. At the stage 2, information achieved
from different views are combined via the neural network
constructed at the previous stage for training. This section
discusses above steps in detail.

Data pre-processing

In this method, data augmentation and view-based represen-
tation are adopted for pre-processing to achieve a classifier
with good generalisation performance.

Data augmentation

This approach employs three data augmentation strategies,
which are illustrated in Fig. 2.

Fig. 2 Data augmentation process: a original 3D model, b randomly
resized models, c features moved along x-, y- and z-axis, and d rotated
models

– In the first data augmentation strategy, the 3D model is
resized by a random scale factor. If the resized model is
smaller than the original model, edge padding is applied
to the resized model. If the resized model is larger than
the original model, random cropping is applied to the
resized model. Above operations could make the size of
new 3D model equals to the original size.

– In the second strategy, the 3D model is moved along x-,
y- or z-axis by a random amount.

– A 3D model could be rotated along the x-, y- or z-axis,
which produces 24 orientations. In the final strategy, a
orientation is randomly selected from 24 orientations, and
the 3D model with this orientation is employed during
training. The rotation operators are illustrated in Table 1.

One thing that needs to be noticed is that data augmen-
tation may change the topology of features. Suppose that
the first data augmentation strategy is applied to a blind
hole, after adopting the resizing and random crop to this fea-
ture, it is very likely to achieve another blind hole with the
same topology structure, but with a different size. This is an
expected result, since this technique could largely increase
the diversity of the training dataset. In some situations, how-
ever, some incorrect features (e.g. a half blind hole, a through
hole) can also be constructed. These incorrect features can be
regarded as noisy data. To minimise this effect, this approach
employs only a small resize scale during data augmenta-
tion. According to the calculation, around 94.89% correct
yet useful features could be achieved when applying data
augmentation to a feature, while only 5.11% incorrect noisy
features will be produced. In the area of computer vision,
the noises introduced by data augmentation cannot be totally

123

Journal of Intelligent Manufacturing (2020) 31:1291–1309 1295

Table 1 Model rotation

Rotation operator

0 Original model

1 Rotate the model 90◦ anticlockwise around the x axis

2 Rotate the model 180◦ around the x axis

3 Rotate the model 90◦ clockwise around the x axis

4 Rotate the model 90◦ clockwise around the z axis

5 Rotate the model 90◦ clockwise around the z axis,

then rotate it 90◦ anticlockwise around the x axis

6 Rotate the model 90◦ clockwise around the z axis,

then rotate it 180◦ around the x axis

7 Rotate the model 90◦ clockwise around the z axis,

then rotate it 90◦ clockwise around the x axis

8 Rotate the model 90◦ anticlockwise around the z axis

9 Rotate the model 90◦ anticlockwise around the z axis,

then rotate it 90◦ anticlockwise around the x axis

10 Rotate the model 90◦ anticlockwise around the z axis,

then rotate it 180◦ around the x axis

11 Rotate the model 90◦ anticlockwise around the z axis,

then rotate it 90◦ clockwise around the x axis

12 Rotate the model 180◦ around the z axis

13 Rotate the model 180◦ around the z axis,

then rotate it 90◦ anticlockwise around the x axis

14 Rotate the model 180◦ around the z axis,

then rotate it 180◦ around the x axis

15 Rotate the model 180◦ around the z axis,

then rotate it 90◦ clockwise around the x axis

16 Rotate the model 90◦ clockwise around the y axis

17 Rotate the model 90◦ clockwise around the y axis,

then rotate it 90◦ anticlockwise around the x axis

18 Rotate the model 90◦ clockwise around the y axis,

then rotate it 180◦ around the x axis

19 Rotate the model 90◦ clockwise around the y axis,

then rotate it 90◦ clockwise around the x axis

20 Rotate the model 90◦ anticlockwise around the y axis

21 Rotate the model 90◦ anticlockwise around the y axis,

then rotate it 90◦ anticlockwise around the x axis

22 Rotate the model 90◦ anticlockwise around the y axis,

then rotate it 180◦ around the x axis

23 Rotate the model 90◦ anticlockwise around the y axis,

then rotate it 90◦ clockwise around the x axis

avoided, but will not significantly affect the learning perfor-
mances (Wang et al. 2018).

Multiple sectional view representation

In the view-based representation (Su et al. 2015), several vir-
tual cameras are set up around a 3D model, and used to collect

Fig. 3 A 2-sides through step with a number of sectional views

a number of rendered 2D images from different viewpoints.
These 2D images are employed to represent the 3D object.

This paper presents a multiple sectional view representa-
tion for feature recognition. In this representation, a 3D object
is cut via a number of randomly placed cutting planes which
are vertical to x-, y- or z-axis, and corresponding 2D sec-
tional view images are captured to represent this 3D model,
as shown in Fig. 3. In comparison to the typical view-based
representation (Su et al. 2015), the proposed representation
contains the hidden information inside the 3D object, and can
be achieved efficiently.

Stage 1: pre-training and fine-tuning

In addition to the representation, another essential issue in
deep learning is how to construct and initialise the neural
network. In general, a proper network architecture with well-
initialised parameters could produce a good learning result.

To attain the above goal, transfer learning is applied in this
paper. This method aims to utilise the knowledge learned
from a source task to help improve the target task perfor-
mance. The transferred knowledge is normally encoded in a
machine learning model trained on a dataset for the source
task, and is reused to initialise the parameters (e.g. weights,
biases of neural networks) in the target model. This simple
strategy enables users to train a reliable classifier with only
a small number of training samples. Transfer learning nor-
mally works on an assumption that the source and target tasks
are different but related (Pan and Yang 2009). In this paper,
the target task is to employ 2D views for object classification,
which can be regarded as an image classification problem.
To this end, this system adopts a VGGNet-11 (Simonyan
and Zisserman 2014) as it is an effective deep convolu-
tional network which is widely used for image classification.
Then, a pre-trained VGG-11 model on the ImageNet dataset
is adopted to initialise the model parameters (e.g. weights,
biases) in the current network as ImageNet is a huge bench-
mark dataset for image classification. It is observed from the
above description that source (ImageNet image classifica-
tion) and target (2D view-based object classification) tasks
are related, which can ensure that this transfer is suitable.
The validation of transfer learning is presented in “Effects of
different learning strategies” section.

123

1296 Journal of Intelligent Manufacturing (2020) 31:1291–1309

Fig. 4 VGGNet-11 architecture

Figure 4 illustrates the architecture of the VGGNet-11
deep convolutional network. The input of a VGGNet-11 is
a 3-channel RGB image with a shape 3 × 224 × 224. It is
observed from the figure that this network consists of eight
convolutional layers, where a number of kernels are applied
to the input to calculate the output of neurons. A 2D convo-
lution operation is defined as follow:

zi, j,k =
∑

l,m,n

gl, j+m−1,k+n−1ki,l,m,n (1)

where k refers to the kernel, ki,l,m,n refers to the strength
between the input channel l and the output channel i at the
location (m, n); g denotes the input; and zi, j,k refers to the
output on the channel i at the location (j, k). In the VGGNet-
11, all kernel sizes are set to 3 × 3, and the number of output
channels for eight layers are set to 64, 128, 256, 256, 512, 512,
512, and 512, respectively. After each convolutional layer,
an activation function named rectified linear units (ReLU) is
employed to determine whether the current neuron should be
activated or not. The ReLU operation is defined as follow:

oi, j,k = max(0, zi, j,k) (2)

where oi, j,k refers to the output on the channel i at the loca-
tion (j, k) after the ReLU layer. It is also observed from the
figure that three fully connected layers and one softmax layer
are employed. The output of each neuron in a fully connected
layer can be calculated as:

u = max

(

0,
∑

i

wi xi + b

)

(3)

where x refers to the input of the neuron; while w and b refer
to the weights and bias in the neuron, respectively. The i th
output in the softmax layer is calculated as:

ŷi = eui

∑

j eu j
(4)

where ui refers to the output of the i th neuron in the final
fully connected layer. In the VGGNet-11, the final output
is a 1000D vector as the ImageNet dataset contains 1000
different image categories.

