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 Leak proof sensor design 

 

Abstract: 

 

We report on the design, fabrication and verification of a portable, low cost PID.  Unlike commercial 

PID sensors, ours provides two outputs. One output correlates to the total chemical components and a 

second that provides some level of compositional information. We believe that this makes this sensor 

system more useful than a standard commercial PID, at a similar cost point. Our PID sensor was tested 

with gas concentrations down to 2 ppm isobutylene. The results presented indicate that the limit of 

detection will be well below 1 ppm. Compositional analysis was also carried out and the results 
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presented shows our sensor can successfully discriminate between low concentrations of 2-hexanone, 

isobutylene, propanol, 2-pentanone, 2-octanone and 2-heptanone. 

 

Keywords:PID sensor, Photo ionization, VOC detector, Environmental monitoring 

 

1 Introduction 

There has been an increased need to detect and identify volatile organic compounds (VOCs) in a range 

of industries and environmental applications [1]. VOCs are ubiquitous, and their presence signify a 

range of physical or chemical processes that may be desired or harmful. The presence of some VOCs 

in air has been linked to a variety of serious health symptoms including allergic reactions, asthma, 

increased bronchial responsiveness [2,3]. Studies have reported a strong relationship between total 

exposure to VOCs and health problems, such as mucus membrane irritation and central nervous system 

damage [3]. The risk associated with hazardous VOCs has led to increased VOC monitoring by several 

governmental agencies including the United States Environmental Protection Agency (USEPA)[4]. In 

Europe, the European Parliament has introduced Air Quality Directive specifying mandatory 

monitoring of  VOCs and other harmful gasses in ambient air [5]. VOC detection has also been applied 

in monitoring of agricultural produce [6-9], environment [10], food and beverages [11-13], 

pharmaceuticals and  health [14-21]. Presence of VOCs such as those used in this paper from human 

waste have been investigated as biomarkers for lung cancer and IBD [22,23].   Consequently, there is a 

high demand for VOC detection instruments. 

Currently, instruments used for VOC monitoring include gas chromatography-mass spectrometer (GC-

MS), gas chromatography-ion mobility spectrometer (GC-IMS), photoionization detectors (PID), metal 

oxide sensors (MOX) and optical sensors to name a few.  GC-MS is often stated as the gold standard 

for VOC analysis because of its high sensitivity, accuracy, reproducibility and overall robustness. 

However, wide adoption of this technologies is limited by several factors including cost of purchase, 

complexity of operation and long analysis time. Its size and weight reduce their portability and restrict 

their use to mostly laboratory analysis. MOX and PID instruments are smaller in size, significantly 

A
CCEPTED

 M
A

N
U

SCRIP
T



3 
 

cheaper and more portable in comparison. Some commercial PIDs offer analysis times within a second 

[24]. MOX sensors are the cheapest but tend to suffer from cross sensitivity to inorganic gases and can 

drift over time with low accuracy outputs. PID sensors are still relatively low cost and are highly 

sensitive chemical sensors that are used extensively for the detection of a broad range of VOCs [25]. 

They can provide a linear output to a single chemical or mix of chemicals, in real-time, and have a 

sensitivity in the ppb (parts per billion) range [26,27]. Furthermore, as they are undertaking a physical 

measurement, they are less likely to drift over time. PIDs have also been used to detect effluent from 

gas chromatographs, liquid chromatographs and coupled with ion mobility spectrometers (IMS) and 

mass spectrometers [28]. Several PID sensors are commercially available from manufacturers including 

Alphasense and Mocon and cost under $500.  

Although these attributes make the PID a suitable sensor for many VOC analysis, PID sensors only 

provides a concentration value of the sample being tested, without any additional information of the 

chemical composition. In this paper, we report on a novel PID design that offers additional 

compositional information about the sample under test. 

 

1.1 Theory 

The operation of commercial PIDs can be divided into three steps: supply of analytes in gas phase, 

formation of photoions (by interaction between analytes and high energy photons emitted from a 

photodischarge source such as an ultraviolet (UV) lamp), and finally detection [28,29]. The ionisation 

reaction mechanism leading to the formation of photoions is given by Equation 1. ℎ𝑣 + 𝑀 →  𝑀∗                                                                      Eq. 1 

Photons (hv) from the photodischarge source are absorbed by a molecule of the analyte (M) leading to 

the formation of an excited molecule (M*). When hv is greater than the ionisation energy (IE) of the 

molecule, the molecule releases an electron leading to the formation of a cation as described in Equation 

2. 𝑀∗  →  𝑀+ +  𝑒−                                                                           Eq. 2 
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The cations are driven to an electrode and the resulting current is an indication of the quantity of M+ 

present hence providing information on the concentration of the analytes. 

