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The satellite clocks carried on the BeiDou navigation System (BDS) are a self-manufactured hydrogen clock and improved
rubidium clock, and their on-orbit performance and stabilities are not as efficient as GPS and Galileo satellite clocks caused of
the orbital diversity of the BDS and the complexity of the space operating environment. Therefore, the existing BDS clock
product cannot guarantee the high accuracy demand for precise point positioning in real-time scenes while the communication
link is interrupted. To deal with this problem, we proposed a deep learning-based approach for BDS short-term satellite clock
offset modeling which utilizes the superiority of Long Short-Term Memory (LSTM) derived from Recurrent Neural Networks
(RNN) in time series modeling, and we call it QPLSTM. The ultrarapid predicted clock products provided by IGS (IGU-P) and
four widely used prediction methods (the linear polynomial, quadratic polynomial, gray system (GM (1,1)), and Autoregressive
Integrated Moving Average (ARIMA) model) are selected to compare with the QPLSTM. The results show that the prediction
residual is lower than clock products of IGU-P during 6-hour forecasting and the QPLSM shows a greater performance than
the mentioned four models. The average prediction accuracy has improved by approximately 79.6, 69.2, 80.4, and 77.1% and
68.3, 52.7, 66.5, and 69.8% during a 30min and 1-hour forecasting. Thus, the QPLSTM can be considered as a new approach
to acquire high-precision satellite clock offset prediction.

1. Introduction

High-precision satellite clock is the cornerstone of building a
GNSS time system, and establishing an accurate clock offset
model is crucial to guarantee real-time global satellite precise
positioning services (RT-PPP) [1]. Researches have shown
that the main factors affecting the performance of satellite
clocks come from the external environment in which the sat-
ellite operates and the physical characteristics of the atomic
clock itself [2]. Compared with other GNSS systems, the sat-
ellites of BDS occupy three different types of orbits and the
operating environment is more complicated, which make it
unsuitable to establish a clock offset model by a conventional
quadratic polynomial method so that we cannot meet the
requirement of real-time precise point positioning while the
communication is blocked [3–5]. For most of the RT-PPP
users, they meet their requirement by obtaining clock prod-
uct from the International GNSS Service Center (IGS) [6].
All types of products are listed in Table 1.

As can be seen from Table 1, RT-PPP users can obtain
clock product in three ways.

The first is the broadcast ephemeris, which broadcasts a
set of satellite clock coefficients per hour; the users receive it
and estimate the real-time clock offsets through the qua-
dratic polynomial fitting and forecasting. The precision of
BDS broadcast ephemeris clock products is around five
nanoseconds (ns). The second is the ultrarapid clock offset
products, which provide the real-time forecasting of 24 h
clock offsets based on the last 24 h observation. The preci-
sion of it is around 3ns, and it is updated every six hours,
which performs better than the first way. However, both of
them cannot meet the requirement of the decimeter-level
real-time navigation and positioning [1, 7–10]. The last
way is to estimate the real-time satellite’s clock offset by
real-time observation flows of local or wide-area BDS sta-
tions, which can obtain the offset once in 5-10 seconds and
cycle in 5 minutes. The precision of the last way is better
than 0.5 ns, but it depends on the support of a
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communication network and high-performance data process-
ing equipment, and it is also unstable and difficult for com-
mon users to acquire [11–14]. Therefore, developing a high-
precision satellite clock offset prediction method for common
users to low-cost obtained high-precision clock offset becomes
one of the significant research issues in recent years.

A lot of traditional time series modeling methods have
been applied to satellite clock offset forecasting such as poly-
nomial model, GM (1,1) prediction model, Kalman filter
model, ARIMA time series model, and spectral analysis
model and achieved good performance. But each of them
has their own deficiencies [7, 15–17]. The polynomial model
performs worse while the forecast time is growing. The per-
formance of the GM (1,1) prediction model depends on its
exponential coefficients, and its requirement on the train
data set is strict. Only with sufficient prior knowledge about
the atomic clock’s own operating characteristics and its envi-
ronmental characteristics can the Kalman filter model
achieve great prediction results. As for the ARIMA time
series model and spectral analysis model, the former’s opti-
mal fixed order is inconsistent for the clock’s type and in dif-
ferent orbits [18]. The latter requires a large amount of prior
data to analyze the environmental noise and periodic factors
of the satellite clock [19]. Due to the limitation of these tra-
ditional models, researchers try to introduce machine learn-
ing methods into the modeling of satellite clock errors in
recent years. M. Kim and J. Kim proposed a GA-ARIMA
model to revise the RTS forecast products of IGS, which is
32% higher than the traditional ARIMA prediction method,
but their research object is limited to GPS [20]. Wang et al.
built a short-term satellite clock offset model by wavelet neu-
ral network which is optimized through particle swarm opti-
mization algorithm, and it can make 1h forecasting results
better than 0.3 ns. Although the particle swarm optimization
algorithm can provide an optimization method for the wave-
let neural network, the particle swarm optimization algo-
rithm also easily falls into the local optimum, and this

research is based on the GPS constellation with stable spatial
structure; we are not uncertain whether it is suitable for the
BDS constellation [21]. He et al. established the BeiDou 2/3
short-term forecast model based on the least squares support
vector machine (LS-SVM), and its 24-hour forecast accuracy
is improved by 37.7% compared with the traditional
method. However, for the LS-SVM model, there is no defi-
nite standard about selecting the length of the training data.
It is not that the longer the input data length is, the better the
forecasting effect gets [22]. Huang et al. applied the BP neu-
ral network to correct the BeiDou-2 ultrarapid clock predic-
tion product. The forecasting accuracy for 3 hours, 6 hours,
12 hours, and 24 hours was improved by 23.1%, 21.3%,
20.2%, and 19.8% compared with IGS’s original product.
But in their study, they did not give a clear rule for the selec-
tion of parameters about training BP neural network such as
the time interval of the input samples [23].

