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Abstract

In the current era, the theory of vagueness and multi-criteria group decision making (MCGDM) techniques are extensively

applied by the researchers in disjunctive fields like recruitment policies, financial investment, design of the complex circuit,

clinical diagnosis of disease, material management, etc. Recently, trapezoidal neutrosophic number (TNN) draws a major

awareness to the researchers as it plays an essential role to grab the vagueness and uncertainty of daily life problems.

In this article, we have focused, derived and established new logarithmic operational laws of trapezoidal neutrosophic

number (TNN) where the logarithmic base μ is a positive real number. Here, logarithmic trapezoidal neutrosophic weighted

arithmetic aggregation (Larm) operator and logarithmic trapezoidal neutrosophic weighted geometric aggregation (Lgeo)

operator have been introduced using the logarithmic operational law. Furthermore, a new MCGDM approach is being

demonstrated with the help of logarithmic operational law and aggregation operators, which has been successfully deployed

to solve numerical problems. We have shown the stability and reliability of the proposed technique through sensitivity

analysis. Finally, a comparative analysis has been presented to legitimize the rationality and efficiency of our proposed

technique with the existing methods.
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1 Introduction

Professor Zadeh [1] introduced the notion of fuzzy set the-

ory to capture the vagueness and uncertainty of realistic

problems, which was extended and expanded into intuition-

istic fuzzy set(IFS) theory by Professor Attanosov [2]. To

snatch the concept of uncertainty, inconsistency and inde-

terminacy of data in real-life problem, Professor Smaran-

dache [3] presented the origination of neutrosophic set (NS)

as an extension of IFS which contains truth membership
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function (μ), indeterminacy membership function (ι) and

falsity membership function (σ ). Recently, researchers have

introduced pentagonal [4], hexagonal [5], heptagonal [6]

fuzzy numbers and its application in different fields. Wang

et al. manifested the conception of single-valued neu-

trosophic set (SVNS) [7] and interval neutrosophic set

(INS) [8] which are subclasses of NSs and many other

recent works [9–12] have improved and bring innovation

into the NS hypothesis. Liu and Yuan [13] proposed the idea

of triangular intuitionistic fuzzy set (TIFN) which is a com-

bination of triangular fuzzy number and intuitionistic fuzzy

number. Qin et al. [14] proposed a TODIM-based multi-

criteria decision-making (MCDM) for TIFN. Ye [15] intro-

duced the trapezoidal intuitionistic fuzzy number (TrIFN)

and solved MCDM problem in this environment. Ye [16]

manifested a novel idea of trapezoidal neutrosophic num-

ber (TNN) by mixing the concept of SVNS and trapezoidal

fuzzy number and utilized it to solve an MCDM problem in

trapezoidal neutrosophic (TN) arena. It is to be noted that

both trapezoidal fuzzy numbers and neutrosophic numbers

are important and effective tools in the field of uncertainty.
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Now, the concept of TNN can be used more fruitful in

the field uncertainty to grab the impreciseness and inde-

terminacy in a rigorous way. In this direction, Jana et al.

[17] has already defined interval traphezoidal neutrosophic

numbers and apply it to solve MCGDM problem. Single

valued trapezoidal neutrosophic number (SVTNN) [18] is

another extension of SVNS. In SVTNN, each component is

presented in the form of trapezoidal number that has truth

membership degree, indeterminacy membership degree and

falsity membership degree. Deli and Subas [19] manifested

a ranking technique of TNN and displayed a multi-attribute

decision-making (MADM) procedure. Liang et al. [20] initi-

ated score, accuracy and certainty functions of single-valued

trapezoidal neutrosophic number (SVTNN) by using cen-

ter of gravity. Biswas et al. [21] defined cosine similarity

measure for trapezoidal fuzzy neutrosophic numbers and

presented an MADM based on it. Pramanik and Mallick

[22] structured a VIKOR technique for a multi-attribute

group decision making (MAGDM) in trapezoidal neutro-

sophic environment. Biswas et al. [23] gave the idea of TOP-

SIS method for MADM in TN environment, whereas Sahin

et al. [24] presented some weighted arithmetic and geomet-

ric operators in SVTN environment and gave their applica-

tion to MCDM problem. Abdel-Basset et al. [25] defined

a type 2 neutrosophic numbers (T2NN) and manifested

T2NN-TOPSIS technique to deal with a decision-making

problem. Recently, Chakraborty et al. [26–29] initiated the

geometrical concept of pentagonal neutrosophic number

and its application in operation research, networking and

graph theory arena. In this article, we have introduced new

logarithmic operational laws for TNN where the logarithmic

base μ is a positive real number and subsequently developed

logarithmic trapezoidal neutrosophic weighted arithmetic

aggregation (Larm) operator and logarithmic trapezoidal

neutrosophic weighted geometric aggregation (Lgeo) oper-

ator which have been used to construct a new scheme of

MCGDM process.

1.1 Motivation

In this current decade, researchers in the neutrosophic

arena are mainly interested in the MCDM problems

which are operators based. In the field of aggregation,

the best activity is to design new operational laws. The

four essential operational laws like addition, multiplication,

scalar multiplication of TNN have been characterized by

Ye [16]. Recently, Haque et al. [30] introduced exponential

operational law where the bases are crisp numbers and

the exponents are TNNs. Moreover, logarithmic operational

law is a fundamental operational law in the field of

aggregation. Li [31] presented logarithmic operational for

IFN and developed its corresponding aggregation operators.

Garg [32] set forward logarithmic operational law for

SVNS and applied it in an MADM problem. Garg [33]

defined the logarithmic operational law for Pythagorean

fuzzy numbers and developed corresponding aggregation

operator and MCDM technique to solve the real-life

problems. From the literature survey, we could not notice

any logarithmic operational law for TNN till date. To

mobilize this research gap, here in this research article,

we have defined logarithmic operational law for TNN.

Furthermore, we have successfully adopt the proposed

logarithmic operator to develop new aggregation formula

to aggregate several uncertain information provided by the

different decision makers in an MCGDM process. Finally,

we have suggested an MCGDM strategy with the help of

our defined operational laws and corresponding aggregation

operators namely Larm and Lgeo.

1.2 Novelties

Lots of works have been already established in the

TN environment. In the meantime researchers have built

different formulations and their applications in different

fields of TNNs. But, there are still lots of works that can be

established in this arena. In this article, we make an attempt

to incorporate and address the following points:

i) To define new logarithmic operational law (LOL) for

TNNs which is a useful supplement of existing opera-

tional law and analyzed their algebraic properties.

ii) To introduce new operators like logarithmic trape-

zoidal neutrosophic weighted arithmetic aggrega-

tion (Larm) and logarithmic trapezoidal neutrosophic

weighted geometric aggregation (Lgeo) operators.

iii) Proposition of MCGDM strategy in TN environment.

iv) To demonstrate the proposed method we solved a

numerical problem based on a real-life problem.

v) A sensitivity analysis is performed to show the utility

and efficiency of the designed method.

1.3 Structure of the paper

The remainder of the article is organized in several sections.

Section 2 presents some fundamental Definitions related

with IFS and SVNS. In Section 3, we have introduced new

logarithmic operational law for TNN and briefly discussed

its algebraic properties. In Section 4, we have developed

two aggregation operators based on our defined logarithmic

operational law. In Section 5, an MCGDM method has been

manifested using our defined operational laws and related

aggregation operators. A numerical problem is taken to

exhibit the applicability of defined logarithmic operational

law and a sensitivity analysis are performed to show the

utility of the designed method in Section 6. Finally, we

conclude our results in Section 7.
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2Mathematical preliminaries

Basic Definitions and operations related with SVNSs and

TNSs are presented as follows:

Definition 2.1 Let S be a universal set. Then

Ñ = {〈s, μ(s), ι(s), σ (s)〉; s ∈ S}

is said to be single-valued neutrosophic set (SVNS) [3] on

S, where μ : S → [0, 1], ι : S → [0, 1] and σ : S →

[0, 1] with the condition 0 ≤ μ(s) + ι(s) + σ(s) ≤ 3.

Here, μ(s), ι(s) and σ(s) are called the truth-membership

function, indeterminacy-membership function and falsity-

membership function respectively of the element to the

set N . For convenience, we represent this SVNS as Ñ =

{〈μ, ι, σ 〉, where μ, ι, σ ∈ [0, 1], 0 ≤ μ+ι+σ ≤ 3} and

and called as a single-valued neutrosophic number (SVNN).

Definition 2.2 Let S be a universal set. Then trapezoidal

neutrosophic set Ã is defined by Ye [16] in the following

form:

Ã = {〈s, T (s), I (s), F (s)〉; s ∈ S}

where T (s) ⊂ [0, 1], I (s) ⊂ [0, 1], F(s) ⊂ [0, 1]

are three trapezoidal neutrosophic numbers and T (s) =

(α(s), β(s), γ (s), μ(s)) : S → [0, 1], I (s) =

(λ(s), μ(s), κ(s), ι(s)) : S → [0, 1] and F(s) =

(φ(s), ρ(s), ψ(s), σ (s)) : S → [0, 1] with the con-

dition 0 ≤ μ(s) + ι(s) + σ(s) ≤ 3 for all s ∈

S. Here, T (s), I (s) and F(s) are called the truth-

membership function, indeterminacy-membership function

and falsity-membership function respectively of the ele-

ment to the set Ã. For convenience, we represent the

set as Ã = {〈(a, b, c, d), (k, l, m, n), (x, y, v, w)〉 :

0 ≤ d + n + w ≤ 3} and called as a trapezoidal neutro-

sophic number (TNN).