The typical VGGNet-11 takes an image of a high reso-
lution (3 × 224 × 224) as input, which is computationally

Fig. 5 Network architecture employed at the stage 1 (the adapted layers
are highlighted with red color) (Color figure online)

expensive in feature recognition. To handle an image with
a different input size (e.g. 3 × 64 × 64), an adaptive aver-
age pooling layer is added before the fully connected layers.
In addition, the final fully connected layer of the network
is replaced with another fully connected layer in which the
number of neurons equals to the number of feature types. The
weights in the new layer are randomly initialised, while the
biases are set to zero. The adapted network architecture is
illustrated in Fig. 5. In the proposed method, convolutional
layers and pooling layers are denoted as Net1, while fully
connected layers and softmax layer are denoted as Net2.

Once the network architecture is determined and the
parameters are well initialised, another task suggested by
Su et al. (2015) is to further fine-tune the parameters in the
network using the domain dataset (i.e. dataset for feature
recognition). At this stage, the network is trained as a single-
image recognition problem, where the input of the network
is a single sectional view of a 3D model, and the output is the
3D model’s feature type. The cross-entropy loss is employed
for training, which is defined as follow:

L = −1

c

∑

i

yi log ŷi (5)

where c refers to the number of classes, y is the ground-truth
output vector, and ŷ is the predicted output vector. Adam
optimizer is adopted to minimise the loss function as it con-
verges to the optimal solution quickly.

Stage 2: multiple view training

Once a well-initialised deep network is achieved, the next
task is to fully train the network by using multiple sectional
views. The input of the network is a collection of multiple
sectional view images of a 3D model, while the output is
the 3D model’s feature type. Thus, an essential issue is how
to combine the information achieved from different views
for feature recognition. Figure 6 shows the multiple view
training method, which is capable of dealing with this issue.
As shown in this figure, a view pooling layer (Su et al. 2015)
is added before the Net2. In this pooling layer, an element-
wise max operation is employed to combine all views into a
single view. This operation is illustrated as follow:

123

Journal of Intelligent Manufacturing (2020) 31:1291–1309 1297

Fig. 6 Multiple view training

vi, j,k = max(o1
i, j,k, o2

i, j,k, . . .) (6)

where o1
i, j,k refers to the output of Net1 for the first view on

the channel i at the location (j, k), vi, j,k refers to the output
of the view pooling layer. During the training/testing, mul-
tiple sectional views of a 3D model are passed through the
Net1, combined together by the view pooling layer, and sent
to the Net2 for recognition. All the networks in Net1 employ
the same parameters. The cross-entropy loss and Adam opti-
mizer are also adopted for training at this stage.

Multi-feature recognition

A CAD model normally consists of multiple intersecting
features instead of a single feature. This section presents a
novel method by applying the MsvNet described in “Sin-
gle feature recognition” section to multi-feature recognition.
This section first identifies the issue raised in the state-of-the-
art learning-based multi-feature recognition method, which
motivates the proposed approach, and offers an overview
of the proposed method. Then, a novel view-based fea-
ture segmentation and recognition algorithm is presented in
details.

Overview

As “Related work” section has specified, the state-of-the-
art learning-based multi-feature recognition method (Zhang
et al. 2018) employs watershed segmentation algorithm to
split intersecting features appeared in a 3D model into sep-
arated ones, and recognises each of them separately. One
issue raised in watershed segmentation algorithm is that it
works very well on intersecting features with small overlap-
ping areas, but may fail when recognising highly intersecting
features. Figure 7 illustrates three 3D models, where each
of them consists of two overlapping blind holes. The 3D
model in the Fig. 7a contains a small overlapping area, the
model in the Fig. 7b contains a larger overlapping area, the
model in the Fig. 7c contains the largest overlapping area.

Fig. 7 Three multi-feature models with different degree of overlap, and
the segmentation results achieved from the watershed algorithm. The
overlapped areas are highlighted with black circles

When applying watershed algorithm1 to the highly intersect-
ing cases in Fig. 7b, c, it is observed that that watershed
algorithm fails to identify the features correctly, which will
lead to an inaccurate recognition result. Motivated by this
research gap, this section formulates the main research prob-
lem as: how to effectively segment and recognise multiple
features appeared in a 3D model.

Feature segmentation in a 3D space is a difficult task, and
becomes a bottleneck for multi-feature recognition. How-
ever, the authors observed that it is easier to identify multiple
3D intersecting features from 2D views. Figure 8 illustrates
a 3D model with two overlapping blind holes and its six view
images2 taken from six directions. From these view images,
it is easier to know that there are two features on the sur-
faces of the cube.3 Then, two features can be separated and
employed for further recognition. This observation suggests
that a view-based method allows for addressing the multi-
feature segmentation and recognition issues effectively.

To carry out the aforementioned idea, however, a number
of non-trivial issues need to be tackled. In general, highly
intersecting features normally consists of complicated struc-
tures, which might result in a complicated view image with
overlapping features on it. It is challenging to find all possible
feature locations appeared in a view image without losing any
(or too much) features. To tackle this problem, region pro-
posal algorithm for object recognition and detection in the

1 The watershed algorithm with the default setting is employed in this
experiment. The source code that produces the reported results is avail-
able online: https://github.com/PeizhiShi/MsvNet.
2 In the feature segmentation, views instead of sectional views are
employed here.
3 This is only a simple example to introduce the view-based segmen-
tation concept. More complicated case can be found in the following
section.

123

https://github.com/PeizhiShi/MsvNet

1298 Journal of Intelligent Manufacturing (2020) 31:1291–1309

Fig. 8 A multi-feature model and its six view images

Fig. 9 Multi-feature recognition diagram

area of computer vision appears to be a suitable method as it
could capture all possible object/feature locations appeared
in an image. Although the use of region proposal algorithm
leads to a set of all (or most) possible feature locations, a large
amount of redundant features (e.g. a hole appeared twice) and
wrongly segmented features (e.g. a half triangular pocket)
will also appear in this feature proposal set. To tackle this
issue, a proposal selection algorithm is adopted to choose
the correct results from the proposal set.

As depicted in Fig. 9, the proposed multi-feature recogni-
tion process consists of three stages: feature segmentation (to
achieve all possible features appeared in a 3D model based
on its view images), feature recognition (to recognise the
features achieved from the previous stage via the MsvNet)
and proposal selection (to achieve final recognition results).
The main techniques used in each stage are presented in the
following sections.