Most of the machine learning methods are behavior
modeling algorithm using the information generated by the
past behavior of organisms, and they can also accurately esti-
mate various complex nonlinear time series [24]. Long
Short-Term Memory (LSTM) stands out from most of time
series prediction algorithms, which uses its memory block in
hidden lay to extract and save time series information and
use the forget gate in memory block to filter the stored
sequence information so that it can make full use of time
series information and give accurate prediction [25, 26].
Nowadays, LSTM has gradually been applied to deal with
the problem of GNSS data processing. Kaselimi et al. con-
structed an ionospheric electron content prediction model
based on LSTM to replace Global Ionospheric Map (GIM)
data product which performs better than GIM product
[27]. Tao et al. established a multipath CNN-LSTM network
model to optimize the multi-GNSS positioning performance,
which reduces its positioning root mean square error of
multi-GNSS positioning in the east, north, and vertical
directions by 62.3%, 70.8%, and 66.0% [28].

Table 1: IGS satellite clock product description (http://igs.org/products/).

Type Accuracy Delay Update Sample interval

Broadcast

Orbit 100 cm

Real time 1 h Daily
Clock

RMS: 5 ns

SDev: 2.5 ns

Ultrarapid (part of prediction)

Orbit 5 cm

Real time UTC: 03, 09, 15, 21 15min
Clock

RMS: 3 ns

SDev: 1.5 ns

Ultrarapid (part of observation)

Orbit 3 cm

3 h-9 h UTC: 03, 09, 15, 21 15min
Clock

RMS: 150 ps

SDev: 50 ps

Rapid

Orbit 3 cm

17 h-41 h UTC: 17

15min

Clock
RMS: 75 ps

5min
SDev: 25 ps

Final

Orbit 2.5 cm

12-18 days Thursday

15min

Clock
RMS: 75 ps

30 s, 5min
SDev: 20 ps
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In this paper, a general deep learning method used for
time-series modeling, LSTM, is taken to construct the
clock bias prediction model. In order to avoid the compli-
cated structure of LSTM, we only built single-layer LSTM
and use the genetic algorithm (GA) to optimize the num-
ber of hidden layer units. Then, we divide satellite clock
feature into system feature and environment feature, and
the QP-based Long Short-Term Memory (QPLSTM)
model is construct and is applied to short-term clock bias
prediction for the first time. We used the IGU-O product
to conduct six-hour forecasting compared to IGU-P prod-
uct to evaluate the performance of QPLSTM. Furthermore,
we also use precise satellite clock product to train our
model and compare to four conventional methods during
30min and 1h forecasting. Finally, results show that we
provide a more excellent method to realize high-
precision short-term satellite clock offset prediction than
the mentioned method above, and it can also replace the
IGU-P product.

The remaining sections of the paper are organized as
follows: the original RNN and its variant of LSTM used
for time series modeling is introduced in detail in Section
2. Section 3 emphasizes on the construction for the clock
offset prediction model—QPLSTM—based on the variant
of LSTM which is introduced in Section 2. The simulation
results and dissection are conducted in Section 4. Section 5
summarizes the performance of the QPLSTM and also
points out the areas that need to be optimized and
improved.

2. LSTM RNN

LSTM is one of the variants of RNN. This part will intro-
duce the RNN and its LSTM variant which is used to
establish the satellite clock offset prediction model in the
next part [29]. It started from the basic RNN model, and
then, it is derived to LSTM.

RNN can build a deep structure in the time dimension
[30], and it has been widely used in time series modeling
[31, 32]. Figure 1 shows an RNN model being expanded to
a full network, and the following introduces the mathemati-
cal symbols in Figure 1:

(1) Set xt as the input vector at time t。

(2) Set Ht as the hidden unit value at time t. The state
value depends on the input vector at the current
moment and the value of the hidden layer unit at
the previous moment. Ht can be calculated by the
following formula:

Ht = f WXHxt +WHHHt−1ð Þ ð1Þ

In the above formula, f is the activate function, such as
sigmoid function and ReLU. Normally, H0 is initialized to 0

(3) Set ot as the output vector at time t, and it can be cal-
culated by the following formula:

ot = f WHOHtð Þ ð2Þ

(4) In the above formula, WXH and WHO represent the
weight matrix of the input layer and output layer
connected to the hidden layer. WHH represents the
transfer weight matrix between hidden layer units

Even though RNN does a good job in time series
modeling, its deep gradient is calculated in the form of
partial derivative and multiplication through each activate
function, and when the input vector becomes a large-
scale time series, the gradient calculation value easily dis-
appears or explodes, making it difficult to calculate and
update the gradient. And LSTM is one of the effective var-
iants to solve this problem [26].

LSTM is designed to use a memory block to replace
the hidden layer unit in the original RNN architecture.
The memory block includes an input gate, an output
gate, a forget gate, and self-circulating neurons [33], and
the structure of which is shown in Figure 2. The input
gate is used to determine how much current information
is involved in the calculation of the self-circulating neu-
ron state value of the memory block, the forget gate is
used to determine how much historical information at
the last moment is used to calculate the self-circulating
neurons state value of the memory at this time, and the
output gate is used to control the information that can
be output in the memory block. By training the combina-
tion of these gates, not only the problem of gradient dis-
appearance or explosion caused by the large-scale time
sequence used for training is solved, but also the time
series variables can be predicted more finely. And the
number of parameters that LSTM needs to control is four
times of RNN.