Proposition 2.1 Let Ãk = 〈(ak, bk, ck, dk),

(lk, mk, nk, pk), (xk, yk, vk, wi)〉 (k = 1, 2) be any two

TNNs. Then, we have the following operational rules [16]:

i) Ã1

⊕
Ã2 = 〈(a1 + a2 − a1a2, b1 + b2 − b1b2, c1

+c2 − c1c2, d1 + d2 − d1d2) ,

(l1l2, m1m2, n1n2, p1p2) ,

(x1x2, y1y2, v1v2, w1w2)〉

ii) Ã1

⊗
Ã2 = 〈(a1a2, b1b2, c1c2, d1d2) ,

(l1 + l2 − l1l2, m1 + m2 − m1m2, n1 + n2

−n1n2, p1 + p2 − p1p2) ,

(x1 + x2 − x1x2, y1 + y2 − y1y2, v1 + v2

−v1v2, w1 + w2 − w1w2)〉

iii) μÃ1 = 〈(1 − (1 − a1)
μ, 1 − (1 − b1)

μ,

1 − (1 − c1)
μ, 1 − (1 − d1)

μ) ,

(l1
μ, m1

μ, n1
μ, k1

μ) , (x1
μ, y1

μ, v1
μ, w1

μ)

iv) (Ã1)
μ =

〈(
aλ

1 , b1
μ, c1

μ, d1
μ
)
, (1 − (1 − l1)

μ,

1 − (1 − m1)
μ, 1 − (1 − n1)

μ,

1 − (1 − k1)
μ) ,

(1 − (1 − x1)
μ, 1 − (1 − y1)

μ,

1 − (1 − v1)
μ, 1 − (1 − w1)

μ)

Definition 2.3 Let Ãs = 〈(as, bs, cs, ds),

(ls, ms, ns, ps), (xs, ys, vs, ws)〉 (s = 1, 2, · · · , p) be any

collection of TNNs. Then the trapezoidal neutrosophic num-

ber weighted arithmetic averaging (TNNWAA) operator is

defined in [16] as

T NNWAA(Ã1, Ã2, · · · , Ãp)

=

p∑

s=1

φsÃs

=

〈
[1 −

p∏

s=1

(1 − as)
φs , 1 −

p∏

s=1

(1 − bs)
φs ,

1 −

p∏

s=1

(1 − cs)
φs , 1 −

p∏

s=1

(1 − ds)
φs

]
,

[
p∏

s=1

(ls)
φs ,

p∏

s=1

(ms)
φs ,

p∏

s=1

(ns)
φs ,

p∏

s=1

(ps)
φs

]
,

[
p∏

s=1

(xs)
φs ,

p∏

s=1

(ys)
φs ,

p∏

s=1

(vs)
φs ,

p∏

s=1

(ws)
φs

]〉

where φs (s = 1, 2, · · · , p) is the weight of Ãs (s =

1, 2, · · · , p) with φs ∈ [0, 1] and

p∑

s=1

φs = 1.

Definition 2.4 Let Ãs = 〈(as, bs, cs, ds),

(ls, ms, ns, ps), (xs, ys, vs, ws)〉, (s = 1, 2, · · · , p) be col-

lections of TNNs. Then the trapezoidal neutrosophic num-

ber weighted geometric averaging (TNNWGA) operator is

defined in [16] as

T NNWGA(Ã1, Ã2, · · · , Ãp)

=

p∏

s=1

(Ãs)
φs

=

〈[
p∏

s=1

(as)
φs ,

p∏

s=1

(bs)
φs ,

p∏

s=1

(cs)
φs ,

p∏

s=1

(ds)
φs

]
,

[
1 −

p∏

s=1

(1 − ls)
φs , 1 −

p∏

s=1

(1 − ms)
φs ,

1 −

p∏

s=1

(1 − ns)
φs , 1 −

p∏

s=1

(1 − ps)
φs

]
,
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[
1 −

p∏

s=1

(1 − xs)
φs , 1 −

k∏

s=1

(1 − ys)
φs ,

1 −

k∏

s=1

(1 − vs)
φs , 1 −

k∏

s=1

(1 − xs)
φs

]〉

where φs (s = 1, 2, · · · , p) is the weight of Ãs (s =

1, 2, · · · , p) with φs ∈ [0, 1] and

p∑

s=1

φs = 1.

2.1 Application of aggregation operators

Aggregation operators are mainly used in MCDM/MCGDM

techniques to aggregate the input values of certain

alternatives under the different criteria. Let, we want to

evaluate an alternative under different criteria in which

computational entities are in the form of TNNs. Now, we

need to introduce a technique to aggregate all the evaluation

values into a single value in the form of TNN. For this

purpose, we have used aggregation operators TNNWAA

& TNNWGA as introducded by Ye [16]. Since TNN is

an another environment in the neutrosophic field, then the

above aggregation operators must have an crucial impact on

MCDM/MCGDM techniques in this TN environment. Here,

we have presented the following example to demonstrate the

application of of above mention aggregation operators:

Example 2.1 Let someone wants to buy a new mobile phone

based on the criterion of better camera quality, graphics

and RAM services. Let the available alternatives are mobile

companies namely X1, X2 and X3, which are evaluated

under the following criteria:

1) Y1 indicates the camera quality.

2) Y2 indicates the graphics quality services.

3) Y3 indicates the RAM quality services.

whose weight vector is (0.33, 0.32, 0.35). Figure 1 show

the schematic diagram of the application of aggregation

operators.

The input values of the decision making problem in TN

environment are given in the following matrix

Now, if we use the operator TNNWAA on the

above decision matrix, then we get the evaluation value

alternatives as follows:

X1

X2

X3

⎛
⎝

〈(0.3368, 0.6413, 0.7666, 0.8398), (0.3771, 0.5923, 0.7635, 0.8637), (0.3289, 0.4924, 0.6313, 0.7315)〉

〈(0.5098, 0.6362, 0.7365, 0.8398), (0.5955, 0.6663, 0.7969, 0.9000), (0.1000, 0.3587, 0.5329, 0.6982)〉

〈(0.7000, 0.7695, 0.8431, 0.9000), (0.2514, 0.3771, 0.5028, 0.6435), (0.2239, 0.3371, 0.5161, 0.7188)〉

⎞
⎠

Again, if we use the operator TNNWGA, we get

X1

X2

X3

⎛
⎝

〈(0.3318, 0.6222, 0.7188, 0.8307), (0.418, 0.6067, 0.7695, 0.8725), (0.3337, 0.5056, 0.6362, 0.7376)〉

〈(0.4962, 0.6313, 0.7306, 0.8307), (0.6093, 0.6711, 0.8188, 0.9000), (0.1000, 0.3778, 0.5376, 0.7146)〉

〈(0.7000, 0.7635, 0.8337, 0.9000), (0.2725, 0.4180, 0.5825, 0.7263), (0.2724, 0.3740, 0.6102, 0.7666)〉

⎞
⎠

From the above example, it is observed that after utilizing

the aggregation operators, we get the evaluation value of the

alternatives in the aggregated form. Now, if we apply the

score function [16], then we observe that, mobile company

X3 is the best option in presence of the underlying three

criterion. Based on above example, we observe that if we

want to evaluate some alternatives under different criteria in

TN environment, then first we need to apply the aggregation

operators to convert the system into a single decision

matrix. After that, utilizing the fruitful cripsification

technique, we can get the associated crisp values of each

alternatives. Finally, the best alternative can be determined

by taking the highest crisp value among finite alterna-

tives.

A novel logarithmic operational law and aggregation operators for trapezoidal neutrosophic number with... 4401



Fig. 1 Application of

aggregation operators

2.2 De-Neutrosophication of a TNN

De-Neutrosophication is the technique where an appreciable

result is generated for crispsification. In the neutrosophic

environment researchers are highly devoted to convert a

TNN into a crisp number through various methods and

techniques. Here, we use Removal Area Technique (RAT)

to calculate de-Neutrosophication value of TNNs that is

defined as follows:

Definition 2.1.1 Let Ã = 〈(a, b, c, d), (l, m, n, p),

(x, y, v, w)〉 be any TNN, then the de-Neutrosophication

value of Ã (utilizing Removal Area technique) is given by

Chakraborty et al. [10] as

DNeu(Ã) =
a + b + c + d + l + m + n + p + x + y + v + w

12
.

Definition 2.1.2 Let Ã1 and Ã2 be any two TNNs, then the

ranking technique is defined as follows

i) If DNeu(Ã1) > DNeu(Ã2), then Ã1 > Ã2

ii) If DNeu(Ã1) < DNeu(Ã2), then Ã1 < Ã2.