Inherent in this process are two advantages of PIDs. One advantage is that some level of selectivity can 

be achieved due to the difference in hv and IE of the analytes. Depending on the choice of UV lamp 

used for ionisation, detection could be targeted at a mixture of compounds below the ionisation potential 

of the UV lamp. However, the system will still detect all molecules below the ionisation potential and 

so specificity is limited. This advantage enables analysis in air since the components of air have higher 

IE than most UV lamps. Frequently used UV lamps include argon, krypton and xenon lamps. Their 

ionisation energies in comparison to some VOCs are shown in Table 1 [28,29].  A second advantage in 

using PID sensors is their ability to function in ambient pressure requiring less auxiliary equipment to 

operate. This facilitates portability of PID sensors and makes them suitable for testing in a range of 

environments and has resulted in their increased use for in situ analysis. 

2 Materials and methods 

2.1 Overview 

In our work, we developed a full custom PID ‘like’ sensor. The sensor was designed with a single PCB 

at its core to simplify manufacture. The detection electrodes were housed on one side of the PCB and 

the electonics to process the signal on the other side. An ionisation chamber and fluidics are fitted over 

the detectors. The whole device weighs approximately 200g and measures 7 cm x 5 cm x 4 cm. During 

operation, the sample is introduced into the sensor through the inlet. The sample arrives the ionisation 

chamber where they are ionized by photons emitted from a 10.6 eV krypton UV lamp obtained from 

Alphasense Ltd, UK. An  illustration of our system is shown in Figure 1. The stream of ions reach the 

electric field region where a high electric field is applied perpendicular to direction of ion travel. This 

results in a deflection of ions with some ions reaching the detection electrode. A current signal is 

generated and measured at the current electrode and is related to the ion species reaching the electrode 

for a given electric field. 

 

A
CCEPTED

 M
A

N
U

SCRIP
T



5 
 

2.2 Sensor Design 

2.2.1 Ionisation Chamber  

The ionisation chamber (Figure 2a) was designed from a single block of aluminium and measures 46 x 

18 x 10 mm. Two 10-32 UNF thread was machined on opposite sides of the block’s length. Two 10-32 

UNF to 1/8 inch tubing fittings were screwed into the threads to serve as inlet and outlet for the sensor. 

A track path was machined across the under surface of the block to allow passage for the sample. A 6.1 

mm bore is machined above this path to suspend the UV lamp above the sample path. The sample path 

underneath the bore is constricted to ensure the whole sample is exposed to the high energy photons 

travelling in a perpendicular direction to the sample flow. The chamber extends to cover the electrode, 

guiding the stream of ions over the electrode surface to the outlet. To ensure real time analysis, the 

sample stream in our sensor is not pulsed, allowing a constant strream of samples through the sensor at 

any given time. An o-ring is inserted around the sample path and 12 M2 screws are used to compress 

the o-ring beween the PCB and the chamber. This design approach ensures a leak free sensor for testing 

hazardous VOCs.  

2.2.2 Electric field and electrodes 

The generated ions are propelled over an array of electrodes for detection. This array consists of 

electrodes supplying high electric field used to deflect the stream of ions towards other electrodes 

serving as detectors. Two of this array configuration was implemented in the design.  

In one array, the electric field was held constant and the output from this configuration is an indication 

of the total sample concentration (similar to commercial PID sensors). In the second array, the electric 

field could be varied between -10kV/m to +10kV/m. This output provides some composition 

information on the analytes. The arrays are separated by a grounded plate to ensure there is no 

interference between the electrode configurations. Additionally, each configuration sample path is 

pneumatically isolated, therefore, ions from one configuration cannot reach the detectors of the other 

configuration. 
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2.2.3 Ion detector electronics 

A two-stage amplification process was used to amplify ion current signal from both detection 

electrodes. In the first stage, an AD823AR operational amplifier (opamp) was implemented as a 

transimpedance amplifier converting the measured detector current (in picoamperes) into voltage. A 

schematic of this circuit is shown in Figure 2(b). 