View-based feature segmentation and recognition

As described previously, the view-based feature segmenta-
tion technique aims to achieve all possible features appeared
in a 3D model based on its view images. To attain this goal,
selective search (Uijlings et al. 2013), a popular yet effective
region proposal algorithm in the area of computer vision, is
employed as it is capable of finding all possible object/feature
locations based on an image.

Algorithm 1: Selective search algorithm
Input: an image
Output: a set of object region proposals R

Get initial regions R = {r1, ..., rn} via segmentation
Initialise similarity set S = ∅
foreach connected region pair (ri , r j) do

Calculate the similarity s(ri , r j)

S = S ∪ s(ri , r j)

end

while S contains connected regions do
Get highest similarity score s(ri , r j) from S

Merge ri and r j together to form a new region rt

Remove similarities regarding ri and r j from S

Achieve similarity between rt and its neighbours
Put similarities regarding rt into S and R

end

return R

In the selective search algorithm (Uijlings et al. 2013), the
input view image is first separated into several small regions
via Felzenszwalb segmentation algorithm (Felzenszwalb and
Huttenlocher 2004). Then, the similarities between all neigh-
bouring regions are calculated. Finally, a greedy hierarchical
algorithm is employed to combine regions with high similar-
ity together. This process iterates until all connected regions
are merged together. This algorithm is summarised in Algo-
rithm 1.

Figure 10 illustrates an example of the whole view-based
feature segmentation and recognition process. It is observed
from Fig. 10a and b that this 3D model consists of eight fea-
tures (one 6-sides passage, one triangular through slot, one
triangular passage, two triangular blind steps, one rectangu-
lar blind slot, and two rectangular through slots). First, its
six view images are captured accordingly. Then, selective
search algorithm is applied to each view image to achieve
all possible feature locations, which are highlighted with red
bounding boxes in Fig. 10d. Finally, the corresponding 3D
features are extracted from this 3D model, and employed
as the input the MsvNet for recognition. A large number of
features are recognised accordingly (see Fig. 10e).

Proposal selection

It is observed from Fig. 10e that a large number of redun-
dant features (e.g. 6-sides passages) and wrongly segmented
features (e.g. vertical circular end blind slot) have been recog-
nised. To tackle this problem, soft non-maximum suppression
algorithm (Bodla et al. 2017), the state-of-the-art proposal
selection algorithm, is adopted as it is capable of identify-
ing object regions from a large number of region proposals
effectively.

Algorithm 2 illustrates how soft non-maximum suppres-
sion (Bodla et al. 2017) works. This algorithm first starts
with a set of 3D feature region proposals B, and correspond-
ing recognition scores Rs. In this approach, a feature region

123

Journal of Intelligent Manufacturing (2020) 31:1291–1309 1299

Fig. 10 An example of the view-based feature segmentation and recog-
nition process: a original 3D model, b ground truth, c view images
achieved from six directions, d selective search results, e identified
features (wrongly segmented features are highlighted with a red box)
(Color figure online)

Algorithm 2: Soft non-maximum suppression
Input: B = {b1, ..., bn}, Rs = {rs1, ..., rsn}, B is a set of 3D

feature region proposals, Rs contains corresponding
recognition scores

Output: a new 3D feature region proposal set D

D = ∅
while B �= ∅ do

m = argmax Rs

Move bm from B to D

for bi ∈ B do
rsi = rsi f (bi , bm)

end

end

Update D according to Rs

return D

proposal is represented as a 3D bounding box, while the
recognition score of each feature is achieved from the soft-
max layer of the MsvNet. Then, a greedy process is conducted
to select a feature region proposal with highest recognition
score from B, and reduce the scores of the rest of proposals
in B proportional to the Intersection over Union (IoU) value,
which is calculated as

iou = area of overlap

area of union
(7)

This process iterates until all the region proposals in B are
moved to a new set D. Finally, the region proposals in D

with high recognition scores will be selected via the Maxi-
mum Cut algorithm (Largeron et al. 2012). As exemplified
in Fig. 11, those redundant and wrongly recognised features
are eliminated via this algorithm.

Results for single feature recognition

Based on the machine learning method proposed in “Sin-
gle feature recognition” section, this section compares the
MsvNet to the FeatureNet (Zhang et al. 2018) in terms of
recognition accuracy and efficiency, examines the benefits
of different learning strategies in the MsvNet for single fea-
ture recognition, and presents a detailed user guide to using
the MsvNet in practice.

All the experiments in this section are conducted on a
PC with Intel Core i9-9900X CPU, 128 GB memory and
NVIDIA GeForce RTX 2080 TI GPU.

Benchmark dataset

In this experiment, a benchmark dataset is required to exam-
ine the benefits of the MsvNet, and make a comparison
between different approaches. Thus, the dataset used in Fea-
tureNet (Zhang et al. 2018) is employed as it is a very large
benchmark set with 24 commonly occurring features, e.g.

123

1300 Journal of Intelligent Manufacturing (2020) 31:1291–1309

Fig. 11 Proposal selection process: a recognised features achieved
from the previous section, and b final results after the proposal selection
process

Fig. 12 24 features in the benchmark dataset (Zhang et al. 2018)

hole, ring, slot, pocket and step (see Fig. 12). For each
type of feature, there are 1000 randomly generated 3D mod-
els with six orientations. In total, this set contains 144,000
(= 24 × 1000 × 6) different samples which are stored as a
stereolithography (STL) file format.

Since both the MsvNet and FeatureNet require 3D voxel
grid information for feature recognition, a library named
binvox (Min 2004) is employed to convert STL models to
voxelised models as suggested by Zhang et al. (2018). Three
different grid resolutions (16 × 16 × 16, 32 × 32 × 32,
64 × 64 × 64) are used in this experiment for the purpose of
comparison. For each resolution, the data set is split into a
training set (80% of the entire set), a validation set (10% of the
set) and a test set (10% of the set) as suggested by Ng (2017).

Recognition accuracy

In the MsvNet, the numbers of training epochs at two stages
are set as 20 and 100, respectively. The batch size is set
as 64, the learning rate is set as 0.0001, and the num-
ber of views is 12 as suggested by Su et al. (2015). All
the view images are resized to 3 × 64 × 64 as this input
size constitutes a good tradeoff between the recognition
efficiency and accuracy. In the FeatureNet, the number of
training epochs is set as 100 to fully train the neural net-
work.4 The rest parameters are set to defaults as suggested
by Zhang et al. (2018). Both the MsvNet and FeatureNet
are evaluated at three different grid resolutions. To exam-
ine the generalisation performances of the two methods with
different numbers of training samples, Ns training sam-
ples are randomly selected from each feature for training.
For instance, when Ns = 2, the total number of samples
employed for training is 48 (= 2 × 24). In this experiment,
Ns ∈ {2, 22, . . . , 212}.