3 Logarithmic operational law for TNN

In this section logarithmic function on TNN is defined and

studied where the base (μ) is considered as positive real

number. Let Ã be a TNN and μ > 0 be a real number.

Since in real field logμ 0 and log1 x are undefined, where

x is a real number, so we assume that Ã �= 0, Ã �=

〈[0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1]〉 and μ �= 1. We define

the logarithm of TNN as follows:

Definition 3.1 Let V be an universal set and Let Ã =

〈(a, b, c, d), (l, m, n, p), (x, y, v, w)〉 be any TNN. Then,

we define

logμ Ã =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈[
1 − logμ a, 1 − logμ b, 1 − logμ c, 1 − logμ d

]
,
[
logμ(1 − l), logμ(1 − m), logμ(1 − n), logμ(1 − p)

]
,[

logμ(1 − x), logμ(1 − y), logμ(1 − v), logμ(1 − w)
]〉

,

when 0 < μ ≤ min (a, b, c, d, 1 − l, 1 − m, 1 − n, 1 − p, 1 − x, 1 − y, 1 − v, 1 − w) < 1;〈[
1 − log 1

μ
a, 1 − log 1

μ
b, 1 − log 1

μ
c, 1 − log 1

μ
d
]
,
[
log 1

μ
(1 − l), log 1

μ
(1 − m), log 1

μ
(1 − n), log 1

μ
(1 − p)

]
[
log 1

μ
(1 − x), log 1

μ
(1 − y), log 1

μ
(1 − v), log 1

μ
(1 − w)

]〉
,

when 0 < 1
μ

≤ min (a, b, c, d, 1 − l, 1 − m, 1 − n, 1 − p, 1 − x, 1 − y, 1 − v, 1 − w) < 1.

Here, we shall discuss some elementary Properties of

logμ Ã which are as follows:

Theorem 3.1 Let Ã = 〈(a, b, c, d), (l, m, n, p),

(x, y, v, w)〉 be a TNN. Then logμ Ã is a TNN.

T. S. Haque et al.4402



Proof Let Ã = 〈(a, b, c, d), (l, m, n, p), (x, y, v, w)〉 be

a TNN. Then a, b, c, d, l, m, n, p, x, y, v, w ∈ [0, 1] with

0 ≤ d + p + w ≤ 3.

Case 1 When 0 < μ ≤ min (a, b, c, d, 1 − l, 1 − m, 1 −

n, 1 − p) < 1, then we have,

0 ≤ logμ a, logμ b, logμ c, logμ d, logμ(1 − l), logμ(1 −

m), logμ(1 − n), logμ(1 − p), logμ(1 − x), logμ(1 −

y), logμ(1 − v), logμ(1 − w) ≤ 1

Hence, 0 ≤ 1 − logμ a, 1 − logμ b, 1 − logμ c, 1 −

logμ d, logμ(1 − l), logμ(1 − m), logμ(1 − n), logμ(1 −

p), logμ(1−x), logμ(1−y), logμ(1−v), logμ(1−w) ≤ 1

and 0 ≤ logμ a + logμ(1 − p) + logμ(1 − w) ≤ 3.

Thus, logμ Ã is a TNN.

Case 2 When 0 < 1
μ

≤ min (a, b, c, d, 1 − l, 1 − m, 1 −

n, 1 − p) < 1, then proceeding in the similar way as in the

above case 1, we can prove that logμ Ã is a TNN.

Thus, we conclude that logμ Ã is a TNN.

Theorem 3.2 Let Ã = 〈(a, b, c, d), (l, m, n, p),

(x, y, v, w)〉 be any TNN and 0 < μ ≤ min

(a, b, c, d, 1 − l, 1 − m, 1 − n, 1 − p, 1 − x, 1 − y, 1 − v,

1 − w) < 1, then

i) μlogμ Ã = Ã

ii) logμ μÃ = Ã

Proof i) Using the Properties 2.1 and the Definition 3.1,

we get

μlogμ Ã =
〈[

μ1−(1−logμ a), μ1−(1−logμ b), μ1−(1−logμ c), μ1−(1−logμ d)
]
,
[
1 − μlogμ(1−l), 1 − μlogμ(1−m), 1 − μlogμ(1−n),

1 − μlogμ(1−p)
]
,
[
1 − μlogμ(1−x), 1 − μlogμ(1−y), 1 − μlogμ(1−v), 1 − μlogμ(1−w)

]〉

=
〈[

μlogμ a, μlogμ b, μlogμ c, μlogμ d
]
, [1 − (1 − l), 1 − (1 − m), 1 − (1 − n), 1 − (1 − p)] , [1 − (1 − x),

1 − (1 − y), 1 − (1 − v), 1 − (1 − w)]〉

= 〈(a, b, c, d), (l, m, n, p), (x, y, v, w)〉

= Ã.

ii) Again utilizing Properties 2.1 and the Definition 3.2,

we get

logμ μÃ = logμ

〈
[μ1−a, μ1−b, μ1−c, μ1−d ], [1 − μl, 1 − μm, 1 − μn, 1 − μp], [1 − μx, 1 − μy, 1 − μv, 1 − μw]

〉

=
〈[

1 − logμ μ1−a, 1 − logμ μ1−b, 1 − logμ μ1−c, 1 − logμ μ1−d
]
,
[
logμ(1 − (1 − μl)), logμ(1 − (1 − μm)),

logμ(1 − (1 − μn)), logμ(1 − (1 − μp))
]
,
[
logμ(1 − (1 − μx)), logμ(1 − (1 − μy)), logμ(1 − (1 − μv)),

logμ(1 − (1 − μw))
]〉

= 〈(a, b, c, d), (l, m, n, p), (x, y, v, w)〉

= Ã.

Theorem 3.3 Let Ãt = 〈(at , bt , ct , dt ), (lt , mt , nt , pt ),

(xt , yt , vt , wt )〉 (t = 1, 2) be any two TNNs and 0 < μ ≤

min (at , bt , ct , dt , 1−lt , 1−mt , 1−nt , 1−pt , 1−xt , 1−yt ,

1 − vt , 1 − wt ) < 1. Then

i) logμ Ã1

⊕
logμ Ã2 = logμ Ã2

⊕
logμ Ã1;

ii) logμ Ã1

⊗
logμ Ã2 = logμ A2

⊗
logμ Ã1.

Proof The proof of the above Theorem follows from

Properties 2.1 and Definition 3.1.

Theorem 3.4 Let Ãt = 〈(at , bt , ct , dt ), (lt , mt , nt , pt ),

(xt , yt , vt , wt )〉 (t = 1, 2, 3) be any three TNNs and 0 <

μ ≤ min (at , bt , ct , dt , 1 − lt , 1 − mt , 1 − nt , 1 − pt , 1 −

xt , 1 − yt , 1 − vt , 1 − wt ) < 1. Then

i) logμ Ã1

⊕
logμ Ã2

⊕
logμ Ã3 = logμ Ã3

⊕
logμ Ã2⊕

logμ A1;

ii) logμ Ã1

⊗
logμ Ã2

⊗
logμ Ã3 = logμ Ã3

⊗
logμ Ã2⊗

logμ Ã1.
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Proof The proof of the above Theorem follows from

Properties 2.1 and Definition 3.1.

Theorem 3.5 Let Ãt = 〈(at , bt , ct , dt ), (lt , mt , nt , pt ) ,

(xt , yt , vt , wt )〉 (t = 1, 2) be any two TNNs and 0 < μ ≤

min (at , bt , ct , dt , 1 − lt , 1 − mt , 1 − nt , 1− pt , 1 − xt , 1−

yt , 1 − vt , 1 − wt ) < 1. Then

i) k(logμ Ã1

⊕
logμ Ã2) = k logμ Ã1

⊕
k logμ Ã2;

ii) (logμ Ã1

⊗
logμ Ã2)

k = (logμ Ã1)
k
⊗

(logμ Ã2)
k;

iii) k1 logμ Ã1

⊕
k2 logμ Ã1 = (k1 + k2) logμ Ã1;

iv) (logμ Ã1)
k1
⊗

(logμ Ã1)
k2 = (logμ Ã1)

k1+k2;

v) ((logμ Ã1)
k1)k2 = (logμ Ã1)

k1k2 , where k, k1, & k2

are positive real numbers.

Proof i) We know,

logμ Ã1

=
〈[

1 − logμ a1, 1 − logμ b1, 1 − logμ c1, 1 − logμ d1

]
,
[
logμ(1 − l1), logμ(1 − m1), logμ(1 − n1), logμ(1 − p1)

]
,[

logμ(1 − x1), logμ(1 − y1), logμ(1 − v1), logμ(1 − w1)
]〉

.

logμ Ã2

=
〈[

1 − logμ a2, 1 − logμ b2, 1 − logμ c2, 1 − logμ d2

]
,
[
logμ(1 − l2), logμ(1 − m2), logμ(1 − n2), logμ(1 − p2)

]
,[

logμ(1 − x2), logμ(1 − y2), logμ(1 − v2), logμ(1 − w2)
]〉

.