Figure 3 shows the LSTM model when multiple memory
blocks are combined. Figure 3 also reflects the iterative steps
of each door, and the mathematical expression of each step
is shown as follows:

(1) Set xt as the input vector to the memory block at
time t

(2) LetW i,W f ,Wc, Wo, U i, U f , U c, Uo, V i, V f , and Vo

represent the weight matrix of their respective steps

(3) Let bi, bf , bc, and bo be the bias vector

(4) Set ht as the output value of the memory block at
time t

(5) Set it and ~ct as the output value of the input gate and
the activate value of the self-circulating neuron state,
respectively, at time t. Both of them are calculated by
the following formula:

it = σ W ixt +U iht−1 +V ict−1 + bið Þ, ð3Þ
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~ct = g Wcxt +U cht−1 + bcð Þ ð4Þ

(6) Set f t and ct as the output value of the forget gate
and the value of the self-circulating neuron state,
respectively, at time t. Both of them are calculated
by the following formula:

f t = σ W f xt +U f ht−1 +V f ct−1 + bf
� �

, ð5Þ

ct = it ∗~ct + f t ∗ ct−1 ð6Þ

(7) Set ot and ht as the output value of the output gate
and the output value of the memory block,

o
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Figure 1: A RNN with its unfolded architecture.
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respectively, at time t. Both of them are calculated by
the following formula:

ot = σ Woxt +Uoht−1 +Voct + boð Þ ð7Þ

ht = ot ∗ h ctð Þ ð8Þ

(8) In the above formula, σð·Þ, gð·Þ, and hð·Þ, respec-
tively, represent the standard logistic sigmoid func-
tion with range ½0, 1�, ½‐2, 2�, and ½‐1, 1�, Both of
them are defined in equations (9)–(11):

σ xð Þ =
1

1 + e−x
, ð9Þ

g xð Þ =
4

1 + e−x
− 2, ð10Þ

h xð Þ =
2

1 + e−x
− 1 ð11Þ

A modified version of Real-Time Recurrent Learning
(RTRL) that is optimized by the gradient descent method
and truncated Back Propagation Through Time (BPTT)
are selected as the basic theory to train LSTM RNN [34].
The objective function of training is to minimize the mean
square error. The training error does not directly affect the
output of the memory block but enters the linear CEC of
the memory block and allows the error to pass back. In this
way, the LSTM neural network has the ability to handle the
large-scale time series. Before training, it is necessary to
determine the number of hidden layers and the number of
hidden layer units and which part of the historical data is
used for training and testing. Since there is no clear theoret-
ical basis for the selection of the number of hidden layer and
the number of hidden layer units [25, 26], the single-layer
LSTM is used in subsequent experiments and GA is selected
to find the best number of hidden layer units. Initial learning
rate, batch size, and number of interactions are 0.005, 125
and 1000, respectively. Each result of experiments converges
to the optimal solution.

3. Construction of QPLSTM Used for Satellite
Clock Offset Prediction

The current BDS constellation is composed of GEO, IGSO,
and MEO, and the orbit type of each satellite and the atomic
clock mounted on it are shown in Table 2.

The various orbit types and star clock characteristics
make the traditional polynomial combined periodic term
modeling method not able to achieve better forecast results
for all satellites [35, 36]. The method proposed in this paper
models all the satellites that can obtain observations except
the satellite under testing, and the forecasting performance
has been significantly improved compared with conven-
tional methods.

In order to better understand the method proposed in
this article, this chapter will first introduce the on-board
characteristics of the satellite clock and then introduce the
new model QPLSTM that combines the traditional method
with LSTM in this article.

Assume that the satellite clock offsets is CxðtÞ, and it can
be decomposed into system variation components, periodic
variation components, and random variation components
[37, 38], written in the following form:

Cx tð Þ = a0 + b0t +
1

2
c0t

2 + 〠
np

i=1

csi cos iμð Þ + ssi sin iμð Þ½ � + εcx tð Þ:

ð12Þ

The first three items of the satellite clock offsets are caused
by the characteristics of the satellite clock itself. a0 is the initial
phase, b0 is the frequency deviation, and c0 is the frequency
drift. The fourth item is the periodic variation component
caused by the movement of the satellite on-board, where np
is the number of periodic variation components contained in
the clock offset sequence, csi is the cosine coefficient of the i
th period term, ssi is the sine coefficient of the ith period term,
and μ is the satellite orbit angle calculated frommidnight. The
fifth term is the noise caused by environmental factors, which
is a random variation component.

In many cases, the traditional polynomial model is
proved to be a reliable method for BDS clock offset modeling
[23]. Differing from using a longer time series to analyze the
periodic term and the noise term in random variation com-
ponent, the method proposed in paper takes the periodic
term and the noise term as the feature to construct the
LSTM model.

When using LSTM to predict in practice, it is very
important to determine the number of input and output
layers and the number of hidden layers in the network, but
there is no theory that can be followed. It is usually necessary
to ensure that the vector scale of the input layer and the vec-
tor scale of the output layer are the same. And then, the big-
gest difficulty lies in the determination of the number of
hidden layer units in LSTM modeling. Before determining
the number of hidden layer units, set other parameters of
LSTM for satellite clock offset prediction, mainly including
the selection of the loss function, training method, and the
establishment of initial parameters. The training method
can be expressed as follows:

(1) Selection of the loss function for LSTM training. The
selection of LSTM loss function in different scenarios
is different [39]. Taking into account the complexity
of the clock error model, we use the mean square
error loss function. This function is suitable in this
scenario and is often used in nonlinear time series
forecasting, which is defined as L =∑iðkôi − oik/2Þ,
where ôi represents the predicted value of the output
layer