 

The second stage utilizes the AD823 opamp as a differential amplifier. This stage amplifies the 

difference between the bias amplified voltage in the first stage.  Next the amplified signal is passed 

through a first order low pass filter to reduce noise before the signal is read by a 12-bit analogue to 

digital converter. The circuit is capable of detecting signals down to 1 pico-amperes. The sensor is 

controlled using an ATSAMD21G18 ARM Cortex M0 processor. This processor is connected 

wirelessly to a computer via Bluetooth LE protocol with the Nordic nRF51822 chipset.  

2.2.4 Software 

A Universal Windows Platform (UWP) app was designed in-house to drive the electronics, electric 

field, flowrate, and record the amplified signals from the detection electrodes for concentration and 

composition over time. The software user interface is shown in Figure 3. 

For each analysis, the software is designed to setup and control parameters such as time, electric field 

used to deflect streams of ion, and flowrate based on inputs entered by a user. At the start of an 

experiment, an instruction packet is sent to the ATSAMD21G18 ARM Cortex M0 processor requesting 

a byte stream of the instrument status. Next, another instruction is sent to specify the electric field and 

flowrate through the sensor before starting analysis and powering on the UV source. Since UV bulb life 

is limited, the software ensures the bulb is only powered during analysis to preserve its lifetime. Next 

the software creates a dispatcher to run the analysis task on a new thread in the host computer or tablet. 

This ensures accurate timing of the experiment since the process is not interrupted or delayed by other 

activities in the host computer or tablet. Timing is critical since sequence of inputs and results are 

required to be the same across sample test for accurate data processing. The software then requests a 

stream of sensor variables including output from both electrodes, flowrate, and electric field. With each 

packet of variables received, a signal processing using moving variable filter is applied to the electrode 
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outputs. The raw and filtered variables are streamed to a .csv file for future data analysis. The test 

process is synchronised to the host device processor clock to achieve accurate and repeatable timing. 

Using this timing, a high priority instruction is sent to the ATSAMD21G18 ARM Cortex M0 processor 

to change the electric field and/or flowrate as dictated by the user settings every 100ms.  

 

2.3 Results and discussion 

2.3.1 Chemical concentration information 

Performance of the PID sensors were characterised using isobutylene (ISB). This is a common test gas 

for characterising PIDs and is used extensively by industry. The standard test procedure involves 

supplying a known concentration of ISB gas into the sensor and measuring the current generated at the 

detection electrode. This output is related to the concentration of ISB gas. An ISB gas bottle was 

purchased (BOC, UK) at 100ppm concentration in air. It was diluted with zero air gas using an API 

Model T700 Dynamic Calibrator to generate low concentration ISB gas at 9mL/min. The diluted gas 

was supplied into the PID sensor and the current generated at the detector electrode was measured using 

our UWP app. To characterise the dynamic response time and repeatability of the sensor, 10 ppm ISB 

was supplied into the sensor inlet for 10s followed by a supply of zero air for 10s. This sequence was 

repeated 4 times. Figure 4(a) shows the amplified signal response. Once the system has stabilised in 

clean air, our sensor shows a fast response time of less than 2 seconds (defined as time to achieve 90% 

of final value). This response time can be adjusted in our software by increasing/reducing the cycle time 

and noise reducing algorithm effect but is ultimately limited by the characteristics of our test station. 

However, we observed better stability between pulses using 100ms cycling time. The result also shows 

repeatability of the sensor to a fixed concentration. The voltage output was similar across all four tests 

shown.  

One of the advantages of PID sensors is fast response to varying concentration. This property of the 

sensor was tested by delivering increasing concentrations of ISB gas into the sensor. ISB was delivered 

into the sensor with concentration increasing from 0ppm to 18ppm in steps of 2ppm. The sensor 
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concentration output shown in Figure 4(b) shows that the limit of detection is likely to be in the ppb 

region for ISB.  

