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Abstract — in recent years, various discriminative learning 
techniques for HMMs have consistently yielded significant 
benefits in speech recognition. In this paper, we present a novel 
optimization technique using the Minimum Classification Error 
(MCE) criterion to optimize the HMM parameters. Unlike 
Maximum Mutual Information training where an Extended 
Baum-Welch (EBW) algorithm exists to optimize its objective 
function, for MCE training the original EBW algorithm cannot 
be directly applied. In this work, we extend the original EBW 
algorithm and derive a novel method for MCE-based model 
parameter estimation. Compared with conventional gradient 
descent methods for MCE learning, the proposed method gives a 
solid theoretical basis, stable convergence, and it is well suited for 
the large-scale batch-mode training process essential in large-
scale speech recognition and other pattern recognition 
applications. Evaluation experiments, including model training 
and speech recognition, are reported on both a small vocabulary 
task (TI-Digits) and a large vocabulary task (WSJ), where the 
effectiveness of the proposed method is demonstrated. We expect 
new future applications and success of this novel learning method 
in general pattern recognition and multimedia processing, in 
addition to speech and audio processing applications we present 
in this paper. 
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I. INTRODUCTION 
 
In the history of speech recognition, discriminative training 
has been applied to and analyzed for many state-of-the-art 
Hidden Markov Model (HMM) [15] based systems using 
different training criteria. These include Maximum Mutual 
Information (MMI) [1][4][10][12], Minimum Classification 
Error (MCE) [2][3][6][7][8][9][14][16], and Minimum Phone 
Error (MPE) [11][13][3]. In these systems, a crucial 
component is the optimization method for model parameter 
estimation given the discriminative training criterion. 

In this work, we employ the MCE criterion to optimize 
the HMMs as the acoustic models for speech recognition. The 
essence of MCE is to define the objective function for 
optimization that is closely related to classification errors. 

This is more desirable than other types of discriminative 
training that are less relevant to classification errors. 

In the context of MCE, the conventional optimization 
method has been the sequential, sample-by-sample gradient 
descent technique called Generalized Probabilistic Descent 
(GPD) [2][7][8]. However, GPD requires precise tuning of the 
learning rate, and, due to its sequential processing nature, 
cannot be parallelized over multiple processors. Therefore, 
applying GPD to large vocabulary speech recognition tasks is 
very difficult. Batch-mode optimization methods including 
Batch-mode PD, QuickProp, Rprop, and partial BFGS have 
been explored in [16]. Although performance improvements 
were reported on larger vocabulary tasks, they still require 
careful, empirical tuning of learning parameters for stable 
convergence and they tend to be slow. It is highly desirable to 
develop new optimization methods that have a more solid 
theoretical basis, stable convergence, and are easy to 
parallelize.  

In [13], an optimization method based on the weak sense 
auxiliary function (WSAF) was proposed. With this method, a 
WSAF is constructed first. Then, the extend Baum-Welch 
(EBW) algorithm for HMM parameter re-estimation is derived 
to optimize the WSAF so as to optimize the targeting 
objective function. The theoretical basis of the WSAF method, 
however, is weak. This is because the WSAF is a function 
which only has the same gradient as the targeting objective 
function at a local point in the model space as detailed in [13]. 
Hence, optimizing the WSAF cannot guarantee optimization 
of the targeting objective function (MPE as discussed in [13]). 

In [4], the EBW method was originally developed for 
optimizing the MMI criterion associated with a discrete 
HMM. In this method, “growth transformation” as the re-
estimation formulas is established for optimizing a special 
rational function that is directly related to the MMI objective 
function. The elegant theoretical development in [4] has 
proved that the growth transformation on the HMM 
parameters guarantee a non-decrease of the MMI objective 
function. The EBW method was extended from the discrete 
HMM to the continuous HMM in [10][5]. This EBW method 
is theoretically well founded for the MMI criterion, and it has 
been successfully applied to large vocabulary tasks [12]. 
However, applying the EBW method to the MCE criterion is 
very difficult. This is because EBW is suited for optimizing a 



single rational objective function such as MMI, but the MCE 
objective function is a sum of multiple rational functions as 
shown in section II.B. 

In this work, we show that the problem of minimizing a 
sum of rational functions for MCE can be mapped to a 
problem of maximizing a specially constructed single rational 
function. Then the original EBW algorithm is extended to 
construct a new growth transformation for optimizing the 
MCE objective function for the HMM parameters. This new 
learning technique gives a solid theoretical basis for stable and 
monotonic convergence for the algorithm, and is well suited 
for large-scale batch-mode HMM training.  