(2) Selection of the training algorithm. Truncated Back
Propagation Through Time (BPTT) based on
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gradient descent has great advantages such as rigor-
ous derivation, solid theoretical foundation, and
strong versatility and is usually used as the main
learning algorithm [34, 40]. Therefore, we also use
this training method to train the LSTM model for
satellite clock offset prediction. Since we do not have
to worry about gradient disappearance or explosion
caused by gradient descent, we only need to set the
number of learning iterations, the size of learning
round, and dropping rate. Then, the LSTM is trained
as follows:

(a) Initializing parameters of network. The method
of adaptive moment estimation is used to adjust
the learning rate. Set the initial learning rate η,
learning round size N , dropping iteration n,
and the dropping rate lrate well; after each n
rounds of adaptive learning, the next round of

learning rate is ηði+1Þ = ηðiÞ · lrate, where i ∈ ½1, d
N/ne�

(b) Setting LSTM as a single memory block network.
Setting the transfer weights of each layer to W i,
W f , Wc, Wo, U i, U f , U c, Uo, V i, V f , and Vo,

each of them represents the weight matrix of
the input of memory block, the output of mem-
ory block, and self-circulating neuron connect to
the input gate, the forget gate, the previous state
of self-circulating neuron, and the output gate,
respectively

(c) Forward propagation self-learning and calculat-
ing the LSTM network output of memory block
ôi according to formulas (3)–(11), then calculat-
ing the value of loss function L according to the
actual output oi

(d) According to the rule of BPTT. Define ςth
def

∂

L/∂ht and ςtc
def

∂L/∂ct . Let the vector that is

input into activate function in formulas (3), (4),
(5), and (7) be abbreviated as ati , a

t
c, a

t
f , and ato

respectively. The gradient descent expression
and the weight update expression are calculated
by the following formula though the chain rule

Output gate:

∂L

∂ato
= σ′ ato

� �
h ctð Þςth: ð13Þ

And ∂ato/∂Wo = xt , ∂a
t
o/∂Uo = ht−1, and ∂ato/∂Vo = ct .

⇒

Wo =Wo − η
∂L

∂Wo

=Wo − ησ′ ato
� �

h ctð Þςthxt ,

Uo =Uo − η
∂L

∂Uo

=Uo − ησ′ ato
� �

h ctð Þςthht−1,

Vo =Vo − η
∂L

∂Vo

=Vo − ησ′ ato
� �

h ctð Þςthct ,

8
>>>>>>>><

>>>>>>>>:

ςtc = oth′ ctð Þςth + f t+1ς
t+1
c +V i

∂L

∂at+1i

+V f

∂L

∂at+1f

+Vo

∂L

∂ato
:

ð14Þ

Self-circulating neuron:

∂L

∂atc
= itg′ atc

� �
ςtc: ð15Þ

And ∂atc/∂Wc = xt and ∂atc/∂U c = ht−1. Then,

⇒

Wc =Wc − η
∂L

∂Wc

=Wc − ηitg′ atc
� �

ςtcxt ,

U c =U c − η
∂L

∂U c

=U c − ηitg′ atc
� �

ςtcxt:

8
>>><

>>>:
ð16Þ

Forget gate:

∂L

∂atf
= σ′ atf

� �
ct−1ς

t
c: ð17Þ

Table 2: The types and orbits of BDS on-board satellite clocks (the list of events as of October 2020) (http://www.igmas.org).

Generation Orbit PRN Status Equipment clock

BDS-2

MEO C11, C12, C14 Healthy Rb

GEO C01, C02, C03, C04, C05 Healthy Rb

IGSO C06, C07, C08, C09, C10, C13, C16 Healthy Rb

BDS-3

MEO
C19, C20, C21, C22, C23, C24, C32, C33, C36, C37, C45, C46 Healthy Rb

C25, C26, C27, C28, C29, C30, C34, C35, C41, C42, C43, C44 Healthy H

IGSO C38, C39, C40 Healthy H

GEO C59, C60, C61 Testing H
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And ∂atf /∂W f = xt , ∂a
t
f /∂U f = ht−1, and ∂atf /∂V f = ct−1.

⇒

W f =W f − η
∂L

∂W f

=W f − ησ′ atf

� �
ct−1ς

t
cxt ,

U f =U f − η
∂L

∂U f

=U f − ησ′ atf

� �
ct−1ς

t
cht−1,

V f =V f − η
∂L

∂V f

=V f − ησ′ atf

� �
ct−1ς

t
cct−1:

8
>>>>>>>>><

>>>>>>>>>:

ð18Þ

Output gate:

∂L

∂ati
= σ′ ati

� �
g atc
� �

ςtc: ð19Þ

And ∂ati /∂W i = xt , ∂a
t
i /∂U i = ht−1, and ∂ati /∂V i = ct−1.

⇒

W i =W i − η
∂L

∂W i

=W i − σ′ ati
� �

g atc
� �

ςtcxt ,

U i =U i − η
∂L

∂U i

=U i − σ′ ati
� �

g atc
� �

ςtcht−1,

V i =V i − η
∂L

∂V i

=V i − σ′ ati
� �

g atc
� �

ςtcxtct−1:

8
>>>>>>>><

>>>>>>>>:

ð20Þ

Before the end of the Nth iteration of training, the learn-
ing rate is constantly changing, and the gradient and weight
are continuously updated according to the above formula.

(3) Optimization of the model parameters. GA is a
global optimization algorithm, which follows a cer-
tain fitness function and uses selection, crossover
and mutation genetic operators based on multipoint
random parallel search to effectively prevent param-
eters from converging to local optimal solutions [41,
42]. Therefore, it is selected to optimize the number
of hidden layer units in LSTM. The fitness function
of the GA is set asf fitness = 1/RMS, where RMS repre-
sent the minimum mean square error between the
LSTM’s forecast result and the actual value, which
is defined as follows:

RMS =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K
〠
K

i=1

Cxi − cCx i

� �
vuut ð21Þ

In above, K represents the number of total targets that
need to be predicted. Cxirepresent the actual observation.
cCx i represent the prediction by LSTM.