 

2.3.2 Chemical composition information 

Our PID sensor provides a second output with information on the chemical composition of the analytes, 

a feature not available in commercial PID sensors. This feature was investigated by analysing various 

VOCs on our sensor and comparing the sensor response. During analysis, a supply of test VOC with 

fixed concentration was delivered to the sensor. The electric field, which results in a deflection of 

cations, was varied from -7kV/m to +7kV/m in steps of 500V/m. At zero electric field strength there is 

no deflection of the flow of ions and all of the ions contact the detector plate and giving the maximum 

response. Sweeping the electric field in the positive or negative direction results in reduced current (and 

thus signal) due to loss in charge when ions hit the walls of the chamber and thus do not reach the 

detection electrode. The deflection observed could be due to the interaction between the charge and/or 

weight of the ions in the stream and the intensity of the electric field. Between each step change in 

electric field, the gas supply was turned off and resumed after changing the electric field. Signal 

response due to the varying amount of ions reaching the compositional electrode is measured over the 

period of test. This analysis was repeated for 10 ppm isobutylene and 2-pentanone. To remove any bias 

associated with concentration, the compositional sensor response was normalised. This is shown in 

Figure 5. 

 

The results show significant difference in sensor output for ISB and 2-pentanone over the range of 

applied electric fields. An electric field of 1kV/m on the composition electrode results in a 0.67 V 

separation between the signal obtained for both compounds. This information can be used to train the 

sensor to target the identification of certain compounds. To achieve this, the electric field could be set 

to a value associated with a known response for the target compound. The response from the 

concentration electrode array could also be added providing increased dimensionality for statistical 

methods such as linear discriminate analysis. 
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In another test, 2 ppm of 2-hexanone was fed into the sensor at 7ml/min. In this test, the supply of 

analytes remained constant for the duration of the analysis. The electric field voltage was varied from -

3 kV/cm to 3 kV/cm in steps of 200 V/cm. This procedure was repeated for 10 ppm propanol. Testing 

compounds of different concentration was carried out to represent real life test scenarios where test 

compounds will not always have a similar concentration, but the instrument is expected to provide 

responses not biased towards concentration. A comparison of the normalised compositional signal 

response for both compounds sensor is shown in Figure 6.  

 

We observe 0.063 V separation in signal response when the electric field is set to 1000 V/cm, which 

was repeatable over 5 different experiments. This shows that by sweeping through a range of electric 

field, we can distinguish between VOCs. Although the compositional output at a fixed electric field is 

different, we believe the shape of the curve and area under the curve for the period of analysis provides 

more information for pattern recognition analysis. 

The repeatability of results obtained during analysis of a VOC and our sensors potential to distinguish 

between VOC compounds were further verified using 10 ppm 2-hexanone, 2-octanone, propanol and 

2-heptanone, in dry zero air. In this analysis, a fixed concentration of VOC was supplied in to the sensor 

inlet. The electric field was varied from -7 kV/m to +7 kV/m while the voltage response from the sensor 

was measured and recorded. After sweeping through the voltages, the supply of VOC was shut off. This 

procedure was repeated 20 times for 2-hexanone, 2-octanone and propanol. Principal Component 

Analysis (PCA) was utilized to reduce the dimensionality of the recorded data. The first and second 

principal component accounted for 96 % of data variance in the original dataset and a scaled plot of 

these components is shown in Figure 7. The results from our sensor shows discrimination between 

responses obtained for 2-hexanone, 2-octanone and propanol. 

Further tests were carried out using 10 ppm 2-heptanone and 2-octanone as test VOC samples. Fixed 

concentration of VOC was flowed into the sensor during the analysis. The electric field was varied from 

-7 kV/m to +7 kV/m. This procedure was repeated 20 times for both VOCs. The compositional 

responses measured during the tests were recorded and analysed using PCA. Figure 8 shows a scaled 

plot of the first and second principal components.  
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The first and second components accounted for 97.8 % variance in the original data set. As depicted in 

Figure 8, there is also clear discrimination between compositional information obtained for 2-heptanone 

and 2-octanone. 

These results demonstrate that our sensors can be used to detect low concentration VOCs. They also 

show that our sensor can distinguish between VOCs. In the current sensor design, the high voltage 

electric field required for VOC identification results in considerable interference and signal loss at lower 

concentration. Our future efforts will focus on improving the electric field generator to reduce 

interference and improve signal response when testing low concentration VOCs. Additionally, we will 

also investigate our sensor electric field potential to separate complex mixtures of VOCs during 

analysis. 

3 Conclusion 

In this paper, we report on the design of a novel PID sensor with added sample composition output that 

has been designed, manufactured and tested. The sensor provides two voltage outputs proportional to 

the concentration and composition of the test sample. Concentration tests were carried out with low 

concentration isobutylene and the concentration response was found to increase linearly with 

concentration. An increase in concentration in from 0 – 18 ppm resulted in an increase in output voltage 

of 2.3V, with an estimated sensitivity of below 1 ppm. The composition response shows a significant 

distinction between 2-pentanone and isobutylene when 1kV/m was applied in the chamber.  A 0.063 V 

difference was observed between 2-heptanone and propanol when 1000 V/cm electric field was applied. 