∴ logμ Ã1

⊕
logμ Ã2

=
〈[

1 − (logμ a1)(logμ a2), 1 − (logμ b1)(logμ b2), 1 − (logμ c1)(logμ c2), 1 − (logμ d1)(logμ d2)
]
,

[logμ(1 − l1) logμ(1 − l2), logμ(1 − m1) logμ(1 − m2), logμ(1 − n1) logμ(1 − n2) logμ(1 − p1) logμ(1 − p2)],

[logμ(1 − x1) logμ(1 − x2), logμ(1 − y1) logμ(1 − y2), logμ(1 − v1) logμ(1 − v2), logμ(1 − w1) logμ(1 − w2)]
〉
.

Now for k > 0 we have,

k(logμ Ã1

⊕
logμ Ã2),

= 〈
[
1 − ((logμ a1)(logμ a2))

k, 1 − ((logμ b1)(logμ b2))
k, 1 − ((logμ c1)(logμ c2))

k, 1 − ((logμ d1)(logμ d2))
k
]
,[

((logμ(1 − l1) logμ(1 − l2))
k, ((logμ(1 − m1) logμ(1 − m2))

k, ((logμ(1 − n1) logμ(1 − n2))
k,

((logμ(1 − p1) logμ(1 − p2))
k
]
,
[
(((logμ(1 − x1) logμ(1 − x2))

k, ((logμ(1 − y1) logμ(1 − y2))
k,(

(logμ(1 − v1) logμ(1 − v2))
k, ((logμ(1 − w1) logμ(1 − w2))

k
]
〉

=
〈
[1 − (logμ a1)

k, 1 − (logμ b1)
k, 1 − (logμ c1)

k, 1 − (logμ d1)
k], [(logμ(1 − l1))

k, (logμ(1 − m1))
k,

(logμ(1 − n1))
k, (logμ(1 − p1))

k
]
,
[
(logμ(1 − x1))

k, (logμ(1 − y1))
k, (logμ(1 − v1))

k, (logμ(1 − w1))
k
]〉

⊕ 〈
[1 − (logμ a2)

k, 1 − (logμ b2)
k, 1 − (logμ c2)

k, 1 − (logμ d2)
k], [(logμ(1 − l2))

k, (logμ(1 − m2))
k,

(logμ(1 − n2))
k, (logμ(1 − p2))

k
]
,
[
(logμ(1 − x2))

k, (logμ(1 − y2))
k, (logμ(1 − v2))

k, (logμ(1 − w2))
k
]〉

= k logμ Ã1

⊕
k logμ Ã2.

ii) This proof is similar to the previous one.

iii) For any k1, k2 > 0, we have

k1 logμ Ã1

⊕
k2 logμ Ã1

=
〈[

1 − (logμ a1)
k1 , 1 − (logμ b1)

k1 , 1 − (logμ c1)
k1 , 1 − (logμ d1)

k1
]
,
[
(logμ(1 − l1))

k1 , (logμ(1 − m1))
k1 ,

(logμ(1 − n1))
k1 , (logμ(1 − p1))

k1
]
,
[
(logμ(1 − x1))

k1 , (logμ(1 − y1))
k1 , (logμ(1 − v1))

k1 , (logμ(1 − w1))
k1
]〉

⊕ 〈[
1 − (logμ a2)

k1 , 1 − (logμ b2)
k1 , 1 − (logμ c2)

k2 , 1 − (logμ d2)
k2
]
,
[
(logμ(1 − l2))

k2 , (logμ(1 − m2))
k2 ,

(logμ(1 − n2))
k2 , (logμ(1 − p2))

k2
]
,
[
(logμ(1 − x2))

k2 , (logμ(1 − y2))
k2 , (logμ(1 − v2))

k2 , (logμ(1 − w2))
k2
]〉

=
〈[

1 − (logμ a1)
k1+k2 , 1 − (logμ b1)

k1+k2 , 1 − (logμ c1)
k1+k2, 1 − (logμ d1)

k1+k2
]
,
[
(logμ(1 − l1))

k1+k2 ,

(logμ(1 − m1))
k1+k2 , (logμ(1 − n1))

k1+k2, (logμ(1 − p1))
k1+k2

]
,
[
(logμ(1 − x1))

k1+k2 , (logμ(1 − y1))
k1+k2,

(logμ(1 − v1))
k1+k2 , (logμ(1 − w1))

k1+k2
]〉

= (k1 + k2) logμ Ã1.
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iv) Again for any k1, k2 > 0, we get

(logμ Ã1)
k1
⊗

(logμ Ã1)
k2

=
〈[
(1 − logμ a1)

k1 , (1 − logμ b1)
k1 , (1 − logμ c1)

k1 , (1 − logμ d1)
k1
]
,
[
1 − (1 − logμ(1 − l1))

k1 ,

1 − (1 − logμ(1 − m1))
k1 , 1 − (1 − logμ(1 − n1))

k1 , 1 − (1 − logμ(1 − p1))
k1
]
,
[
1 − (1 − logμ(1 − x1))

k1 ,

1 − (1 − logμ(1 − y1))
k1 , 1 − (1 − logμ(1 − v1))

k1 , 1 − (1 − logμ(1 − w1))
k1
]〉⊗ 〈[

(1 − logμ a1)
k2 , (1 − logμ b1)

k2 ,

(1 − logμ c1)
k2 , (1 − logμ d1)

k2
]
,
[
1 − (1 − logμ(1 − l1))

k2 , 1 − (1 − logμ(1 − m1))
k2 , 1 − (1 − logμ(1 − n1))

k2 ,

1 − (1 − logμ(1 − p1))
k2
]
,
[
1 − (1 − logμ(1 − x1))

k2 , 1 − (1 − logμ(1 − y1))
k2 , 1 − (1 − logμ(1 − v1))

k2 ,

1 − (1 − logμ(1 − w1))
k2
]〉

=
〈[
(1 − logμ a1)

k1+k2 , (1 − logμ b1)
k1+k2 , (1 − logμ c1)

k1+k2, (1 − logμ d1)
k1+k2

]
,[

1 − (1 − logμ(1 − l1))
k1+k2 , 1 − (1 − logμ(1 − m1))

k1+k2
]
,
[
1 − (1 − logμ(1 − n1))

k1+k2 ,

1 − (1 − logμ(1 − p1))
k1+k2

]
,
[
1 − (1 − logμ(1 − x1))

k1+k2 , 1 − (1 − logμ(1 − y1))
k1+k2,

1 − (1 − logμ(1 − v1))
k1+k2 , 1 − (1 − logμ(1 − w1))

k1+k2]
〉

= (logμ Ã1)
k1+k2

v) The proof of this part is trivial and hence omitted.

4 Aggregation operators

In the decision making method, generally two types of

aggregation operators are used namely weighted arithmetic

operator and geometric averaging operator. Here, we

proposed two new aggregation operators laws for TNN

namely Larm and Lgeo, which are as follows:

Definition 4.1 Let Ãt = 〈(at , bt , ct , dt ), (lt , mt , nt , pt ),

(xt , yt , vt , wt )〉 (t = 1, 2, · · · , k) be any collection of

TNNs and 0 < μ ≤ min (at , bt , ct , dt , 1 − lt , 1 − mt , 1 −

nt , 1−pt , 1−xt , 1−yt , 1−vt , 1−wt ) < 1. The logarithmic

trapezoidal neutrosophic weighted arithmetic aggregation

operator Larm : Ŵk → Ŵ is defined as

Larm(Ã1, Ã2, · · · , Ãk) = φ1 logμ1
Ã1

⊕
φ2 logμ2

Ã2

⊕

· · ·
⊕

φk logμk
Ãk,

where ω = (φ1, φ2, · · · , φk)
T is the weight vector with

φt ≥ 0 and

k∑

t=1

φt = 1.

Note 4.1.1 For convenience, we denote Larm(A1, Ã2, · · · ,

Ãk) = Larm.