By training the above LSTM model, the satellite clock
offset prediction model we built can be written in the follow-
ing form:

Cx tð Þ = a0 + b0t +
1

2
c0t

2 + f lstm: ð22Þ

The flow of the proposed model for forecasting is shown
in Figure 4. Firstly, we use data preprocessing method to
remove gross errors in the original data, and the specific
methods and effects will be introduced in the next section.
Obtain the system variation components of the satellite
clock through the QP model, then standardize the residuals
after the QP model is fitted, and divide them into training
data and test data. Under a fixed number of hidden layer
units, train the LSTM.

The prediction and the test data are used to calculate the
RMS together to help the GA find the optimal number of
hidden layer units and obtain the optimal residual fitting
model. Finally, by combining the residual fitting model
and the QP model, QPLSTM is constructed.

The machine learning method is to use prior data to
learn the complex nonlinear relationship between the past
and the future. In practical applications, if we need to predict
Tl period of data in the future, there are Nl periods of prior
data. In order to make better use of the selectivity of LSTM
for time series features, we use all Nl − Tl data for training
and use GA to find the best modified model and save it.
Then, run the trained model online to provide real-time
QP model correction items, and during online operation,
there is no need to self-train each data set. When the model
is inaccurate, change back to the traditional prediction
method, and at the same time, collect new data and train a
new LSTM model to construct QPLSTM.

In this section, QPLSTM is constructed and the entire
model algorithm flow can be as shown in Figure 4. The data
preprocessing method and the performance of it would be
shown at the beginning of Section 4, and then, the experi-
ments and evaluation for QPLSTM are taken through the
processed data.

4. Results and Discussion

4.1. Data Preprocessing. During the operation of the atomic
clock on-board, changes in the external environment and
abnormal hardware signal output of the atomic clock can
cause abnormal conditions such as gross errors and data dis-
continuities in the satellite time-frequency sequence.

Therefore, before establishing the satellite clock offset
prediction model, it is necessary to ensure that the observed
time-frequency characteristic sequence of the on-board
atomic clock is clean and stable [42, 43]. The combined
gross error detection method is taken to simultaneously deal
with the gross errors contained in the phase and fre-
quency [44].

The method is as follows.
Firstly, process the phase sequence of the satellite clock

offset observations through 3-sigma rules.
Define the step bias of residual as

δ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
υTυ

n − 1ð Þ

s

,

υ = Cx − polyfit Cxð Þ,

ð23Þ

where Cx represents the satellite clock offset phase sequence
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obtained by observation; υ represent the quadratic polyno-
mial fitting residual vector of the clock offset phase sequence;
and n represent the number of epochs of phase data. If the j
th phase residual υj satisfies jυ j −meanðυÞj > 3δ, we regard it
as a gross error, where meanðυÞ means the mean value of υ.

After the phase data is processed, a well-known gross
detection method, Median Absolute Deviation (MAD)
method, is applied to process the frequency data of the satel-
lite clock offset observations.

The MAD method can be expressed as follows:

bu =
Cx j − Cx j−1
� �

Δt
,

M =median
bu −mj j

0:6745

� �
,

m =median buf g,

ð24Þ

where M is the threshold of the gross error detection model;
u is the number of epochs of the frequency data; and Δt is
the sampling interval of the phase data. m is the median of
the frequency data. When the kth epoch value in the fre-

quency data satisfies jbkuj > ðm + r ∗MÞ, it is the gross error
(r = 3 in this model).

In order to verify the effectiveness of the above method,
we select the precise clock offset product of the C36 satellite
on October 15, 2020, as a representative to show the effect
after data preprocessing. Both the raw data and the proc-
essed data are shown in Figure 5.

In Figure 5, the gross error is obviously eliminated
through the combined gross error detection method.

The following data used in experiments are all prepro-
cessed, and the selected data is continuous with nonjumping
in the period of the day. Unless otherwise specified, we
regard the 30-second sampling interval precision clock offset
product provided by IGS as the most accurate value of the
clock offset.

LP, QP, GM (1,1), and ARIMA models are also used as
comparisons to QPLSTM in following experiments. The
root mean squared error (RMS) and mean absolute error
(MAE) are used to evaluate the performance of prediction
model calculated through the prediction result of each
model and the real data which is selected as training data.
The mathematical expressions are

RMS =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
〠
n

i=1

Yprei‐Yrealið Þ2

s
,

MAE =
1

n
〠
n

i=1

Yprei‐Yrealið Þj j,

ð25Þ

where Yprei represents the ith output data of the prediction
method. Yreali represents the target testing data.

4.2. Experiment One. We selected the ultrarapid clock offset
product with a sampling interval of 15min provided by the
Wuhan University GNSS monitoring station updated at
03:00 on October 15, 2020, for the experiment and used 12
hours of ultrarapid observation data as a priori data to train
the LSTM model, then predict the subsequent 6 hours of
clock offset data, and compare it with IGU-P product.

As the current ultrarapid clock offset products only have
BDS-2 satellites, we give the 6 h prediction residual curve of

Raw clock series

Preprocessing

QPM

1 2 3 … N

Training samples

Testing samples

Input Output

1 2 … 2 3 … n
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Input Output
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Build the improved
model prediction 

n-1

Figure 4: Algorithm flow chat of QPLSTM.
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QPLSTM and IGU-P as the following for each type of con-
dition, which is calculated by prediction result and observa-
tion value. Experiments were conducted on all satellites that
can obtain in the ultrarapid clock offset products during the
day, and they are divided into three categories, namely,
BDS2-MEO-Rb, BDS2-GEO-Rb, and BDS2-IGSO-Rb.