Figure 13 illustrates test accuracies of the two approaches
with different numbers of training samples at three res-
olutions. It is observed from this figure that the MsvNet
achieves a better generalisation performance than the Fea-
tureNet across all training set sizes. At the resolution of
16 × 16 × 16, the optimal accuracies of the MsvNet and
the FeatureNet are 94.88% and 91.91% respectively when
using 4096 (= 212) samples per class for training. When
using 2 training samples per class, the MsvNet achieves
55.86% accuracy, while the FeatureNet obtains 12.47%
accuracy. The MsvNet achieves a near-optimal performance
(92.94%) when using 256 (= 28) training samples per
class, which is fewer than the FeatureNet (4096 samples
per class). At the resolution of 32 × 32 × 32, the opti-
mal accuracies of the MsvNet and FeatureNet are 99.06%
and 97.72% respectively when using 4096 training sam-
ples per class. The MsvNet achieves 67.46% accuracy using
2 training samples per class, while the FeatureNet obtains
13.24% accuracy. The MsvNet achieves a near-optimal per-
formance (97.71%) when using 64 (= 26) training samples
per class, which is fewer than the FeatureNet (4096 sam-
ples per class). At the resolution of 64 × 64 × 64, the
optimal accuracies of the MsvNet and the FeatureNet are
99.67% and 98.17% respectively using 4096 training sam-
ples. When using 2 training samples per class, the MsvNet
achieves 73.17% accuracy, while the FeatureNet obtains
14.42% accuracy. The MsvNet achieves a near-optimal per-
formance (97.23%) using 32 (= 25) training samples per

4 It is worth nothing that the paper employs the term training epoch

instead of the term training step used by Zhang et al. (2018). One
training epoch means the entire dataset is passed through the network
for training, while one training step means one min-batch samples is
passed through the network for training.

123

Journal of Intelligent Manufacturing (2020) 31:1291–1309 1301

Fig. 13 Experiment I: test accuracy with different number of training
samples at the resolution a 16×16×16, b 32×32×32, and c 64×64×64

class, which is fewer than the FeatureNet (4096 samples
per class). The aforementioned results are summarised in
Table 2.

A second experiment is conducted to further examine the
benefits of the two approaches. In this experiment, Nm vox-
elised models are selected from each type of feature. For each
voxelised model, its six orientations are employed for train-
ing. For instance, when Nm = 2, the total number of samples
employed for training is 288 (= 2 × 6 × 24). In this exper-
iment, Nm ∈ {2, 22, . . . , 29}. The rest experimental settings
are identical to those used in the previous experiment.

Figure 14 illustrates test accuracies of the two approaches
with different numbers of 3D models at three resolutions. It
is evident from this figure that the MsvNet achieves a bet-
ter generalisation performance than the FeatureNet across all
training set sizes. At the resolution of 16 × 16 × 16, the opti-
mal accuracies of the MsvNet and the FeatureNet are 94.51%
and 91.74% respectively when using 512 (= 29) models per
class for training. The optimal accuracies of the two meth-
ods become 57.88% and 19.23% receptively when using 2
models per class. The MsvNet achieves a near-optimal per-
formance (92.79%) when using 128 (= 27) models per class,
which is fewer than the FeatureNet with 512 models per
class. At the resolution of 32 × 32 × 32, the optimal accu-
racies of the MsvNet and the FeatureNet are 98.86% and
96.65% respectively when using 512 3D models per class,
and become 67.89% and 23.58% respectively when using 2
3D models per class. The MsvNet achieves a near-optimal
performance (96.81%) when using 32 (= 25) 3D models per
class for training, which is fewer than the FeatureNet with
256 models per class. At the resolution of 64 × 64 × 64,
the optimal accuracies of the MsvNet and the FeatureNet are
99.51% and 97.99% respectively using 512 (= 29) training
samples, and then become 74.28% and 23.72% repectively
when using 2 training models per class. The MsvNet achieves
a near-optimal performance (98.33%) using 32 (= 25) train-
ing samples per class, which is fewer than the FeatureNet
(256 models per class). The aforementioned results are sum-
marised in Table 3.

In summary, the comparative study demonstrates that the
proposed method works well in single feature recognition.
In particular, it is capable of achieving the state-of-the-art
performance on the benchmark dataset with only a small
number of training samples.

Table 2 Experiment I:
recognition performance
(accuracy and the number of
training samples per class) of
the two approaches at three
different resolutions

Optimal performance Near-optimal performance

MsvNet FeatureNet MsvNet FeatureNet

16 × 16 × 16 94.88% (4096) 91.91% (4096) 92.94% (256) 88.25% (2048)

32 × 32 × 32 99.06% (4096) 97.72% (4096) 97.71% (64) 96.18% (2048)

64 × 64 × 64 99.67% (4096) 98.17% (4096) 98.19% (32) 97.23% (2048)

123

1302 Journal of Intelligent Manufacturing (2020) 31:1291–1309

Fig. 14 Experiment II: test accuracy with different number of training
models at the resolution a 16×16×16, b 32×32×32, and c 64×64×64

Training and testing efficiency

This section further makes a comparison between the MsvNet
and the FeatureNet in terms of efficiency as it is essential
for machine learning and real-time feature recognition. In
general, efficiency can be measured by the time taken in the
training/testing process.

Table 4 shows the training time taken by the two
approaches at three different resolutions. When using 4096

samples per class for training, the optimal recognition per-
formances are achieved. In this situation, the FeatureNet is
more efficient than the proposed method at the resolution of
16 × 16 × 16 and 32 × 32 × 32, but less efficient at the res-
olution of 64 × 64 × 64. In the near-optimal situation, the
proposed method is more efficient than the FeatureNet at the
resolution of 32 × 32 × 32 and 64 × 64 × 64 since a small
number of training samples are required.5

Table 5 illustrates the test time taken by the two approaches
in recognising a single sample at three resolutions. The
MsvNet is less efficient when a 16×16×16 or 32×32×32
3D model is used, but more efficient at the resolution of
64 × 64 × 64. It is notable that both methods have satisfac-
tory runtime performance, which allows for real-time feature
recognition.

Effects of different learning strategies

As discussed in “Single feature recognition” section, the
proposed approach adopts a number of machine learning
techniques (e.g. multiple sectional view representation, data
augmentation, transfer learning) to construct a reliable clas-
sifier. It is essential to validate the performances of these
techniques. For instance, it is anticipated that transfer learn-
ing improves the target task performances rather than degrade
them. Thus, this section further examines the benefits of
different training strategies from the perspective of fea-
ture recognition. In this experiment, the benchmark dataset
described in the previous section is also employed. Model
resolution is set as 64×64×64, while the number of training
samples per class is set as 32. Under this setting, a near-
optimal performance can be achieved with only a few training
samples.

For a thorough evaluation, a number of experiments are
conducted based on the following settings:

(1) The MsvNet with 12 sectional views is employed in
this setting. A pre-trained model on the ImageNet is
adopted to initialise the parameters in the neural net-
work, and data augmentation is enabled across all the
training stages. At the stage 1, the MsvNet takes single
views of 3D models to fine-tune the parameters in the
network. This is the default configuration employed in
the previous sections.

(2) Three sectional views are adopted during training and
testing. The rest configurations are identical to those in
the previous setting.

5 Note that the number of training epochs in the FeatureNet is set as 100
in the paper, which leads to a higher recognition accuracy but a longer
training time than the experiments conducted by Zhang et al. (2018).