Theorem 4.1 Let Ãs = 〈(as, bs, cs, ds), (ls, ms, ns, ps),

(xs, ys, vs, ws)〉 (s = 1, 2, · · · , p) be any collection of

TNNs. Then the aggregated value by using Larm operator is

also TNN and is given by

Larm =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈[
1 −

p∏
s=1

(logμs
as)

φs , 1 −
p∏

s=1

(logμs
bs)

φs , 1 −
p∏

s=1

(logμs
cs)

φs , 1 −
p∏

s=1

(logμs
ds)

φs

]
,

[
p∏

s=1

(logμs
(1 − ls))

φs ,
p∏

s=1

(logμs
(1 − ms))

φs ,
p∏

s=1

(logμs
(1 − ns))

φs ,
p∏

s=1

(logμs
(1 − ps))

φs

]
,

[
p∏

s=1

(logμs
(1 − xs))

φs ,
p∏

s=1

(logμs
(1 − ys))

φs ,
p∏

s=1

(logμs
(1 − vs))

φs ,
p∏

s=1

(logμs
(1 − ws))

φs

]〉
;

0 < μs ≤ min (as, bs, cs, ds, 1 − ls, 1 − ms, 1 − ns, 1 − ps, 1 − xs, 1 − ys, 1 − vs, 1 − ws) < 1〈[
1 −

p∏
s=1

(log 1
μs

as)
φs , 1 −

p∏
s=1

(log 1
μs

bs)
φs , 1 −

p∏
s=1

(log 1
μs

cs)
φs , 1 −

p∏
s=1

(log 1
μs

ds)
φs

]
,

[
p∏

s=1

(log 1
μs

(1 − ls))
φs ,

p∏
s=1

(log 1
μs

(1 − ms))
φs ,

p∏
s=1

(log 1
μs

(1 − ns))
φs ,

p∏
s=1

(log 1
μs

(1 − ps))
ωs

]
,

[
p∏

s=1

(log 1
μs

(1 − xs))
φs ,

p∏
s=1

(log 1
μs

(1 − ys))
φs ,

p∏
s=1

(log 1
μs

(1 − vs))
φs ,

p∏
s=1

(log 1
μs

(1 − ws))
ωs

]〉
;

0 < 1
μs

≤ min (as, bs, cs, ds, 1 − ls, 1 − ms, 1 − ns, 1 − ps, 1 − xs, 1 − ys, 1 − vs, 1 − ws) < 1

(1)
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Proof To prove the Theorem 4.1, we use mathematical

induction on s, where 0 < μs ≤ min (as, bs, cs, ds, 1−

ls, 1−ms, 1−ns, 1−ps, 1−xs, 1−ys, 1−vs, 1−ws) < 1

(s = 1, 2, · · · , p). When s = 2, we get

Larm(Ã1, Ã2)

= φ1 logμ1
Ã1

⊕
φ2 logμ2

Ã2

=
〈[

1 − (logμ1
a1)

φ1 , 1 − (logμ1
b1)

φ1 , 1 − (logμ1
c1)

φ1 , 1 − (logμ1
d1)

φ1
]
,
[
(logμ1

(1 − l1))
φ1 , (logμ1

(1 − m1))
φ1 ,

(logμ1
(1 − n1))

φ1 , (logμ1
(1 − p1))

φ1
]
,
[
(logμ1

(1 − x1))
φ1 , (logμ1

(1 − y1))
φ1 , (logμ1

(1 − v1))
φ1 , (logμ1

(1 − w1))
φ1
]〉

⊕ 〈[
1 − (logμ2

a2)
φ2 , 1 − (logμ2

b2)
φ2 , 1 − (logμ2

c2)
φ2 , 1 − (logμ2

d2)
φ2
]
,
[
(logμ2

(1 − l2))
φ2 , (logμ2

(1 − m2))
φ2 ,

(logμ2
(1 − n2))

φ2 , (logμ2
(1 − p2))

φ2
]
,
[
(logμ2

(1 − x2))
φ2 , (logμ2

(1 − y2))
φ2 , (logμ2

(1 − v2))
φ2 , (logμ2

(1 − w2))
φ2
]〉

=
〈[

1 − (logμ1
a1)

φ1(logμ2
a2)

φ2 , 1 − (logμ1
b1)

φ1(logμ2
b2)

φ2 , 1−(logμ1
c1)

φ1(logμ2
c2)

φ2 , 1−(logμ1
d1)

φ1(logμ2
d2)

φ2
]
,[

(logμ1
(1 − l1))

φ1(logμ2
(1 − l2))

φ2 , (logμ1
(1 − m1))

φ1(logμ2
(1 − m2))

φ2 , (logμ1
(1 − n1))

φ1(logμ2
(1 − n2))

φ2 ,

(logμ1
(1 − p1))

φ1(logμ2
(1 − p2))

φ2
]
,
[
(logμ1

(1 − x1))
φ1(logμ2

(1 − x2))
φ2 , (logμ1

(1 − y1))
φ1(logμ2

(1 − y2))
φ2 ,

(logμ1
(1 − v1))

φ1(logμ2
(1 − v2))

φ2 , (logμ1
(1 − w1))

φ1(logμ2
(1 − w2))

φ2
]〉

=

〈[
1 −

2∏
s=1

(logμs
as)

φs , 1 −
2∏

s=1

(logμs
bs)

φs , 1 −
2∏

s=1

(logμs
cs)

φs , 1 −
2∏

s=1

(logμs
ds)

φs

]
,

[
2∏

s=1

(logμs
(1 − ls))

φs ,
2∏

s=1

(logμs
(1 − ms))

φs ,
2∏

s=1

(logμs
(1 − ns))

φs ,
2∏

s=1

(logμs
(1 − ps))

φs

]
,

[
2∏

s=1

(logμs
(1 − xs))

φs ,
2∏

s=1

(logμs
(1 − ys))

φs ,
2∏

s=1

(logμs
(1 − vs))

φs ,
2∏

s=1

(logμs
(1 − ws))

φs

]〉

Thus, the Theorem is true for s=2. Let us assume that the

Theorem is true for s = p. Then

Larm(Ã1, Ã2, · · · , Ãp)

=

〈
[1 −

p∏
s=1

(logμs
as)

φs , 1 −
p∏

s=1

(logμs
bs)

φs , 1 −
p∏

s=1

(logμs
cs)

φs , 1 −
p∏

s=1

(logμs
ds)

φs

]
,

[
p∏

s=1

(logμs
(1 − ls))

φs ,

p∏
s=1

(logμs
(1 − ms))

φs ,
p∏

s=1

(logμs
(1 − ns))

φs ,
p∏

s=1

(logμs
(1 − ps))

φs

]
,

[
p∏

s=1

(logμs
(1 − xs))

φs ,
p∏

s=1

(logμs
(1 − ys))

φs ,

p∏
s=1

(logμs
(1 − vs))

φs ,
p∏

s=1

(logμs
(1 − ws))

φs

]〉

Now,

Larm(Ã1, Ã2, · · · , Ãp, Ãp+1)

=

〈[
1 −

p∏
s=1

(logμs
as)

φs , 1 −
p∏

s=1

(logμs
bs)

φs , 1 −
p∏

s=1

(logμs
cs)

φs , 1 −
p∏

s=1

(logμs
ds)

φs

]
,

[
p∏

s=1

(logμs
(1 − ls))

φs ,

p∏
s=1

(logμs
(1 − ms))

φs ,
p∏

s=1

(logμs
(1 − ns))

φs ,
m∏

s=1

(logμs
(1 − ps))

φs

]
,

[
p∏

s=1

(logμs
(1 − xs))

φs ,
p∏

s=1

(logμs
(1 − ys))

φs ,

p∏
s=1

(logμs
(1 − vs))

φs ,
p∏

s=1

(logμs
(1 − ws))

φs

]〉⊕
φp+1 logμp+1

Ãp+1

=

〈[
1 −

p∏
s=1

(logμs
as)

φs , 1 −
p∏

s=1

(logμs
bs)

φs , 1 −
p∏

s=1

(logμs
cs)

φs , 1 −
p∏

s=1

(logμs
ds)

φs

]
,

[
p∏

s=1

(logμs
(1 − ls))

φs ,

p∏
s=1

(logμs
(1 − ms))

φs ,
p∏

s=1

(logμs
(1 − ns))

φs ,
p∏

s=1

(logμs
(1 − ps))

φs

]
,

[
p∏

s=1

(logμs
(1 − xs))

φs ,
p∏

s=1

(logμs
(1 − ys))

φs ,
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p∏
s=1

(logμs
(1 − vs))

φs ,
p∏

s=1

(logμs
(1 − ws))

φs

]〉⊕〈[
1 − (logμp+1

ap+1)
φp+1 , 1 − (logμp+1

bp+1)
φp+1 ,

p∏
s=1

1 − (logμp+1
cp+1)

φp+1 , 1 − (logμp+1
dp+1)

φp+1

]
,

[
(logμp+1

(1 − lp+1))
φp+1 , (logμp+1

(1 − mp+1))
φp+1 ,

(logμp+1
(1 − np+1))

φp+1 , (logμp+1
(1 − pp+1))

φp+1

]
,

[
(logμp+1

(1 − xp+1))
φp+1 , (logμp+1

(1 − yp+1))
φp+1 ,

(logμp+1
(1 − vp+1))

φp+1 , (logμp+1
(1 − wp+1))

φ1

]〉

=

〈[
1 −

p+1∏
s=1

(logμs
as)

φs , 1 −
p+1∏
s=1

(logμs
bs)

φs , 1 −
p∏

s=1

(logμs
cs)

φs , 1 −
p+1∏
s=1

(logμs
ds)

φs

]
,

[
p+1∏
s=1

(logμs
(1 − ls))

φs ,

p+1∏
s=1

(logμs
(1 − ms))

φs ,
p+1∏
s=1

(logμs
(1 − ns))

φs ,
p+1∏
s=1

(logμs
(1 − ps))

φs

]
,

[
p+1∏
s=1

(logμs
(1 − xs))

φs ,
p+1∏
s=1

(logμs
(1 − ys))

φs ,

p+1∏
s=1

(logμs
(1 − vs))

φs ,
p+1∏
s=1

(logμs
(1 − ws))

φs ]

〉

This shows that the Theorem is valid for s=p+1. Hence

by mathematical induction, we can say that the above

Theorem holds for all integral value of s.