The organization of this paper is as follows. In section 2, 
we present our proposed method of optimizing the MCE loss 
function using growth transformation or EBW, moving away 
from the traditional GPD method. Detailed theoretical 
development is presented, including re-formulation of the 
MCE objection function into a novel form of a rational 
function suitable for the application of the EBW algorithm. 
This section also includes major steps in the EBW derivation 
of the HMM parameter estimation formulas. In section 4, 
experimental results on TI-Digits and Wall Street Journal 
(WSJ) tasks are presented to demonstrate the effectiveness of 
the proposed method. 

 
II. PROPOSED METHOD 

 
A. Initial Construction of the MCE Objective Function  

 
MCE learning was originally introduced for multiple-category 
classification problems where the smoothed error rate is 
minimized for isolated “tokens”[7]. It was later generalized to 
minimize the smoothed “sentence token” or string-level error 
rate [2][8], which is known as “embedded MCE”. The MCE 
objective function is defined first based on a set of 
discriminant functions and a special type of loss function. 
Then the model is estimated to minimize the expected loss that 
is closely related to the recognition error rate of the classifier.  

In the following sections, we denote by Λ the HMM 
parameter set that needs to be estimated. Let r=1,…, R be the 
index for multiple training utterances. Each utterance consists 
of an acoustic observation vector sequence Xr=xr,1, …, xr,Tr , 
which is computed from the audio signal of the speech 
waveform, and the corresponding correctly labeled word 
string Sr = wr,1,…, wr,Nr. Further, we use sr to represent all 
possible label sequences (strings) for the r-th utterance, 
including the correct label sequence Sr and all other incorrect 
label sequences. 

At embedded MCE training, first a set of discriminant 
functions is defined based on the correct string Sr and other 
competing strings,   

 
( ; ) log  ( , ; )

rs r r rg X p X sΛ = Λ . (1) 

 
Then the decision rule for the speech recognizer is the one that 
for the observation data sequence Xr,  
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For continuous speech recognition, usually only the N most 

confusable competing strings, sr,1,…, sr,N, are considered in  
(2). They are defined inductively as follows. 
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Unlike the multiple-category classification problems, these N 
confusable competing strings change dynamically after every 
estimation iteration. In practice, they are re-generated at every 
iteration through an N-best decoding, based on the model 
obtained at the immediate previous iteration.  

Next, a misclassification measure ( , )r rd X Λ  is defined to 

emulate the decision rule for utterance r, i.e., ( , )r rd X Λ >0 

implies misclassification and ( , )r rd X Λ <0 implies a correct 

classification,  
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where ( ; )

rS rG X Λ  counts for the score of competitors 

competing with the correct string Sr. It is usually a soft-max of 
the discriminant functions of the N most confusable competing 
strings, 
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For the widely used 1-best MCE training [17], only the best-
incorrect-string is considered, and ( ; )

rS rG X Λ  is:  
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Finally, the loss function for a single utterance r is 

typically a sigmoid function as originally proposed in [2][8]:  
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where we assume 1α =  for simplicity in exposition without 
loss of generality. This loss function emulates the zero-one 
recognition error count function. i.e., when ( , )r rd X Λ >0, 
which implies misclassification, the loss function approaches 
to one, which essentially becomes a recognition error count.  

Given the loss function for each sentence r, the loss 
function over the whole training set with all R training 
utterances is 
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(8) is the empirical loss defined on the R independent 

training utterances. It converges to the expected loss as R 
increase. (8) is closely related to the sentence error rate and is 
the objective function to minimize for MCE training. The 
traditional MCE methods minimize (8) via the technique of 
probabilistic gradient descent or GPD, which we refer the 
readers to an excellent review [2]. 
 
B. Re-formulation of the MCE Objective Function 
 
In this paper, we will discuss the 1-best MCE training, i.e., 
sr∈{Sr, sr,1} for utterance r. Based on (1) (4) and (6), Equation 
(7) can be re-written to  
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Minimizing the MCE objective function LMCE(Λ) of (8)  is 

equivalent to maximizing the following function Q(Λ) (where 
R is the fixed number of training utterances): 
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Q(Λ) is a sum of multiple rational functions, not 
amenable to the EBW-style optimization which requires a 
single rational function. In the following, we will show how 
Q(Λ) can be re-formulated to a special rational function in the 
form of 
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where sr is a variable of the r-th utterance, which can be either 
the correct training string Sr, or the best incorrect string sr,1, 
and δ(sr,Sr) = 0 if sr=sr,1 ; δ(sr,Sr) = 1 if sr=Sr.  

To show that P(Λ) = Q(Λ), we make the usual 
assumption that training utterances are independent with each 
other: 

Then, starting from (11), we have, 
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After the re-formulation of (12), P(Λ) as the new objective 

function for MCE (i.e., maximizing P(Λ) gives a minimum 
MCE loss) is strictly in the form of a (single) rational function. 
This enables us to invoke the EBW optimization technique 
[4][5] that was previously applied to MMI only. In the next 
section, we will give the EBW or growth transformation 
formulas for re-estimating HMM parameters that optimize 
P(Λ) and thus the MCE criterion. Due to the space limitation, 
we only give a brief derivation for estimation of Gaussian 
mean and covariance. A detailed version will be presented in a 
full paper in the future.  
 