123

Journal of Intelligent Manufacturing (2020) 31:1291–1309 1303

Table 3 Experiment II:
recognition performance
(accuracy and the number of
training models per class) of the
two approaches at three different
resolutions

Optimal performance Near-optimal performance

MsvNet FeatureNet MsvNet FeatureNet

16 × 16 × 16 94.51% (512) 91.74% (512) 92.79% (128) 89.60% (256)

32 × 32 × 32 98.86% (512) 96.65% (512) 96.81% (64) 95.70% (256)

64 × 64 × 64 99.51% (512) 97.99% (512) 98.33% (32) 95.54% (256)

Table 4 Training efficiency
(training time and the number of
training samples per class) of
the two approaches at three
different resolutions

Optimal performance Near-optimal performance

MsvNet FeatureNet MsvNet FeatureNet

16 × 16 × 16 712.35 min (4096) 78.70 min (4096) 47.93 min (256) 40.52 min (2048)

32 × 32 × 32 742.67 min (4096) 310.65 min (4096) 20.16 min (64) 167.93 min (2048)

64 × 64 × 64 871.23 min (4096) 2139.55 min (4096) 19.21 min (32) 1046.35 min (2048)

Table 5 Testing efficiency of the two approaches at three different
resolutions

16 × 16 ×
16 (ms)

32 × 32 ×
32 (ms)

64 × 64 ×
64 (ms)

MsvNet 2.44 2.48 3.75

FeatureNet 0.13 0.65 4.86

(3) The MsvNet with 80 sectional views is employed.
Pre-training (or transfer learning), fine-tuning and data
augmentation are enabled during training.

(4) The MsvNet with 12 sectional views is used in this
setting. All the learning strategies are enabled except
for transfer learning, which means that the parameters
in the deep neural network is initialised randomly.

(5) The MsvNet with 12 sectional views is used in this
setting. Transfer learning and data augmentation are
enabled, while fine-tuning is disabled during training.

(6) The MsvNet with 12 sectional views is used in this
setting. All the learning strategies are enabled except
for data augmentation.

(7) The MsvNet with 12 sectional views and transfer learn-
ing is adopted.

(8) The MsvNet with 12 sectional views is employed. Fine-
tuning is enabled at the training stage 1, while transfer
learning and data augmentation are disabled.

(9) The MsvNet with 12 sectional views and data augmen-
tation is used.

(10) The MsvNet with 12 sectional views is adopted. Trans-
fer learning, fine-tuning and data augmentation are
disabled.

(11) The FeatureNet is employed as a baseline for the com-
parison purpose.

Table 6 shows the classification results under different
experimental settings. It is observed from the setting (1), (2)

and (3) that the MsvNet with 12 views produces an optimal
performance than the networks with 3 and 80 views. From
the setting (1) and (4), it is notable that transfer learning
considerably increases the recognition accuracy by 5.09%
(93.10%→98.19%). This phenomenon is more observable
from the results achieved from the setting (7) and (10),
where transfer learning increases the accuracy by 20.73%
(72.96%→93.69%). This results indicate that this transfer
is suitable for this research problem. It is also evident from
the setting (1) and (5) that fine-tuning slightly increases the
learning performance by 0.83% (97.36%→98.19%). From
the setting (6) and (7), it is interesting to note that fine-
tuning does not increase the accuracy. During the fine-tuning,
single view images are adopted to fine-tune the model. At
this stage, the input of the model is a single view image,
while the output is its label. In some situations, a single
random sectional view image may contain insufficient yet
misleading information about the feature. For instance, a
sectional view image for a blind hole might be identical
to a sectional view image for a through hold. Thus, using
these single view images as training examples to fine-tune
the model will not always lead to a better result. From the
setting (1) and (6), it is observed that data augmentation
considerably increases the recognition accuracy by 5.03%
(93.16%→98.19%). This phenomenon is more observable
from the results achieved from the setting (9) and (10),
where data augmentation increases the accuracy by 20.20%
(72.96%→93.16%). From the setting (10) and (11), it is
visible that a 2D CNN with view-based representation out-
performs 3D CNN with voxel-based representation in terms
of recognition accuracy.

In summary, view-based representation, transfer learn-
ing and data augmentation play an important role in the
MsvNet for feature recognition as these learning strategies
can increase the accuracy by a considerable amount.

123

1304 Journal of Intelligent Manufacturing (2020) 31:1291–1309

Table 6 Single feature
recognition results on the
benchmark set under different
experimental settings

Method Number of views Pre-training Fine-tuning Data augmentation Accuracy

(1) MsvNet 12 � � � 98.19%

(2) MsvNet 3 � � � 90.16%

(3) MsvNet 80 � � � 97.91%

(4) MsvNet 12 � � 93.10%

(5) MsvNet 12 � � 97.36%

(6) MsvNet 12 � � 93.16%

(7) MsvNet 12 � 93.69%

(8) MsvNet 12 � 74.60%

(9) MsvNet 12 � 93.19%

(10) MsvNet 12 72.96%

(11) FeatureNet – – – – 38.72%

A practical guide

As shown in above experiments, 20% of samples (1200 sam-
ples for each feature, 1200 × 24 in total) are employed
for validation and testing purposes. In general, a large
test/validation size can lead to an accurate estimation of clas-
sification accuracy, but requires a huge amount of human
work for data annotation. Thus, this section presents a prac-
tical guide to show how to choose a small test and validation
set sizes that can retain all properties underlying the whole
data population from the perspective of statistics.

Suppose that a test set consists of n samples. Let pi denote
whether the i th sample in the test set is correctly classified.
pi = 0 when this sample is misclassified, and is 1 otherwise.
It is observed that the random variable pi is subject to a
Bernoulli distribution. It equals value 1 with a probability
µp. This probability is the real classification accuracy on the
whole population. Thus, the classification accuracy on the
test set can be calculated as

p̄ = 1

n

n
∑

i=1

pi (8)

It is expected that the classification accuracy on the test set
(p̄) is close to the real classification accuracy on the whole
population (µp). According to the central limit theorem, p̄

is subject to a normal distribution when the test set is suffi-
ciently large (e.g. n ≥ 30). Thus, a 95% CI for µp can be
calculated as

p̄ ± 1.96δ√
n

(9)

where δ refers to population standard deviation. Since pi is
subject to a Bernoulli distribution, the population standard
deviation can be calculated by

δ =
√

µp ∗ (1 − µp) (10)

The proper test set size, n, can be estimated by

n = 1.962δ2

d2
= 1.962µp(1 − µp)

d2
(11)

where d refers to a maximum allowable difference between
the estimated accuracy and the real accuracy.

Take the case in the paper as an example, the user could
set d as 3%, and assume that µp ≥ 85%. The necessary
test/validation set size can be calculated as follow:

n ≤ 1.962 ∗ 0.85 ∗ (1 − 0.85)

0.032
≈ 545 (12)

For each type of features, about 23 (≈ 545/24) samples are
required for testing and validation.

In practice, a user could set the training set, validation set
and test set sizes for each feature as 8, 23, and 23, respec-
tively. Then, the user trains the deep network with different
hyper-parameters (e.g. number of views, learning rates, num-
ber of epochs) on the training data set, and observes the
performances on the validation set. For instance, the experi-
ments conducted in the previous section employ 12 views
for recognition. If the feature is very complex, 12 views
may not be sufficient. In this case, an optimal value of
this hyper-parameter is selected according to the validation
performances. Once optimal hyper-parameters are found,
training and validation sets can be merged together to form
a new set. Finally, the user retrains the deep network on the
new set, and test the final model on the test set. In total, only
54 samples for each feature are required for training and test-
ing. This simple strategy can further minimise the number of
annotated samples.