Our sensor compositional response also discriminated between 10 ppm 2-hexanone, 2-octanone and 

propanol when the electric field was varied from -7 kV/m to +7 kV/m. We also reported discrimination 

between 2-heptanone and 2-octanone over the same electric field range. The added composition 

information, leak proof feature and low cost makes this unit potentially provide more information at a 

lower price point when compared with existing commercial sensors. 

 

Funding Sources: This research did not receive any specific grant from funding agencies in the public, 

commercial, or not-for-profit sectors. 

A
CCEPTED

 M
A

N
U

SCRIP
T



11 
 

  

A
CCEPTED

 M
A

N
U

SCRIP
T



12 
 

References 

1. Ho, C.K.; Itamura, M.T.; Kelley, M.; Hughes, R.C. Review of chemical sensors for in-

situ monitoring of volatile contaminants. Sandia Report SAND2001-0643, Sandia 

National Laboratories 2001, 1-27. 

2. Rumchev, K.; Spickett, J.; Bulsara, M.; Phillips, M.; Stick, S. Association of domestic 

exposure to volatile organic compounds with asthma in young children. Thorax 2004, 

59, 746. 

3. de Gennaro, G.; Farella, G.; Marzocca, A.; Mazzone, A.; Tutino, M. Indoor and outdoor 

monitoring of volatile organic compounds in school buildings: Indicators based on 

health risk assessment to single out critical issues. International journal of environmental 

research and public health 2013, 10, 6273-6291. 

4. Indoor and outdoor monitoring of volatile organic compounds in school buildings: 

Indicators based on health risk assessment to single out critical issues. 

https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=65705&keyword=ca

rbon+AND+molecular+AND+sieve&actType=&TIMSType=+&TIMSSubTypeID=&DE

ID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=

&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&

dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndComplete

d=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=5

0&CFID=90494637&CFTOKEN=16950900 (10 January),  

5. Union, P. Directive 2008/50/ec of the european parliament and of the council of 21 may 

2008 on ambient air quality and cleaner air for europe. 2008. 

6. Evans, P.; Persaud, K.C.; McNeish, A.S.; Sneath, R.W.; Hobson, N.; Magan, N. 

Evaluation of a radial basis function neural network for the determination of wheat 

quality from electronic nose data. Sensors and Actuators B: Chemical 2000, 69, 348-358. 

7. Brezmes, J.; Llobet, E.; Vilanova, X.; Saiz, G.; Correig, X. Fruit ripeness monitoring 

using an electronic nose. Sensors and Actuators B: Chemical 2000, 69, 223-229. 

8. Capone, S.; Siciliano, P.; Quaranta, F.; Rella, R.; Epifani, M.; Vasanelli, L. Analysis of 

vapours and foods by means of an electronic nose based on a sol–gel metal oxide 

sensors array. Sensors and Actuators B: Chemical 2000, 69, 230-235. 

9. Sankaran, S.; Mishra, A.; Ehsani, R.; Davis, C. A review of advanced techniques for 

detecting plant diseases. Computers and Electronics in Agriculture 2010, 72, 1-13. 

10. Baby, R.E.; Cabezas, M.; Walsöe de Reca, E.N. Electronic nose: A useful tool for 

monitoring environmental contamination. Sensors and Actuators B: Chemical 2000, 69, 

214-218. 

11. Vautz, W.; Baumbach, J.I. Analysis of bio‐processes using ion mobility spectrometry. 

Engineering in Life Sciences 2008, 8, 19-25. 

12. Karpas, Z.; Tilman, B.; Gdalevsky, R.; Lorber, A. Determination of volatile biogenic 

amines in muscle food products by ion mobility spectrometry. Analytica Chimica Acta 

2002, 463, 155-163. 

13. Fernández-Maestre, R.; Hill, H.H. Ion mobility spectrometry for the rapid analysis of 

over-the-counter drugs and beverages. International Journal for Ion Mobility 

Spectrometry 2009, 12, 91-102. 