C. Growth Transformation for MCE – Auxiliary Function 
 
Growth transformation is an iterative optimization scheme 
where if the parameter set Λ is subject to a 
transformation ( )T ′Λ = Λ , then the objective function “grows” 

in its value  ( ) ( )O O ′Λ > Λ  unless ′Λ = Λ . Hence the name 

“growth transformation”. For the interest of this paper, let Λ 
consist of all mean vector and covariance matrix parameters of 
Gaussian HMMs, and let Λ′ be the parameter set obtained 
from the immediately previous iteration. 

As in [4], we construct the auxiliary function of  
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to Λ, increasing F(Λ;Λ′) guarantees to increase P(Λ); i.e., 
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where q is the Gaussian state sequence, and s= s1,…,sR, is a 
word string for each of the training utterances. And since Λ 
consists of only mean and variance parameters, (q,s) is 
independent of Λ, and hence p(X,q,s|Λ) = p(X|q,Λ)p(q,s). 
Therefore,  
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D=∑ q d(q) is a quantity independent of Λ.  
If d(q) is selected to make the term [Γ(Λ′)+d(q)] positive, 

according to Jensen’s inequality, increasing the value of 
F(Λ;Λ′) can be achieved by maximizing the following 
function V(Λ; Λ′): 
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Dividing V(Λ; Λ′) by a factor p(X | Λ′), which is positive 

and independent of Λ, we have the auxiliary function 
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 (17) 
where ( ) ( ) ( | )d q d q p X′ ′= Λ . 

Define , , ,( ) ( | , , ')
rm r s r t r rt p q m X sγ = Λ  as the posterior 

probability of being in state m in the corresponding HMM at 
time t given utterance r for word string sr, where , , ( )

rm r s tγ  is 

ready to compute through the forward-backward algorithm as 

in [15]. Then after several steps of algebraic expansion, we 
obtain 
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variable in the feature space, and  
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D. Growth Transformation for MCE – Optimization 
 
We now optimize the auxiliary function given by (18) in order 
to establish the growth transformation formulas for estimating 
the HMM parameters. To proceed, we set  
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E. Setting quantity Dm 
 
According to the above derivation, quantity Dm in the above 
growth transformation or EBW estimates (21) and (22) is set 
based on d(q), and d(q) is chosen so that the term          
[Γ(Λ′)+ d(q)] in (15) is positive. However, this may lead to a 
very large Dm and slow down the training process. In practice, 
we found that the following form of Dm works well, 
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Readers may notice that the final formulas (21) and (22) 

for MCE training have a similar form as to EBW equations for 
MMI training (e.g., [10]). However, the computation of 
several key terms including , ( )m r tγ∆  and Dm are very 

different.  
 

III. EXPERIMENTAL RESULTS AND DISCUSSION 
 
The experiments reported in this section are designed to 
evaluate the new HMM learning technique based on the EBW 
formulas (20) (21) for the MCE training, which is very 
different from the traditional gradient descent (GPD) 
optimization method in [8]. We tested on two standard speech 
recognition tasks, one small and one large, with details of the 
experimental setups and results described below. 

 
A. Experiments on the TI-Digits Task 

 
 TI-Digits is a speaker independent connected-digit task. Each 
utterance in this corpus has an unknown length with a 
maximum of 7 digits. The training set includes 8623 
utterances and testing set includes 8700 utterances. In our 
experiment, a word-based HMM is built for each of the ten 
digits from ZERO to NINE, plus word OH. The number of 
states of each HMM ranges from 9 to 15, depending on the 
average duration of each word, and each state has an average 
of six Gaussian mixture components. The speech feature 
vector is computed from audio signal analysis, which gives 12 
MFCCs (Mel-Frequency Cepstral Coefficients) and the audio 
energy, plus their first-order and second-order temporal 
differences.  

The experimental results are shown in Table 1. The 
baseline HMMs are trained with the maximum likelihood 
(ML) criterion. The ML model gives a word error rate (WER) 
of 0.30% on testing data. With growth transformation or 
EBW-based MCE training, after four iterations, the algorithm 
convergence is reached and the WER is reduced to 0.23%. As 
a comparison, a conventional GPD-based MCE is also 
implemented for this task. As shown in Table 1, the best GPD 
MCE result is with WER of 0.24%, which is obtained after 12 
iterations over the full training data set (i.e., 12 epochs). The 
results of this small-task experiment show that the new EBW-
based MCE learning method is slightly better than the 
conventional GPD-based MCE, and it gives significantly 
improved efficiency in the training by providing much faster 
algorithm convergence. 