Again, if 0 < 1
μs

≤ min (as, bs, cs, ds, 1 − ls, 1 − ms,

1 − ns, 1 − ps, 1 − xs, 1 − ys, 1 − vs, 1 − ws) < 1, then

proceeding in the similar approach as in above case, we also

get

Larm(Ã1, Ã2, · · · , Ãp)

=

〈[
1 −

p∏
s=1

(log 1
μs

as)
φs , 1 −

p∏
s=1

(log 1
μs

bs)
φs , 1 −

p∏
s=1

(log 1
μs

cs)
φs , 1 −

p∏
s=1

(log 1
μs

ds)
φs

]
,

[
p∏

s=1

(log 1
μs

(1 − ls))
φs ,

p∏
s=1

(log 1
μs

(1 − ms))
φs ,

p∏
s=1

(log 1
μs

(1 − ns))
φs ,

p∏
s=1

(log 1
μs

(1 − ps))
ωs

]
,

[
p∏

s=1

(log 1
μs

(1 − xs))
φs ,

p∏
s=1

(log 1
μs

(1 − ys))
φs ,

p∏
s=1

(log 1
μs

(1 − vs))
φs ,

p∏
s=1

(log 1
μs

(1 − ws))
ωs

]〉
.

4.1 Properties of aggregation operator

In this subsection the Properties of Larm opera-

tor has been presented. Here, it is assumed that

μ1 = μ2 = · · · = μp = μ (say) and 0 < μ ≤ min

(as, bs, cs, ds, 1 − ls, 1 − ms, 1 − ns, 1 − ps, 1 − xs,

1 − ys, 1 − vs, 1 − ws) < 1. Also ω = (φ1, φ2, · · · , φp)T

be the weight vector such that φs ≥ 0 and

p∑

s=1

φs = 1.

Lemma 4.1.1 (Idempotency of Larm operator ) If Ãs = Ã,

∀ s, where Ã = 〈(a, b, c, d), (l, m, n, p), (x, y, v, w)〉 then

Larm(Ã1, Ã2, · · · , Ãp) = logμ Ã

Proof Since Ãs = Ã, ∀ s, where Ã = 〈(a, b, c, d),

(l, m, n, p), (x, y, v, w)〉 is an TNN such that Ãs = Ã, ∀ s.

Then, from the Theorem (4.1), we get

Larm(Ã1, Ã2, · · · , Ãp)

=

〈[
1 −

p∏
s=1

(logμs
a)φs , 1 −

p∏
s=1

(logμs
b)φs , 1 −

p∏
s=1

(logμs
c)φs , 1 −

p∏
s=1

(logμs
d)φs

]
,

[
p∏

s=1

(logμs
(1 − l))φs ,

p∏
s=1

(logμs
(1 − m))φs ,

p∏
s=1

(logμs
(1 − n))φs ,

p∏
s=1

(logμs
(1 − p))φs

]
,

[
p∏

s=1

(logμs
(1 − x))φs ,

p∏
s=1

(logμs
(1 − y))φs ,

p∏
s=1

(logμs
(1 − v))φs ,

p∏
s=1

(logμs
(1 − w))φs

]〉
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=
〈[

1 − (logμ a)
∑

φs , 1 − (logμ b)
∑

φs , 1 − (logμ c)
∑

φs , 1 − (logμ d)
∑

φs

]
,
[
(logμ(1 − l))

∑
φs , (logμ(1 − m))

∑
φs ,

(logμ(1 − n))
∑

φs , (logμ(1 − p))
∑

φs ], [(logμ(1 − x))
∑

φs , (logμ(1 − y))
∑

φs , (logμ(1 − v))
∑

φs ,

(logμ(1 − w))
∑

φs

]〉
,
[

since, δs = δ and Ãs = Ã ∀ s
]

= logμ Ã.

Lemma 4.1.2 ( Boundedness of Larm operator ) Let Ãs =

〈(as, bs, cs, ds) , (ls, ms, ns, ps) , (xs, ys, vs, ws)〉 , (s =

1, 2, · · · , p) be any collection of TNNs and let

Ãmin = 〈[min as, min bs, min cs, min ds] , [max ls, max ms,

max ns, max ps] , [max xs, max ys, max vs, max ws]〉 ,

Ãmax = 〈[max as, max bs, max cs, max ds] , [min ls, min

ms, min ns, min ps] , [min xs, min ys, min vs, min ws]〉 ,

Ã− = Larm(Ãmin, Ãmin, · · · , Ãmin),

Ã+ = Larm(Ãmax, Ãmax, · · · , Ãmax).

Then we have

Ã− ≤ Larm(Ã1, Ã2, · · · , Ãp) ≤ Ã+

Proof The proof of the Lemma follows from the Theorem

4.1 and the Lemma 4.1.1.

Lemma 4.1.3 (Monotonicity of Larm operator) Let Ãs =

〈(as, bs, cs, ds) , (ls, ms, ns, ps) , (xs, ys, vs, ws)〉 and

Ã′
s =

〈(
a′
s, b

′
s, c

′
s, d

′
s

)
,
(
l′s, m

′
s, n

′
s, p

′
s

)
,
(
x′
s, y

′
s, v

′
s, w

′
s

)〉
,

(s = 1, 2, · · · , p) be two collection of TNNs. If

Ãs ≤ Ã′
s ∀ s, then

Larm(Ã1, Ã2, · · · , Ãp) ≤ Larm(Ã′
1, Ã

′
2, · · · , Ã′

p)

Proof The proof of above Lemma is similar to the Lemma

4.1.2 and hence omitted.

Definition 4.2 Let Ãs = 〈(as, bs, cs, ds) , (ls, ms, ns, ps) ,

(xs, ys, vs, ws)〉 , (s = 1, 2, · · · , p) be any

collection of TNNs and 0 < μ ≤ min

(as, bs, cs, ds, 1 − ls, 1 − ms, 1 − ns, 1 − ps, 1 − xs,

1 − ys, 1 − vs, 1 − ws) < 1. The logarithmic trapezoidal

neutrosophic weighted geometric aggregation operator

Lgeo : Ŵp → Ŵ is defined as

Lgeo

(
Ã1, Ã2, · · · , Ãp

)
=
(
logμ1

Ã1

)φ1
⊗(

logμ2
Ã2

)φ2

⊗
· · ·
⊗(

logμp
Ãp

)φp

where ω = (φ1, φ2, · · · , φp)T is the weight vector with

φs ≥ 0 and

p∑

s=1

φs = 1.

Theorem 4.2 Let Ãs = 〈(as, bs, cs, ds) , (ls, ms, ns, ps) ,

(xs, ys, vs, ws)〉 (s = 1, 2, · · · , p) be any collection of

TNNs. Then the aggregated value by using Lgeo operator is

also TNN and is given by

Lgeo =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈[∏p

s=1(1 − logμs
as)

φs ,
∏p

s=1(1 − logμs
bs)

φs ,
∏p

s=1(1 − logμs
cs)

φs ,
∏p

s=1(1 − logμs
ds)

φs
]
,

[
1 −
∏p

s=1(1 − logμs
(1 − ls))

φs , 1 −
∏p

s=1(1 − logμs
(1 − ms))

φs , 1 −
∏p

s=1(1 − logμs
(1 − ns))

φs ,

1 −
∏p

s=1(1 − logμs
(1 − ps))

φs
]
,
[
1 −
∏p

s=1(1 − logμs
(1 − xs))

φs , 1 −
∏p

s=1(1 − logμs
(1 − ys))

φs ,

1 −
∏p

s=1(1 − logμs
(1 − vs))

φs , 1 −
∏p

s=1(1 − logμs
(1 − ws))

φs
]〉

;

0 < μs ≤ min (as, bs, cs, ds, 1 − ls, 1 − ms, 1 − ns, 1 − ps, 1 − xs, 1 − ys, 1 − vs, 1 − ws) < 1〈[∏p

s=1(1 − log 1
μs

as)
φs ,
∏p

s=1(1 − log 1
μs

bs)
φs ,

p∏
s=1

(1 − log 1
μs

cs)
φs ,
∏p

s=1(1 − log 1
μs

ds)
φs

]
,

[
1 −
∏p

s=1(1 − log 1
μs

(1 − ls))
φs , 1 −

∏p

s=1(1 − log 1
μs

(1 − ms))
φs , 1 −

∏p

s=1(1 − log 1
μs

(1 − ns))
φs ,

1 −
∏p

s=1(1 − log 1
μs

(1 − ps))
φs

]
,
[
1 −
∏p

s=1(1 − log 1
μs

(1 − xs))
φs , 1 −

∏p

s=1(1 − log 1
μs

(1 − ys))
φs ,

1 −
∏p

s=1(1 − log 1
μs

(1 − vs))
φs , 1 −

∏p

s=1(1 − log 1
μs

(1 − ws))
φs

]〉
;

0 < 1
μs

≤ min (as, bs, cs, ds, 1 − ls, 1 − ms, 1 − ns, 1 − ps, 1 − xs, 1 − ys, 1 − vs, 1 − ws) < 1

(2)
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Proof The proof of the Theorem is exactly same as

Theorem 4.1 and hence omitted.