123

Journal of Intelligent Manufacturing (2020) 31:1291–1309 1305

Table 7 Benchmark dataset generation setting

3D model index Number of features Parameter scale

0–99 2 1

100–199 2 1/2

200–299 3 1/2

300–399 4 1/2

400–499 5 1/3

500–599 6 1/3

600–699 7 1/3

700–799 8 1/4

800–899 9 1/4

900–999 10 1/4

Results for multi-feature recognition

Based on the machine learning method proposed in “Multi-
feature recognition” section, this section compares the
MsvNet to the FeatureNet (Zhang et al. 2018) for multi-
feature recognition. All the experiments in this section are
conducted on the same PC employed in the previous section.

The dataset and source code that produces the results
reported in this section are available online.6

Benchmark dataset

In this experiment, a large benchmark dataset is required to
make a comparison between different approaches to multi-
feature recognition. Thus, a synthetic dataset that consists of
1000 STL models with multiple features is constructed via
the Solidworks API.

In this set, 24 machining features suggested by Zhang
et al. (2018) are employed to construct 3D models, and all
the models are built on 10×10×10 cm3 raw stocks. Table 7
shows the detailed information about this benchmark dataset.
When creating a 3D model, a fixed number of features (2–10)
are randomly placed on the stock. The range of parameters
(e.g. feature coordinates and sizes) used for creating the first
100 models are identical to those in the FeatureNet dataset
(Zhang et al. 2018). When creating the following 900 models
(model 100-999), the maximal sizes of features (e.g. width
and height of a feature) are set as 1/2, 1/2, 1/2, 1/3, 1/3, 1/3,
1/4, 1/4, 1/4 of sizes used in the FeatureNet dataset (Zhang
et al. 2018). This setting would allow for creating 3D models
with a large number of features.

Each multi-feature model has a degree of overlap. To
better examine the performances of the proposed algorithm
under different degrees of overlap, the benchmark dataset is
equally divided into ten groups according to the IoU value

6 https://github.com/PeizhiShi/MsvNet.

of each 3D model. As exemplified in Fig. 15, the models
in the group 1–3 contain slightly overlapped features, while
the models in the group 4–8 consist of highly overlapped
features. The models in the group 9–10, however, contains
extremely high intersecting features, where some faces of a
feature are removed by other features.7 One thing that needs
to be noticed is that some models in this benchmark set might
appear to be unusual from a normal engineering point of
view, since a random algorithm is adopted to place the fea-
tures. However, it will not affect the comparison since this
set consists of a large number of complicated models with
highly intersecting features.

Recognition performance

This experiment aims to make a fair comparison between the
MsvNet and the FeatureNet for multi-feature recognition.
Therefore, both neural networks are trained on the Fea-
tureNet dataset provided by Zhang et al. (2018), and tested
on the multi-feature dataset constructed by the authors of this
paper.

In the training phase, the grid resolution of training sam-
ples is set as 64 × 64 × 64. For each voxelised model, its
24 orientations (instead of six orientations) are employed for
training to make the methods orientation invariant. The rest
experimental settings are identical to those optimal settings
used in the “Recognition accuracy” section. The above set-
tings can guarantee that both the MsvNet and the FeatureNet
are trained optimally.

In the testing phase, the deep learning models trained at the
previous stage are applied to the multi-feature dataset con-
structed in this paper. Since both the MsvNet and FeatureNet
require 3D voxel grid information for feature recognition,
the binvox library is also adopted to voxelise models into
64 × 64 × 64 grids. As the source code of the FeatureNet for
multi-feature recognition is unavailable online, the authors of
this paper reimplemented the multi-feature recognition part
of the FeatureNet according to their original paper (Zhang
et al. 2018). In this reimplemented version, the disconnected
machining features are separated via the connected com-
ponent labelling algorithm, while the connected ones are
separated via the watershed algorithm (under the default
setting) in scikit-image package of python as suggested by
Zhang et al. (2018).

In this experiment, two popular machine learning eval-
uation metrics named precision and recall are adopted to
measure the multi-feature recognition performances. These
two metrics are chosen since they are suitable for multi-class
classification problem (Sokolova and Lapalme 2009). The
precision score for the feature type i is calculated as

7 Please note that the data groups are determined according to the degree
of overlap rather than the number of features appeared.

123

https://github.com/PeizhiShi/MsvNet

1306 Journal of Intelligent Manufacturing (2020) 31:1291–1309

Fig. 15 Benchmark dataset for multi-feature recognition

precisioni = tpi

tpi + f pi

(13)

where tpi refers to the number of correctly identified type
i features, and f pi refers to the number of features that
are misclassified as type i . The final precision score is the
average of precisioni values. This metric measures the pro-
portion of predicted features which are correctly predicted.
For instance, a 0.9 precision value implies that on average
90% predicted features are correct. The recall score for the
feature type i is calculated as

recalli = tpi

tpi + f ni

(14)

where f ni refers to the number of type i features that are
not identified correctly. The final recall score is the aver-
age of recalli values. This metric measures the ability of
an intelligent system to find all features appeared in 3D
models. For instance, a 0.85 recall value means that on
average 85% features appeared in 3D models are found cor-
rectly.

123

Journal of Intelligent Manufacturing (2020) 31:1291–1309 1307

Table 8 Multi-feature recognition results (precision) achieved from different groups of the benchmark set

p1 (%) p2 (%) p3 (%) p4 (%) p5 (%) p6 (%) p7 (%) p8 (%) p9 (%) p10 (%)

MsvNet 94.93 87.52 85.54 80.57 80.77 80.87 83.37 81.05 77.19 74.69

FeatureNet 93.10 79.63 69.14 61.20 70.27 63.21 63.16 59.90 60.19 56.18

Table 9 Multi-feature recognition results (recall) achieved from different groups of the benchmark set

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

MsvNet 96.96% 88.39% 82.26% 76.00% 72.35% 73.16% 72.39% 70.04% 65.55% 60.37%

FeatureNet 92.57% 82.42% 60.18% 57.12% 52.55% 51.91% 48.36% 48.82% 43.02% 39.65%

Table 10 Testing efficiency of the two approaches to multi-feature
recognition

MsvNet FeatureNet

Average time 806.67 ms 426.99 ms

Tables 8 and 9 illustrate the multi-feature recognition
results, where pi (or r i) refers to the precision (or recall)
scores achieved from the i th group. It is observed that the
MsvNet outperforms the FeatureNet in terms of precision and
recall across all data groups. From Table 8, it is evident that
the MsvNet achieves high precision scores across almost all
the groups, which indicates that this method produces sub-
stantially more correct results than incorrect ones. Table 9
suggests that the MsvNet achieves higher recall scores when
recognising models in the group 1-8, which indicates that
this method finds most of the features appeared in the 3D
models. The models in the rest two groups, however, are
composed of extremely high intersecting features. In some
situations, most faces of a feature are removed due to the
feature intersections. Thus, identifying features according to
these incomplete faces is rather challenging (Han et al. 2000),
which results in low recall scores.

Testing efficiency

This section further makes a comparison between the MsvNet
and the FeatureNet in terms of efficiency for multi-feature
recognition.

Table 10 illustrates the average recognition test time taken
by the two approaches in recognising a single sample at the
proposed benchmark set. It is observed that the MsvNet is less
efficient than the FeatureNet for multi-feature recognition
since the MsvNet demands recognising a large number of
redundant features, which could slow down the recognition
process.