 

 ML 
GPD 
MCE 

EBW  
MCE 

WER 0.30% 0.24% 0.23% 
WER Reduction – 20.0% 23.3% 

Table 1. Comparative recognition-accuracy performance 
(measured by WER – the lower the better) of the new and 
traditional MCE training methods, as well as the ML method 
 

B. Experiments on the WSJ Task 
 
Experimental speech recognition studies have also been 
conducted on the large-vocabulary WSJ0 task. The standard 
WSJ0 SI-84 training set is used to train the baseline ML 
HMMs and the standard 5K-vocabulary trigram test set is used 
for model testing. The training data set has 15 hours of speech 
data from 84 speakers, and the test data set has 330 sentences 
of speech from 8 speakers. Context-dependent cross-word 
triphone units are used. State clustering is performed based on 
a phonetic decision tree and 3400 tied HMM states are 
generated to form the acoustic model, with an average of 12 
Gaussian mixture components for each HMM state. The 
speech feature vector is 12 MFCCs and the audio energy, plus 
their first and second temporal differences.  

For large-vocabulary speech recognition tasks such as the 
WSJ one, the conventional sample-by-sample sequential GPD 
algorithm is not feasible to implement due to the difficulty of 
parallelizing the training process. Hence, in our experiments, 
only the proposed growth transformation or EBW-based MCE 
training (which always runs in a batch mode) is tested. A 60K 
trigram language model is used to decode the training data for 
generating the competing candidates in the MCE training. 
After each iteration of the EBW algorithm, the training data 
are re-decoded using the model generated from the previous 
iteration. Then the new best-incorrect-strings are used in the 
next iteration of the MCE training.  

The recognition results are summarized in Table 2. The 
ML-trained baseline system (denoted by Iteration 0) gives a 
WER of 4.6% on the test set. This baseline HMMs give the 
overall loss function R·LMCE(Λ) of 2973.2 (from Eq. (8)) for 
the entire training data. After eight iterations of the proposed 
growth transformation or EBW-based MCE training, the WER 
is reduced progressively to 4.2%, which corresponds to an 
8.7% WER reduction. Correspondingly, the LMCE(Λ) value of 
the overall MCE loss function is also progressively  reduced, 
as shown in Table 2. As expected, the reduction of the MCE 
loss function is stable with each iteration; i.e., no oscillation 
over the iteration (which often happens with the traditional 
gradient descent technique of GPD). This property of stable 
convergence associated with the proposed optimization 
approach, as well its greater efficiency over the GPD method 
has been observed throughout our experiments.  

 
Iterations R·LMCE(Λ) (training set) WER (test set) 
0 (ML) 2973.2 4.6% 

2 2302.3 4.4% 
4 1924.3 4.3% 
6 1662.0 4.3% 
8 1468.4 4.2% 

Table 2. Increasing performance (measured by decreasing 
WER for the test set) of the new method for MCE training as a 
function of the training iteration. The MCE loss function 
LMCE(Λ) in the training over the iterations is also shown. 
 
 



IV. CONCLUSION AND FUTURE WORK 
 
In this paper, a novel growth-transformation or EBW-based 
method is developed for MCE-based discriminative learning 
of HMM parameters. We present the solid theoretical 
foundation for this new method with mathematical rigor, 
which has not been published in the earlier literature. In 
contrast to the conventional sample-by-sample sequential 
gradient descent methods for MCE optimization such as GPD, 
the proposed method has stable convergence and is easy to 
parallelize in implementation over multiple processors, in 
addition to being more theoretically appealing. We have 
implemented and evaluated this new learning/training method 
on two speech recognition tasks where audio analysis of the 
speech waveform provides the fixed MFCC acoustic features. 
In the small vocabulary task, we find that the new training 
method provides significantly faster convergence and is more 
stable than the traditional GPD method. It also gives better 
recognition performance. For the large-vocabulary speech 
recognition task, the traditional MCE optimization method 
such as GPD is not feasible, because its sequential nature 
makes it difficult to parallelize the training which is needed 
for the very large amount of training data. Our new batch-
mode optimization method is directly parallelizable, as we 
have implemented in the WSJ task.  We have observed highly 
stable and fast convergence of the EBW algorithm and 
achieved significant recognition performance advantages over 
the baseline ML training.  
       Our future work involves further refinement of the 
learning technique discussed in this paper in two ways.  First, 
we plan to use recognition lattices as the source of competing 
candidates in MCE-base discriminative training.  The lattices 
give a much richer representation of the competing candidates 
than the 1-best string as we presented in this paper. Second, 
we plan to modify the MCE criterion so that it can be applied 
to substring-level (e.g., word) performance optimization. 
Further, we plan to apply the novel discriminative learning 
and optimization method present in this paper to other pattern 
recognition problems, including those involving joint audio-
visual patterns.  
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