Note 4.2.1 For convenience, we denote Lgeo(Ã1, Ã2, · · · ,

Ãp) = Lgeo.

5 MCGDM technique based on Larm
and Lgeo operators

MCGDM is a branch of operational research. In MCGDM

technique, a group of expert/decision-makers are involve

to select the best alternative from a given set of feasible

alternatives with respect to some given criteria. Here, we

have introduced an MCGDM technique by utilizing the

operators Larm & Lgeo, scalar multiplication & addition

of TNNs and its defuzzyfication method. In this technique,

we have considered the influence of the decision makers

weights in the decision making procedure. Here, we have

considered the MCGDM technique as follows:

Let U = {U1, U2, · · · , Uu} be the set of ‘u’ different

alternatives and V = {V1, V2, · · · , Vv} be the set of

‘v’ different attributes with the associated weight vectors

ω = (φ1, φ2, · · · , φv)
T , where φt ≥ 0 and

v∑

t=1

φt =

1. Also, we take the set of decision-makers W =

{W1, W2, · · · , Ww} whose weight values are assumed as

� = {�1, �2, · · · , �w}, where �k ≥ 0, (k = 1, 2, · · · , w)

and satisfy the condition

w∑

k=1

�k = 1. Here, the weight

values of the decision-maker’s will be assumed according

to ability of judgement, thinking ability, knowledge power,

etc. According to the suitable judgement of the decision-

makers, firstly we have constructed the decision matrices

related with different alternatives. The evaluated values for

the alternatives on the attributes are given as

Ãr
ij =

〈(
ar
ij , b

r
ij , c

r
ij , d

r
ij

)
,
(
lrij , m

r
ij , n

r
ij , p

r
ij

)
,(

xr
ij , y

r
ij , v

r
ij , w

r
ij

)〉
, i = 1, 2, · · · , u,

j = 1, 2, · · · , v, r = 1, 2, · · · , w.

The associated decision matrix (DM) is characterized as

follows:

where r = 1, 2, · · · , w.

Let the logarithmic base index for TNNs are given by μr
ij

(i = 1, 2, · · · , u), (j = 1, 2, · · · , v) where 0 < μr
ij ≤

min (aij , bij , cij , dij , 1 − lij , 1 − mij , 1 − nij , 1 − pij , 1 −

xij , 1 − yij , 1 − vij , 1 − wij ) < 1 which are summarised in

the matrix form as follows:

where r = 1, 2, · · · , w.

Now, our MCGDM technique under TN environment has

been executed through the following steps:

Step 1: Firstly, we apply the Larm or Lgeo operator on

every decision matrix DMr to get a new column

matrix Cr
u×1 as follows

Cr
u×1 = T NWEA(Ã1, Ã2, · · · , Ãv)

=

U1

U2

...

Uu

⎛
⎜⎜⎜⎝

Ãr
11

Ãr
21

...

Ãr
u1

⎞
⎟⎟⎟⎠ ,

where entities of column matrix Cr
u×1 is the

aggregated evaluation values with respect to

different criterion (r = 1, 2, · · · , w).

Step 2: Here, we obtain overall attribute values Ãs1

corresponding to the alternatives Us (s =

1, 2, · · · , u) after utilizing decision-maker’s (�k)

weights according to the relation

w∑

k=1

�kC
k
u×1

(scalar multiplication and addition of TNNs) in

the form of final decision matrix (DM) as follows

DM =

U1

U2

...

Uu

⎛
⎜⎜⎜⎝

Ã11

Ã21

...

Ãu1

⎞
⎟⎟⎟⎠ .

Step 3: We calculate DNeu(Ãs1) of the alternatives Us ,

(s = 1, 2, · · · , u) utilizing de-Neutrosophication

technique according to the Definition 2.1.1.

Step 4: After getting all the de-Neutrosophication values

of the corresponding alternatives, the alternatives

have been ranked according to the Definition 2.1.2

and select the best one.

Remark 5.1 The steps of MCGDM technique have been

shown pictorially in Fig. 2.

A novel logarithmic operational law and aggregation operators for trapezoidal neutrosophic number with... 4409



Fig. 2 Flowchart of our

MCGDM technique

6 Detection of most harmful virus
by utilizing proposedMCGDM technique

Let us consider a realistic problem linked with medical

domain due to presence of disjunctive kinds of virus in our

environment. In this current era, we observed that, humans

of our world are suffering from many diseases and they

deal with disjunctive sort of symptoms in exclusive times.

It is a burning issue to identify which virus is the most

harmful virus for human in recent times. Peoples always

went to the hospital or nursing home and meet the doctor’s

for advice. Now the doctor’s always try to identify the fever

according to lab test report and symptoms on the patient’s

body. But, sometimes their minds are in dilemma about the

virus and symptoms when they are so closely related to each

other. Thus it is a problem of uncertainty domain in which

neutrosophic components are present. People of our society

are come to know about the virus and its effects according

to the opinions of doctors. Now, our problem is to collect

data’s from different doctors (Junior, Adult, Senior) related

with virus and symptoms and create decision matrices in

hesitation arena and focus to find out the most harmful virus

in our environment. Thus, it becomes an MCGDM problem

having three alternatives, three attributes and three types of

decision-maker.

Let the alternatives are: U1 = Virus 1 (Ebola Virus),

U2 = Virus 2 (Marburg Virus), U3 = Virus 3 (Corona

Virus) and the corresponding attributes are V1 = Symptom

1 (Vomiting), V2 = Symptom 2 (Sore Throat Problem),

V3 = Symptom 3 (cough and Red Eyes). Let us consider

the decision-makers W1 = Junior Doctor, W2 = Adult

Doctor, W3 = Senior Doctor having weight value D =

{0.33, 0.37, 0.3} and the weight corresponding to the

attribute function is taken as � = {0.32, 0.35, 0.33}. The

three alternatives are to be evaluated under these three

attributes and give their preferences in terms of TNNs by

the decision-makers.
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The evaluated information of the alternatives Ui , (i =

1, 2, · · · , u) under the attribute Vj , (j = 1, 2, · · · , v)

are characterized in the following trapezoidal neutrosophic

number decision matrices:

Furthermore, the logarithmic base matrices of correspond-

ing decision matrices are characterized as
Now, we have used the proposed technique under TN

environment as follows:

Step 1: Firstly, we use the Larm operator on each decision

matrix DMr according to the equation (1) we

have new column matrices Cr
3×1(r = 1, 2, 3) as

follows

C1
3×1 =

U1

U2

U3

⎛
⎝

〈(0.3918, 0.7694, 0.7743, 0.7893), (0.2910, 0.3385, 0.3476, 0.3871), (0.244, 0.3208, 0.1988, 0.3331)〉

〈(0.3808, 0.5407, 0.5420, 0.6125), (0.5126, 0.6103, 0.6805, 0.7422), (0.0944, 0.3979, 0.4810, 0.5483)〉

〈(0.6726, 0.7638, 0.7826, 0.7905), (0.3944, 0.5541, 0.5755, 0.6033), (0.3667, 0.4647, 0.6541, 0.7051)〉

⎞
⎠ ,

C2
3×1 =

U1

U2

U3

⎛
⎝

〈(0.1775, 0.5579, 0.7214, 0.7517), (0.4421, 0.4886, 0.5037, 1.000), (0.3250, 0.7206, 0.7281, 0.7392)〉

〈(0.4970, 0.5352, 0.696, 0.6406), (0.4562, 0.5515, 0.5803, 0.6293), (0.4089, 0.4185, 0.4271, 0.7255)〉

〈(0.2484, 0.7406, 0.7768, 0.7573), (0.4227, 0.4427, 0.4623, 0.5397), (0.4269, 0.4952, 0.6144, 0.7539)〉

⎞
⎠ ,

C3
3×1 =

U1

U2

U3

⎛
⎝

〈(0.5616, 0.7568, 0.8417, 0.8529), (0.2368, 0.3843, 0.6788, 0.7408), (0.5078, 0.6911, 0.7518, 0.8314)〉

〈(0.6192, 0.6198, 0.6795, 0.7452), (0.3422, 0.6367, 0.6438, 0.7248), (0.6838, 0.6838, 0.8295, 0.8438)〉

〈(0.2446, 0.3002, 0.395, 0.6889), (0.3986, 0.4046, 0.7998, 0.8819), (0.5960, 0.6107, 0.6146, 0.6787)〉

⎞
⎠ .