Conclusion

The paper presents a novel learning-based technique for
single and multi-feature recognition. A deep learning frame-
work based on multiple sectional view representation named
MsvNet is proposed. A set of experiment were conducted
to compare the proposed MsvNet and the FeatureNet with
respect to recognition accuracy and efficiency for both single
and multi-feature recognition. Experimental results suggest
that (a) the proposed method can achieve the state-of-the-art
performances with only a few training samples (8–32 sam-
ples per class) for single feature recognition; (b) the learning
strategies employed in the MsvNet (e.g. data augmentation,
transfer learning, multiple sectional view representation) is
well capable of enhancing the learning performances on
a greater scale; (c) the proposed multi-feature recognition
algorithm outperforms the state-of-the-art learning-based
multi-feature recognition in terms of recognition perfor-
mances.

A possible future work is to keep improving the multi-
feature recognition performance. Therefore, advanced
machine learning techniques will be required. The second
possible work is to tackle the free-form multi-feature recog-
nition problem, which cannot be directly solved by the
proposed method. Further, studies can be conducted for
the generation of manufacturing information from the 3D
models, for example, direction of features, geometrical and
topological information of features.

Acknowledgements This research was supported by the EPSRC Future
Advanced Metrology Hub (Ref. EP/P006930/1), EPSRC UKRI Inno-
vation Fellowship (Ref. EP/S001328/1), and EPSRC Fellowship in
Manufacturing (Ref. EP/R024162/1). The authors would like to thank
two anonymous reviewers for their valuable comments and suggestions.
The authors would like to thank Zhibo Zhang for providing the dataset
and source code of FeatureNet on Github used in this research.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-

123

1308 Journal of Intelligent Manufacturing (2020) 31:1291–1309

cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Al-wswasi, M., & Ivanov, A. (2019). A novel and smart interactive
feature recognition system for rotational parts using a step file.
The International Journal of Advanced Manufacturing Technol-

ogy, 104, 1–24.
Babic, B., Nesic, N., & Miljkovic, Z. (2008). A review of automated

feature recognition with rule-based pattern recognition. Computers

in Industry, 59(4), 321–337.
Babić, B. R., Nešić, N., & Miljković, Z. (2011). Automatic feature

recognition using artificial neural networks to integrate design and
manufacturing: Review of automatic feature recognition systems.
AI EDAM, 25(3), 289–304.

Bodla, N., Singh, B., Chellappa, R., & Davis, L. S. (2017). Soft-nms–
improving object detection with one line of code. In: Proceedings

of the IEEE International Conference on Computer Vision, pp.
5561–5569.

Brousseau, E., Dimov, S., & Setchi, R. (2008). Knowledge acquisi-
tion techniques for feature recognition in cad models. Journal of

Intelligent Manufacturing, 19(1), 21–32.
Campana, G., & Mele, M. (2018). An application to stereolithography of

a feature recognition algorithm for manufacturability evaluation.
Journal of Intelligent Manufacturing. 1–16.

Ding, L., & Yue, Y. (2004). Novel ann-based feature recognition
incorporating design by features. Computers in Industry, 55(2),
197–222.

Dipper, T., Xu, X., & Klemm, P. (2011). Defining, recognizing and
representing feature interactions in a feature-based data model.
Robotics and Computer-Integrated Manufacturing, 27(1), 101–
114.

Felzenszwalb, P. F., & Huttenlocher, D. P. (2004). Efficient graph-based
image segmentation. International Journal of Computer Vision,
59(2), 167–181.

Gao, S. (1998). A survey of automatic feature recognition. Chinese

Journal of Computers, 21, 281–288.
Gao, S., & Shah, J. J. (1998). Automatic recognition of interact-

ing machining features based on minimal condition subgraph.
Computer-Aided Design, 30(9), 727–739.

Han, J., & Requicha, A. A. (1997). Integration of feature based design
and feature recognition. Computer-Aided Design, 29(5), 393–403.

Han, J., & Requicha, A. A. (1998). Feature recognition from CAD
models. IEEE Computer Graphics and Applications, 18(2), 80–
94.

Han, J., Pratt, M., & Regli, W. C. (2000). Manufacturing feature recog-
nition from solid models: A status report. IEEE Transactions on

Robotics and Automation, 16(6), 782–796.
Han, J., Kang, M., & Choi, H. (2001a). Step-based feature recogni-

tion for manufacturing cost optimization. Computer-Aided Design,
33(9), 671–686.

Han, J. H., Han, I., Lee, E., & Yi, J. (2001). Manufacturing feature
recognition toward integration with process planning. IEEE Trans-

actions on Systems, Man, and Cybernetics, Part B (Cybernetics),
31(3), 373–380.

Harik, R., Shi, Y., & Baek, S. (2017). Shape terra: mechanical feature
recognition based on a persistent heat signature. Computer-Aided

Design and Applications, 14(2), 206–218.
Hayasi, M. T., & Asiabanpour, B. (2009). Extraction of manufacturing

information from design-by-feature solid model through feature
recognition. The International Journal of Advanced Manufactur-

ing Technology, 44(11–12), 1191–1203.
Henderson, M. R., Srinath, G., Stage, R., Walker, K., Regli, W. (1994).

Boundary representation-based feature identification. In: Manu-
facturing Research and Technology, vol 20, Elsevier, pp 15–38.

Huang, Z., & Yip-Hoi, D. (2002). High-level feature recognition using
feature relationship graphs. Computer-Aided Design, 34(8), 561–
582.

Hwang, J.L. (1992) Applying the perceptron to three-dimensional fea-
ture recognition. PhD thesis, Arizona State University.

Joshi, S., & Chang, T. C. (1988). Graph-based heuristics for recogni-
tion of machined features from a 3d solid model. Computer-Aided

Design, 20(2), 58–66.
Kannan, T., & Shunmugam, M. (2009). Processing of 3d sheet metal

components in step ap-203 format. Part i: Feature recognition
system. International Journal of Production Research, 47(4), 941–
964.

Kannan, T., & Shunmugam, M. (2009). Processing of 3d sheet metal
components in step ap-203 format. Part ii: Feature reasoning
system. International Journal of Production Research, 47(5),
1287–1308.

Kao, C.Y. (1993). 3-d manufacturing feature recognition using super
relation graph method. In: Proceedings of the 2nd Industrial Engi-

neering Research Conference, Publ by IIE, pp. 614–618.
Largeron, C., Moulin, C., Géry, M. (2012). Mcut: A thresholding strat-

egy for multi-label classification. In: International Symposium on

Intelligent Data Analysis, Springer, pp 172–183.
Li, W., Ong, S. K., & Nee, A. Y. (2002). Recognizing manufacturing

features from a design-by-feature model. Computer-Aided Design,
34(11), 849–868.

Li, Y., Ding, Y., Mou, W., & Guo, H. (2010). Feature recognition tech-
nology for aircraft structural parts based on a holistic attribute
adjacency graph. Proceedings of the Institution of Mechanical

Engineers, Part B: Journal of Engineering Manufacture, 224(2),
271–278.

Lingam, R., Prakash, O., Belk, J., & Reddy, N. (2017). Automatic fea-
ture recognition and tool path strategies for enhancing accuracy
in double sided incremental forming. The International Journal of

Advanced Manufacturing Technology, 88(5–8), 1639–1655.
Lockett, H. L., & Guenov, M. D. (2005). Graph-based feature recog-

nition for injection moulding based on a mid-surface approach.
Computer-Aided Design, 37(2), 251–262.