14. Xing Chen and Mingfu Cao and Yi Li and Weijun Hu and Ping Wang and Kejing Ying 

and Hongming, P. A study of an electronic nose for detection of lung cancer based on 

A
CCEPTED

 M
A

N
U

SCRIP
T

https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=65705&keyword=carbon+AND+molecular+AND+sieve&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50&CFID=90494637&CFTOKEN=16950900
https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=65705&keyword=carbon+AND+molecular+AND+sieve&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50&CFID=90494637&CFTOKEN=16950900
https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=65705&keyword=carbon+AND+molecular+AND+sieve&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50&CFID=90494637&CFTOKEN=16950900
https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=65705&keyword=carbon+AND+molecular+AND+sieve&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50&CFID=90494637&CFTOKEN=16950900
https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=65705&keyword=carbon+AND+molecular+AND+sieve&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50&CFID=90494637&CFTOKEN=16950900
https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=65705&keyword=carbon+AND+molecular+AND+sieve&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50&CFID=90494637&CFTOKEN=16950900
https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=65705&keyword=carbon+AND+molecular+AND+sieve&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50&CFID=90494637&CFTOKEN=16950900


13 
 

a virtual saw gas sensors array and imaging recognition method. Measurement Science 

and Technology 2005, 16, 1535. 

15. Nuria Queralto and Anders, N.B.a.B.G.a.R.M.a.P.R.a.S.H.L. Detecting cancer by breath 

volatile organic compound analysis: A review of array-based sensors. Journal of Breath 

Research 2014, 8, 027112. 

16. Peng, G.; Tisch, U.; Adams, O.; Hakim, M.; Shehada, N.; Broza, Y.; Billan, S.; Abdah-

Bortnyak, R.; Kuten, A.; Haick, H. Diagnosing lung cancer in exhaled breath using gold 

nanoparticles. Nat Nanotechnol 2009, 4, 669 - 673. 

17. Peng, G.; Hakim, M.; Broza, Y.Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Tisch, U.; 

Haick, H. Detection of lung, breast, colorectal, and prostate cancers from exhaled 

breath using a single array of nanosensors. British journal of cancer 2010, 103, 542-551. 

18. Verkouteren, J.R.; Staymates, J.L. Reliability of ion mobility spectrometry for 

qualitative analysis of complex, multicomponent illicit drug samples. Forensic Science 

International 2011, 206, 190-196. 

19. Di Francesco, F.; Fuoco, R.; Trivella, M.G.; Ceccarini, A. Breath analysis: Trends in 

techniques and clinical applications. Microchemical Journal 2005, 79, 405-410. 

20. Konvalina, G.; Haick, H. Sensors for breath testing: From nanomaterials to 

comprehensive disease detection. Accounts of Chemical Research 2014, 47, 66-76. 

21. Phillips, M.; Altorki, N.; Austin, J.; Cameron, R. Detection of lung cancer using 

weighted digital analysis of breath biomarkers. Clin Chim Acta 2008, 393, 76 - 84. 

22. Ahmed, I.; Greenwood, R.; Costello, B.; Ratcliffe, N.; Probert, C.S. Investigation of 

faecal volatile organic metabolites as novel diagnostic biomarkers in inflammatory 

bowel disease. Alimentary Pharmacology & Therapeutics 2016, 43, 596-611. 

23. Phillips, M.; Altorki, N.; Austin, J.H.M.; Cameron, R.B.; Cataneo, R.N.; Kloss, R.; 

Maxfield, R.A.; Munawar, M.I.; Pass, H.I.; Rashid, A., et al. Detection of lung cancer 

using weighted digital analysis of breath biomarkers. Clinica Chimica Acta 2008, 393, 

76-84. 

24. Hnu portable analyser technology & specifications. 

http://www.hnu.com/pdf/PortableAnalyzerTechnology_Specs514.pdf (28 May),  

25. Spinelle, L.; Gerboles, M.; Kok, G.; Persijn, S.; Sauerwald, T. Review of portable and 

low-cost sensors for the ambient air monitoring of benzene and other volatile organic 

compounds. Sensors (Basel, Switzerland) 2017, 17, 1520. 

26. Szulczyński, B.; Gębicki, J. Currently commercially available chemical sensors 
employed for detection of volatile organic compounds in outdoor and indoor air. 

Environments 2017, 4. 