Again, if we utilize the operator Lgeo operator

according to the (2) on every decision matrix

DMr , we get new column matrices Cr
3×1(r =

1, 2, 3) as follows:
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(
C1

3×1

)
geo

=

U1

U2

U3

(
〈(0.6082, 0.6306, 0.6357, 0.6407), (0.5090, 0.5215, 0.5524, 0.7129), (0.7560, 0.7792, 0.8012, 0.8669)〉
〈(0.4192, 0.4513, 0.4580, 0.4875), (0.1874, 0.3897, 0.4195, 0.5780), (0.6056, 0.6210, 0.7190, 0.7517)〉
〈(0.3274, 0.3362, 0.6174, 0.6395), (0.4056, 0.4459, 0.5245, 0.6967), (0.6333, 0.6353, 0.6459, 0.6949)〉

)
,

(
C2

3×1

)
geo

=

U1

U2

U3

(
〈(0.3225, 0.4421, 0.4786, 0.4830), (0.5079, 0.5114, 0.5963, 1.000), (0.2675, 0.2694, 0.3819, 0.4608)〉
〈(0.5030, 0.5648, 0.6040, 0.6594), (0.5438, 0.5485, 0.5697, 0.5707), (0.5411, 0.5915, 0.7290, 0.7745)〉
〈(0.4516, 0.4594, 0.5232, 0.5427), (0.5773, 0.5573, 0.6377, 0.6603), (0.1731, 0.3048, 0.3856, 0.4461)〉

)
,

(
C3

3×1

)
geo

=

U1

U2

U3

(
〈(0.4384, 0.4432, 0.4583, 0.4710), (.5632, 0.6157, 0.6212, 0.6592), (0.2922, 0.3089, 0.3482, 0.3686)〉
〈(0.3808, 0.4842, 0.5205, 0.548), (0.4578, 0.5433, 0.5562, 0.5752), (0.3162, 0.3162, 0.3705, 0.3862)〉
〈(0.7554, 0.7998, 0.8050, 0.8111), (0.4014, 0.5954, 0.6002, 0.6181), (0.4040, 0.4893, 0.5954, 0.6213)〉

)
.

Step 2: We now apply decision-maker’s weight maintain-

ing the relation

w∑

k=1

�kC
k
u×1 (scalar multiplication

and addition of TNNs) and we have overall

attribute values Ãs1 for the alternatives Us(s =

1, 2, 3) under the operator Larm as follows

(DM)arm =

U1

U2

U3

(
〈(0.3836, 0.7019, 0.7575, 0.7615), (0.3193, 0.4179, 0.5298, 0.6054), (0.3380, 0.4476, 0.5765, 0.5886)〉
〈(0.5044, 0.5680, 0.5910, 0.6677), (0.5063, 0.6009, 0.6350, 0.6995), (0.3069, 0.3727, 0.5138, 0.5494)〉
〈(0.4278, 0.6474, 0.6789, 0.6819), (0.4059, 0.4902, 0.5858, 0.6171), (0.4731, 0.5164, 0.5533, 0.5951)〉

)
.

On the other side, if we apply decision-makers

weight under the operator Lgeo according to

the relation

w∑

k=1

�kC
k
u×1, we get overall attribute

values Ãs1 for the alternatives Us(s = 1, 2, 3)

which is given as

(DM)geo =

U1

U2

U3

(
〈(0.3744, 0.4202, 0.4539, 0.5389), (0.4633, 0.5766, 0.6512, 0.6632), (0.3374, 0.3808, 0.4830, 0.5119)〉
〈(0.5138, 0.5512, 0.6269, 0.6395), (0.2051, 0.3952, 0.4612, 0.4615), (0.4459, 0.4931, 0.5589, 0.5948)〉
〈(0.6565, 0.6947, 0.6998, 0.7335), (0.337, 0.3570, 0.3698, 0.3709), (0.3425, 0.4061, 0.4238, 0.4567)〉

)
.

Step 3: The de-Neutrosofication values of Ãs1, (s =

1,2,3) corresponding to Larm operator are

DNeu(Ã11) = 0.5208, DNeu(Ã21) = 0.4882,

DNeu(Ã31) = 0.5837. On the other hand,

the de-Neutrosofication values of Ãs1, (s =

1,2,3) corresponding to operator Lgeo are

DNeu(Ã11) = 0.5156, DNeu(Ã21) = 0.51,

DNeu(Ã31) = 0.5601.

Step 4: The ranking order of de-Neutrosofication values

is DNeu(Ã31) > DNeu(Ã11) > DNeu(Ã21) for

the operator Larm. Therefore, the ranking order of

the alternatives is U3 > U1 > U2. Therefore, U3

is the best option. Again, under the operator Lgeo,

the ranking order of the alternatives is U3 > U2 >

U1. Therefore, U3 is the best option.

6.1 Sensitivity analysis

The logical approach of sensitivity analysis is performed

by exchanging the weights of the decision-makers keeping

the remainder of the term are unchanged. Here, we perform

sensitivity analysis under the Larm and Lgeo operators to

capture the influence of the decision-makers weight on the

relative matrix and their ranking. The sensitivity analysis

results are shown in the Tables 1 & 2 under the operators

Larm and Lgeo respectively. In the Figs. 3 and 4, we have

represented the corresponding weights values of different

decision-makers and the ranking order of the alternatives

respectively under Larm operator. Also, in the Figs. 5 and

6, we have presented the related weights values of different

decision-makers and the ranking order of the alternatives

respectively under Lgeo operator.

In Table 1, we consider different weight vectors of the

decision-makers and get U3 is the best option in four cases

and U1 is the best option for one case under the operator

Larm. Again, in Table 2, we consider same weight vectors

of the decision-makers as in Table 1 and get U3 is the best

option in all cases under the operator Lgeo.

6.2 Comparative analysis

To demonstrate the efficiency and validity of our proposed

method, we have presented a comparison study of our

method with the existing methods in Table 3.

From the Table 3, we have observed that aggregation

operator proposed by Ye [15] cannot be apply in our

decision matrices as indeterminacy part is absent in this

A novel logarithmic operational law and aggregation operators for trapezoidal neutrosophic number with... 4413



Fig. 3 Different

decision-maker’s weights under

the operator Larm

Fig. 4 Ranking order of the

alternatives under the operator

Larm

Fig. 5 Different

decision-maker’s weights under

the operator Lgeo
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Fig. 6 Ranking order of the

alternatives under the operator

Lgeo

aggregation operator. Also Liang et al. [20], Biswas

et al. [23], Pranab et al. [34], Pramanik & Mallick [35],

Liu & Zhang [36] and Wu et al. [37] work on SVTNN

environment which is different from general TNN [16]

through its basic character. So we cannot apply this method

in our decision matrices to execute the best alternative.

Thus, we have applied the operators TNNWAA [16],

TNNWGA [16], ITNNWAA [17] and ITNNWGA [17]

on our data set and obtained the results. Interestingly,

we have found that the ranking order under the different

operators and our method are exactly same. On the other

hand we have already checked the stability of our obtained

results through sensitivity analysis. These phenomenons

clearly show the efficiency & reliability of our proposed

logarithmic operational law based MCGDM technique.

7 Conclusion

In this article, we have presented new logarithmic oper-

ational laws for TNNs which is a productive enhance-

ment of existing operational laws. We have studied their

mathematical Properties like boundedness, monotonicity

etc. Moreover, we have proposed the logarithmic trape-

zoidal neutrosophic weighted arithmetic aggregation opera-

tor Larm and logarithmic trapezoidal neutrosophic weighted

geometric aggregation operator Lgeo and presented an

MCGDM technique in TN environment by using these

aggregation operators. A numerical problem has been taken

up to demonstrate the proposed MCGDM method. Also, we

have discussed the usefulness and the utility of the proposed

method through a sensitivity analysis. Finally, a comparison

study of our proposed technique with existing methods has

been presented to justify the rationality and efficiency of our

proposed technique. From this article, we can conclude that

our defined operational law and its corresponding MCGDM

technique give a new direction to deal decision-making

problems.

In the future work, the defined logarithmic operational

law can be expanded to the other uncertain environments

to enrich the decision-making procedure. Researchers can

immensely apply these ideas of neutrosophic number in

numerous flourishing research fields like mobile comput-

ing, pattern recognition, cloud computing, etc.

Table 3 Comparison with the existing methods

Methods Nature of the Multiple group of Operators Ranking order

environment decision makers

Ye [15] TrIFN × TIFPWA TIFPWG Not applicable

Liang et al. [20] SVTNN × SVTNWAA SVTNWGA Not applicable

Biswas et al. [23] SVTNN × × Not applicable

Pramanik & Mallick [35] SVTNN � × Not applicable

Liu & Zhang [36] SVTNN � SVTNWMSM Not applicable

Wu et al. [37] SVTNN � SVTNPA SVTNPG Not applicable

Ye [16] TNN × TNNWAA TNNWGA U3 > U2 > U1 U3 > U2 > U1

Jana et al. [17] TNN × ITNNWAA ITNNWGA U3 > U2 > U1 U3 > U2 > U1

Proposed Method TNN � Larm Lgeo U3 > U2 > U1 U3 > U2 > U1

A novel logarithmic operational law and aggregation operators for trapezoidal neutrosophic number with... 4415
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