The simulation result is shown in Figures 6–8. Different
colored curves represent satellites of different PRN numbers.
The curve marked with stars represents the IGU-P product
prediction errors. The curve marked with a plus sign repre-
sents the QPLSTM prediction errors. It can be seen that the
clock offset value predicted by QPLSTM is closer to the
actual clock offset observation value than the IGU-P prod-
uct. When the external complex environment has a small
impact on the clock offset, the QPLSTM method will only

slightly improve compared to the IGU-P method, such as
PRN16 and PRN14.

4.3. Experiment Two. In order to further highlight the supe-
riority of the QPLSTM method, the precise clock offset
products provided by IGS on October 15, 2020, is used to
conduct experiments and uses the data from the first 5 hours
(600 epochs, 0:00~5:00) of the day to predict the clock offset
in the next 30 minutes and 60 minutes. And compare
QPLSTM with the other four traditional methods. The real
precise data is selected as the testing data to verify the accu-
racy of the output in each prediction model. We select
(C12), (C01, C03), (C08, C09, and C16), (C19, C20, C37,
and C45), (C27, C28, C34, and C42), and (C40) satellites
as representations of BDS clock in different scenarios.
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Figure 5: The combined gross error detection method. (a) The black line represents the phase data of the original clock offset, and the red
line represents the frequency data of the original clock offset. (b) The black and red lines represent the phase and frequency data after
correction by the gross error detection method, respectively.
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Figure 9 represents the prediction accuracy of the clock off-
set for the selected 15 BDS satellites of the five models for
two durations. It can be seen that each of LP, QP, GM
(1,1), and ARIMA model cannot make the RMS lower than
0.3 ns in 1 h forecasting for every type of satellites.

As Figure 9 shows, the prediction accuracy for the
QPLSTM model is better than that of the other four models
in the two prediction durations for the 15 satellites. In par-

ticular, for C01, QPLSTM exhibits high prediction accuracy
in both two durations.

Tables 3 and 4 calculate the average prediction RMS
and MAE of each category of satellite on October 15
using the first 5-hour (600 epochs, 0:00~5:00) data to
forecast the next 30min and 1h. In the table, “All” rep-
resents the average prediction accuracy of all satellites
observed.
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Figure 6: Prediction residuals for IGU-P and QPLSTM for BDS2-MEO-Rb.
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Figure 7: Prediction residuals for IGU-P and QPLSTM for BDS2-GEO-Rb.
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In Tables 5 and 6, the averaged prediction RMS and
MAE are calculated during every hour on October 15, and
five-hour previous data are used for training and testing
the next 30min and 60min prediction result (e.g., data in
19:00~24:00 on October 14 is used for training. Data in
0:00~1:00 on October 15 is used for testing). Every single
hour is selected to test and take the average in 24 h for differ-
ent category clocks. “All” represents the average prediction
accuracy for 24 single hour of all satellites observed.

As can be seen from Tables 3 and 4, the QPLSTM model
is ahead of the other four models in terms of prediction
accuracy for each category of satellite. Compared with the
other 4 methods, QPLSTM has approximately achieved
82.7, 70.9, 83.5, and 81.9% and 75.1, 61.3, 76.4, and 77.5%
improvement in the prediction RMS of 30min and 60min
and 84.3, 72.8, 83.7, and 77.9% and 77.9, 69.5, 79.5, and
78.4% improvement in the prediction MAE of 30min and
60min. Tables 3 and 4 also show that the prediction accu-
racy of the five methods decreases as the forecast time
increases, but for QPLSTM, the prediction accuracy of each
category of satellite is stabilized within 0.1 ns. There are two
reasons for this kind of phenomenon. First, LSTM makes
full use of the prior data at the same period of time and per-
forms well in correcting the QP model. Especially for BDS3-
MEO-Rb, QPLSTM has a more significant improvement
compared to the other four models, which is improved
(84.3, 70.3, 83.6, and 82.5% and 77.0, 63.9, 76.3, and 85.2%
in RMS; 89.2, 77.9, 88.5, and 84.1% and 80.9, 80.4, 80.3,
and 86.4% in MAE), indicating that QPLSTM can better
model the BDS3-MEO-Rb clock offset compared to the
other categories of satellites. Second, the GA is used to opti-
mize the number of hidden layer units of LSTM, which
increases the applicability of LSTM. Compared with the

other four models, the forecasting capabilities of various sat-
ellites have been significantly improved.

In Tables 5 and 6, we can see that QPLSTM is stable for
any hour of the day. Compared with the other four models,
the average prediction accuracy of 30min and 60min fore-
casts is improved by 79.6, 69.2, 80.4, and 77.1% and 68.3,
52.7, 66.5, and 69.8% in RMS and 83.1, 73.0, 83.8, and
75.6% and 73.8, 58.8, 74.5, and 74.6% in MAE. It shows that
the forecasting ability of the QPLSTM method is not acci-
dental. The performance of QPLSTM can actually achieve
a high precise short-term prediction than the other four
models in each category of BDS satellite clock.

4.4. Experiment Three. In order to further explore the versa-
tility and flexibility of the proposed method, the precise
clock offset data provided by IGS on November 9, 2020, is
used for this part of experiments, taking the data of the first
5 hours and the first 10 hours of the day to predict the clock
offset in the same next 1 hour (120 epochs, 10:00~11:00).
And compare QPLSTM method with the other four tradi-
tional methods. Figure 10 represents the prediction accuracy
of the satellite clock offset for the selected 15 BDS satellites of
the five models. It can be seen that the data of different days
has a significant impact on the accuracy of the clock offset
prediction for the LP, QP, GM (1,1), and ARIMA models
and the accuracy of most satellites is less than 0.3 ns. But
for the QPLSTM model, it performs stalely and better than
the other four models.