27. Zhang, W.-q.; Li, H.; Zhang, Y.-j.; Bi, F.; Meng, L.-s.; Zhang, X.-m.; Mao, J.-y.; Cheng, 

N.-l.; Fang, B.; Yang, Y., et al. Fast determination of monocyclic aromatic hydrocarbons 

in ambient air using a portable gas chromatography–photoionization detector. 

Chromatographia 2017. 

28. Marchi, I.; Rudaz, S.; Veuthey, J.-L. Atmospheric pressure photoionization for 

coupling liquid-chromatography to mass spectrometry: A review. Talanta 2009, 78, 1-

18. 

29. Raffaelli, A.; Saba, A. Atmospheric pressure photoionization mass spectrometry. Mass 

Spectrometry Reviews 2003, 22, 318-331. 
 

  

A
CCEPTED

 M
A

N
U

SCRIP
T

http://www.hnu.com/pdf/PortableAnalyzerTechnology_Specs514.pdf


14 
 

Biographies 
 
Samuel O. Agbroko is a PhD student at the School of Engineering, University of Warwick. He received 
his bachelor’s degree in Mechanical Engineering from University of Benin, Nigeria in 2010 and his 
MSc in Mechanical Systems from the University of Warwick in 2013. His areas of interest include 
mechatronics, digital and analogue electronics, embedded systems, software development, and 
emerging gas sensor technologies.  His current research focuses on developing novel gas 
chromatography ion mobility spectrometry devices and software for biomedical applications. 
James A. Covington, received his BEng 1996 in Electronic Engineering at Warwick University and 
remained their receiving his PhD 2000. His PhD was on the development of CMOS and SOI CMOS 
gas sensors for room temperature and high temperature operation. He worked as a research fellow for 
both Warwick University and Cambridge University on the development of gas and chemical sensors. 
He was appointment as a lecturer in 2002 in the School of Engineering, University of Warwick, being 
promoted to Associate Professor in 2006 and is now a Professor in Electronic Engineering. He heads 
the BioMedical Sensors Laboratory, School of Engineering. He has authored or co-authored over 150 
technical papers and patents.  His current research interests focus on the development of micro-analysis 
systems, electronic noses and artificial olfaction, employing a range of novel sensing materials, device 
structures and micro-fabrication methods for applications with the environmental and medical 
application domains. 
 
  

A
CCEPTED

 M
A

N
U

SCRIP
T



15 
 

Figures 
 

 Figure 1. System illustration depicting the ionization, electric field 

 and detection regions within the sensor. 
 
 
 

 

Figure 2. (a) Bottom view of the sensor showing the ionization chamber, UV lamp, inlet and outlet; (b) 

Schematic representation of our sensor amplification electronics. 

 

Ionized	region
Electric	field	

deflection
Detection

Printed	

circuit	board

Electric	field	

generator

Detector	

electrode	

Ion	stream	

lines

Electric	field

Ion	Species

Inlet Outlet

UV	lamp

A
CCEPTED

 M
A

N
U

SCRIP
T



16 
 

 

Figure 3. The PID control software developed using Visual Studio 2017. 

 

 

Figure 4. (a) Dynamic concentration response for isobutylene;  
(b) Dynamic response for 0-18ppm isobutylene at 10 seconds intervals. 
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Figure 5. Comparison of normalised chemical compositional signal response for (a) 10 ppm isobutylene; (b) 2-

pentanone. 
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Figure 6. Comparison of chemical compositional signal response for 2-hexanone and propanol 

 
Figure 7.  Scaled PCA plot of our sensor response for 2-hexanone, 2-octanone and propanol 
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Figure 8. Scaled PCA plot of our sensor response for 2-heptanone and 2-octanone 
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Table 1 Ionisation energy of common VOCs and UV lamps 

UV lamp Compound IE 

  Oxygen 12.07 

  Acetonitrile 12.2 

  Nitrogen 15.58 

  Water 12.62 

Ar: 11.7     

  Acetic acid 10.65 

  Methanol 10.84 

  Chloroform 11.37 

Kr: 10.6     

  Isopropanol 10.17 

  Ammonia 10.07 

  Hexane 10.13 

  Heptane 9.93 

  Acetone 9.7 

  Toluene 8.83 

  Propanol 10.02 

  Ethanol 10.48 

  Isobutylene 9.22 

  2-pentanone 9.381 

  2-hexanone 9.35 

Xe: 8.4     

  Benzyl radical 7.2 

  Acridine 7.8 

  Anisole 8.2 

  Naphthalene 8.14 
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