Marchetta, M. G., & Forradellas, R. Q. (2010). An artificial intelli-
gence planning approach to manufacturing feature recognition.
Computer-Aided Design, 42(3), 248–256.

Min, P. (2004). Binvox 3d mesh voxelizer. http://www.patrickmin.com/
binvox/.

Mokhtar, A., & Xu, X. (2011). Machining precedence of 21/2d inter-
acting features in a feature-based data model. Journal of Intelligent

Manufacturing, 22(2), 145–161.
Mokhtar, A., Xu, X., & Lazcanotegui, I. (2009). Dealing with feature

interactions for prismatic parts in step-nc. Journal of Intelligent

Manufacturing, 20(4), 431.
Nezis, K., & Vosniakos, G. (1997). Recognizing 212d shape features

using a neural network and heuristics. Computer-Aided Design,
29(7), 523–539.

Ng, A. (2017). Machine learning yearning. http://www.deeplearning.
ai/machine-learning-yearning/.

Ong, S. K., Li, W., & Nee, A. Y. (2003). Step-based integration of feature
recognition and design-by-feature for manufacturing applications

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.patrickmin.com/binvox/
http://www.patrickmin.com/binvox/
http://www.deeplearning.ai/machine-learning-yearning/
http://www.deeplearning.ai/machine-learning-yearning/

Journal of Intelligent Manufacturing (2020) 31:1291–1309 1309

in a concurrent engineering environment. International Journal of

Computer Applications in Technology, 18(1–4), 78–92.
Onwubolu, G. C. (1999). Manufacturing features recognition using

backpropagation neural networks. Journal of Intelligent Manu-

facturing, 10(3–4), 289–299.
Öztürk, N., & Öztürk, F. (2001). Neural network based non-standard

feature recognition to integrate CAD and CAM. Computers in

Industry, 45(2), 123–135.
Öztürk, N., & Öztürk, F. (2004). Hybrid neural network and genetic

algorithm based machining feature recognition. Journal of Intelli-

gent Manufacturing, 15(3), 287–298.
Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE

Transactions on Knowledge and Data Engineering, 22(10), 1345–
1359.

Prabhakar, S. (1990). An experiment on the use of neural nets in form
feature recognition. Ph.D. thesis, Arizona State University.

Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.J. (2016).
Volumetric and multi-view cnns for object classification on 3d
data. In: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pp. 5648–5656.
Rahmani, K., & Arezoo, B. (2007). A hybrid hint-based and graph-

based framework for recognition of interacting milling features.
Computers in Industry, 58(4), 304–312.

Rameshbabu, V., & Shunmugam, M. (2009). Hybrid feature recogni-
tion method for setup planning from step ap-203. Robotics and

Computer-Integrated Manufacturing, 25(2), 393–408.
Simonyan, K., & Zisserman, A. (2014). Very deep convolutional

networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556.

Sokolova, M., & Lapalme, G. (2009). A systematic analysis of perfor-
mance measures for classification tasks. Information Processing

& Management, 45(4), 427–437.
Su, H., Maji, S., Kalogerakis, E., & Learned-Miller, E. (2015). Multi-

view convolutional neural networks for 3d shape recognition. In:
Proceedings of the IEEE International Conference on Computer

Vision, pp. 945–953.
Su, J.C., Gadelha, M., Wang, R., & Maji, S. (2018). A deeper look at 3d

shape classifiers. In: European Conference on Computer Vision,
Springer, pp. 645–661.

Sundararajan, V., & Wright, P. K. (2004). Volumetric feature recognition
for machining components with freeform surfaces. Computer-

Aided Design, 36(1), 11–25.
Sung, R. C., Corney, J. R., & Clark, D. E. (2001). Automatic assembly

feature recognition and disassembly sequence generation. Journal

of Computing and Information Science in Engineering, 1(4), 291–
299.

Sunil, V., & Pande, S. (2008). Automatic recognition of features from
freeform surface cad models. Computer-Aided Design, 40(4), 502–
517.

Sunil, V., & Pande, S. (2009). Automatic recognition of machining
features using artificial neural networks. The International Journal

of Advanced Manufacturing Technology, 41(9–10), 932–947.

Uijlings, J. R., Van De Sande, K. E., Gevers, T., & Smeulders, A. W.
(2013). Selective search for object recognition. International Jour-

nal of Computer Vision, 104(2), 154–171.
Vandenbrande, J. H., & Requicha, A. A. (1993). Spatial reasoning for

the automatic recognition of machinable features in solid models.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
15(12), 1269–1285.

Venu, B., & Komma, V. R. (2017). Step-based feature recognition from
solid models having non-planar surfaces. International Journal of

Computer Integrated Manufacturing, 30(10), 1011–1028.
Venu, B., Komma, V. R., & Srivastava, D. (2018). Step-based fea-

ture recognition system for b-spline surface features. International

Journal of Automation and Computing, 15(4), 500–512.
Venuvinod, P. K., & Wong, S. (1995). A graph-based expert system

approach to geometric feature recognition. Journal of Intelligent

Manufacturing, 6(3), 155–162.
Verma, A. K., & Rajotia, S. (2010). A review of machining feature

recognition methodologies. International Journal of Computer

Integrated Manufacturing, 23(4), 353–368.
Wang, Q., & Yu, X. (2014). Ontology based automatic feature recogni-

tion framework. Computers in Industry, 65(7), 1041–1052.
Wang, Q., Jia, N., Breckon, T. (2018). A baseline for nulti-label

image classification using ensemble deep cnn. arXiv preprint
arXiv:1811.08412.

Woo, Y. (2003). Fast cell-based decomposition and applications to solid
modeling. Computer-Aided Design, 35(11), 969–977.

Xu, S., Anwer, N., & Mehdi-Souzani, C. (2015). Machining feature
recognition from in-process model of nc simulation. Computer-

Aided Design and Applications, 12(4), 383–392.
Xu, X. (2009). Integrating advanced computer-aided design, manufac-

turing, and numerical control. Information Science Reference.
Zhang, X., Nassehi, A., & Newman, S. T. (2014). Feature recognition

from cnc part programs for milling operations. The International

Journal of Advanced Manufacturing Technology, 70(1–4), 397–
412.

Zhang, Y., Luo, X., Zhang, B., & Zhang, S. (2017). Semantic approach to
the automatic recognition of machining features. The International

Journal of Advanced Manufacturing Technology, 89(1–4), 417–
437.

Zhang, Z., Jaiswal, P., & Rai, R. (2018). Featurenet: Machining feature
recognition based on 3d convolution neural network. Computer-

Aided Design, 101, 12–22.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1811.08412

	A novel learning-based feature recognition method using multiple sectional view representation
	Abstract
	Introduction
	Related work
	Single feature recognition
	Overview
	Data pre-processing
	Data augmentation
	Multiple sectional view representation

	Stage 1: pre-training and fine-tuning
	Stage 2: multiple view training

	Multi-feature recognition
	Overview
	View-based feature segmentation and recognition
	Proposal selection

	Results for single feature recognition
	Benchmark dataset
	Recognition accuracy
	Training and testing efficiency
	Effects of different learning strategies
	A practical guide

	Results for multi-feature recognition
	Benchmark dataset
	Recognition performance
	Testing efficiency

	Conclusion
	Acknowledgements
	References