It can be seen from Figure 10 that the modeling effect
of the QPLSTM model is better than the other four
models even the scale of prior data used for training dif-
fers. For the C34 satellite, it can be clearly seen that with
the increase of prior data, the prediction accuracy of the
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Figure 8: Prediction residuals for IGU-P and QPLSTM for BDS2-IGSO-Rb.
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four models is significantly reduced, but the prediction
accuracy of the QPLSTM model is improved. For the
C27 and C19 satellite, the prediction accuracy of LP and
GM (1,1) models is improved with the increase of prior
data. For the C16 satellite, the prediction performance of
the five models has decreased even with the increase of
prior data.

In order to show prediction accuracy of the five models
and the influence of the increased prior data more accu-
rately, Tables 7 and 8 list the average prediction RMS and
MAE for each category satellites using 5 h or 10 h prior data
to forecast the same one hour. Every one hour of the day on
November 9, 2020, is included to test and then calculate the
averaged RMS (e.g., data in 19:00~24:00 and data in
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Figure 9: Prediction precisions of the five models for 30min and 60min forecasting for each BDS satellite.

Table 3: 30min and 60min average prediction RMS for six different clock categories based on the five models for 1 h.

Clock type
5 h training predict 30min (ns) 5 h training predict 60min (ns)

LP QP GM (1,1) ARIMA QPLSTM LP QP GM (1,1) ARIMA QPLSTM

BDS2-MEO-Rb 0.242 0.075 0.243 0.251 0.025 0.360 0.075 0.415 0.386 0.041

BDS2-GEO-Rb 0.433 0.109 0.367 0.179 0.042 0.443 0.194 0.382 0.276 0.065

BDS2-IGSO-Rb 0.159 0.178 0.262 0.115 0.053 0.159 0.214 0.286 0.160 0.068

BD3-MEO-Rb 0.158 0.079 0.150 0.121 0.021 0.174 0.111 0.169 0.271 0.040

BD3-MEO-H 0.049 0.105 0.052 0.136 0.029 0.102 0.161 0.101 0.234 0.057

BD3-IGSO-H 0.190 0.071 0.194 0.055 0.023 0.243 0.092 0.246 0.087 0.054

All 0.186 0.110 0.194 0.178 0.032 0.225 0.145 0.238 0.249 0.056
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14:00~24:00 on November 8 are used for training. Data in
0:00~1:00 on November 9 is used for testing).

As can be seen from Tables 7 and 8, with the increase of
prior data, the average prediction accuracy of QPLSTM on
different clock categories of satellites improves, while the
prediction accuracy of the other four models does not show
the same trend.

For the category of BDS2-MEO-Rb, the prediction accu-
racy of the LP, GM (1,1) and ARIMA models performs sta-
bly and is not changed much. The prediction accuracy of the
QP model decreases significantly, while the QPLSTM is
improved significantly. For the categories of BDS2-GEO-
Rb and BDS2-IGSO-Rb, the prediction accuracy of LP and
GM (1,1) decreases significantly, while the performance of
the other three models is stable. For the category of BD3-
MEO-Rb, the prediction accuracy of LP and GM (1,1)
decreases significantly, while that of QP, ARIMA, and

QPLSTM improves. For the category of BD3-MEO-H, the
prediction accuracy of QP and ARIMA models decreases,
while the performance of LP and GM (1,1) is relatively sta-
ble, and the prediction accuracy of the QPLSTM model
improves. For the category of BD3-IGSO-H, the prediction
accuracy of LP, GM (1,1) and ARIMA models decreases,
while the accuracy of QP and QPLSTM improves.

Finally, the summarization about short-term clock offset
prediction performance of the five different models is made
as follows:

(1) For LP and QP models, noise is the main factor that
causes the prediction accuracy of the model to vary
with the prior data. In addition, the performance of
the LP model and the GM (1,1) model is basically
similar, and in some cases, they are better than the
QP model. At the same time, with the increase of

Table 4: 30min and 60min average prediction MAE for six different clock categories based on the five models for 1 h.

Clock type
5 h training predict 30min (ns) 5 h training predict 60min (ns)

LP QP GM (1,1) ARIMA QPLSTM LP QP GM (1,1) ARIMA QPLSTM

BDS2-MEO-Rb 0.225 0.065 0.235 0.211 0.021 0.332 0.062 0.391 0.340 0.034

BDS2-GEO-Rb 0.427 0.105 0.363 0.162 0.036 0.427 0.185 0.384 0.252 0.057

BDS2-IGSO-Rb 0.105 0.195 0.122 0.121 0.053 0.147 0.198 0.270 0.136 0.055

BD3-MEO-Rb 0.157 0.077 0.148 0.107 0.017 0.168 0.164 0.163 0.236 0.032

BD3-MEO-H 0.045 0.096 0.048 0.119 0.023 0.082 0.119 0.082 0.197 0.047

BD3-IGSO-H 0.189 0.066 0.191 0.051 0.019 0.235 0.083 0.238 0.077 0.044

All 0.179 0.103 0.172 0.127 0.028 0.204 0.148 0.220 0.209 0.045

Table 5: 30min and 60min average prediction RMSE for six different clock categories based on the five models for 24 h.

Clock type
5 h training predict 30min (ns) 5 h training predict 60min (ns)

LP QP GM (1,1) ARIMA QPLSTM LP QP GM (1,1) ARIMA QPLSTM

BDS2-MEO-Rb 0.278 0.097 0.269 0.229 0.030 0.346 0.116 0.371 0.363 0.055

BDS2-GEO-Rb 0.366 0.166 0.324 0.179 0.047 0.549 0.152 0.458 0.302 0.069

BDS2-IGSO-Rb 0.208 0.218 0.294 0.151 0.068 0.195 0.233 0.300 0.315 0.085

BD3-MEO-Rb 0.161 0.094 0.158 0.156 0.026 0.212 0.117 0.193 0.311 0.045

BD3-MEO-H 0.075 0.101 0.077 0.118 0.032 0.108 0.153 0.109 0.221 0.058

BD3-IGSO-H 0.201 0.119 0.203 0.048 0.040 0.261 0.125 0.264 0.077 0.067

All 0.192 0.127 0.199 0.171 0.039 0.249 0.167 0.236 0.262 0.079

Table 6: 30min and 60min average prediction MAE for six different clock categories based on the five models for 24 h.

Clock type
5 h training predict 30min (ns) 5 h training predict 60min (ns)

LP QP GM (1,1) ARIMA QPLSTM LP QP GM (1,1) ARIMA QPLSTM

BDS2-MEO-Rb 0.251 0.082 0.248 0.185 0.026 0.317 0.094 0.343 0.314 0.046

BDS2-GEO-Rb 0.361 0.162 0.319 0.164 0.042 0.534 0.142 0.468 0.271 0.061

BDS2-IGSO-Rb 0.198 0.203 0.283 0.123 0.057 0.205 0.204 0.270 0.268 0.070

BD3-MEO-Rb 0.138 0.075 0.133 0.125 0.018 0.170 0.148 0.163 0.238 0.031

BD3-MEO-H 0.073 0.088 0.076 0.119 0.028 0.132 0.114 0.128 0.205 0.045

BD3-IGSO-H 0.199 0.096 0.200 0.045 0.019 0.253 0.118 0.256 0.071 0.049

All 0.184 0.115 0.192 0.127 0.031 0.222 0.141 0.228 0.229 0.058
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prior data, the performance of both decreases in dif-
ferent degrees. And the prediction performance of
these two models is also greatly affected by the satel-
lite’s environment, which limits the wide application
of these two clock offset prediction models in BDS.
The prediction accuracy of the ARIMA model is

greatly affected by its AR and MA orders. If it is
put into practice, it is necessary to constantly search
for its optimal order while satellite changes or using
different input data and frequently changing the
model. Thus, in a range of certain order, it preforms
unevenly
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Figure 10: Prediction precisions for the five models by 5 h and 10 h modeling for each BDS satellite.

Table 7: 60min average prediction RMS for six different clock categories based on the five models using 5 h or 10 h prior data.

Clock type
5 h training predict 60min (ns) 10 h training predict 60min (ns)

LP QP GM (1,1) ARIMA QPLSTM LP QP GM (1,1) ARIMA QPLSTM

BDS2-MEO-Rb 0.259 0.197 0.261 0.465 0.094 0.234 0.328 0.285 0.540 0.053

BDS2-GEO-Rb 0.171 0.143 0.165 0.393 0.041 0.337 0.095 0.325 0.437 0.045

BDS2-IGSO-Rb 0.255 0.279 0.237 0.657 0.074 0.504 0.236 0.449 0.654 0.093

BD3-MEO-Rb 0.100 0.142 0.102 0.192 0.039 0.191 0.082 0.194 0.185 0.019

BD3-MEO-H 0.160 0.057 0.129 0.278 0.035 0.211 0.146 0.117 0.371 0.021

BD3-IGSO-H 0.152 0.177 0.156 0.119 0.058 0.601 0.099 0.609 0.291 0.045

All 0.174 0.156 0.163 0.349 0.052 0.319 0.154 0.291 0.398 0.042
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(2) Compared with the other four models, the QPLSTM
model is suitable for every category clock, and the
change of clock on-board environment will not have
a significant impact on its ability of prediction.
QPLSTM can further optimize its modeling accuracy
with the improvement of prior data, and its model-
ing accuracy can reach below 0.2 ns. Compared with
the clock offset prediction products provided by
IGU-P, QPLSTM is more effective. And LSTM is
introduced into the model as a correction item, mak-
ing its application scenarios more flexible

5. Conclusions

Aimed at improving the performance of the clock offset pre-
diction method for BDS, this paper proposes a high-
precision short-term clock offset prediction method, which
is based on LSTM considering the characteristics of
equipped atomic clock, named QPLSTM. In order to elimi-
nate the outliers in the clock offset data and improve the
LSTM modeling performance, the combined gross error
detection method is introduced to preprocess the original
data and the GA optimization method is used to optimize
the number of LSTM hidden layer units. Experiments have
shown that the QPLSTM method is better than the IGU-P
solution, whose prediction accuracy of 30min and 60min
is improved by approximately 79.6, 69.2, 80.4, and 77.1%
and 68.3, 52.7, 66.5, and 69.8% in RMS, compared with the
four conventional models. And QPLSTM is more versatile
and stable. In addition, this modeling method that combines
physical properties and neural networks can also provide
references for other fields.

Due to the limitation of the LSTM theory, although the
LSTM network itself has many variants and the ways of
applying, the amount of calculation will increase signifi-
cantly when increasing the prior data scale to pursue high
prediction performance. The gradient problem of RNN has
been solved to a certain extent by LSTM, which does not
mean that the gradient will not disappear or explode when
a much larger-scale time series is used as the input for net-
work training. What needs to be done next for using LSTM
construct a satellite clock offset prediction model is to find
the way that not only maintains a high-precision prediction
but also avoids the increased computational burden and the
gradient problem caused by deep learning structure.
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