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Abstract

We study the basic problem of robust subspace recovery. That is, we assume a data set that
some of its points are sampled around a fixed subspace and the rest of them are spread in the
whole ambient space, and we aim to recover the fixed underlying subspace. We first estimate
“robust inverse sample covariance” by solving a convex minimization procedure; we then
recover the subspace by the bottom eigenvectors of this matrix (their number correspond to
the number of eigenvalues close to 0). We guarantee exact subspace recovery under some
conditions on the underlying data. Furthermore, we propose a fast iterative algorithm,
which linearly converges to the matrix minimizing the convex problem. We also quantify
the effect of noise and regularization and discuss many other practical and theoretical issues
for improving the subspace recovery in various settings. When replacing the sum of terms in
the convex energy function (that we minimize) with the sum of squares of terms, we obtain
that the new minimizer is a scaled version of the inverse sample covariance (when exists).
We thus interpret our minimizer and its subspace (spanned by its bottom eigenvectors) as
robust versions of the empirical inverse covariance and the PCA subspace respectively. We
compare our method with many other algorithms for robust PCA on synthetic and real
data sets and demonstrate state-of-the-art speed and accuracy.

Keywords: principal components analysis, robust statistics, M-estimator, iteratively
re-weighted least squares, convex relaxation

1. Introduction

The most useful paradigm in data analysis and machine learning is arguably the modeling of
data by a low-dimensional subspace. The well-known total least squares solves this modeling
problem by finding the subspace minimizing the sum of squared errors of data points. This is
practically done via principal components analysis (PCA) of the data matrix. Nevertheless,
this procedure is highly sensitive to outliers. Many heuristics have been proposed for robust
recovery of the underlying subspace. Recent progress in the rigorous study of sparsity and
low-rank of data has resulted in provable convex algorithms for this purpose. Here, we
propose a different rigorous and convex approach, which is a special M-estimator.
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c©2014 Zhang and Lerman.



Teng Zhang and Gilad Lerman

Robustness of statistical estimators has been carefully studied for several decades (Huber
and Ronchetti, 2009; Maronna et al., 2006). A classical example is the robustness of the
geometric median (Lopuhaä and Rousseeuw, 1991). For a data set X = {xi}Ni=1 ⊂ R

D, the
geometric median is the minimizer of the following function of y ∈ R

D:

N
∑

i=1

‖y − xi‖ , (1)

where ‖ · ‖ denotes the Euclidean norm. This is a typical example of an M-estimator, that
is, a minimizer of a function of the form

∑N
i=1 ρ(ri), where ri is a residual of the ith data

point, xi, from the parametrized object we want to estimate. Here, ri = ‖y−xi‖, ρ(x) = |x|
and we estimate y ∈ R

D, which is parametrized by its D coordinates.

There are several obstacles in developing robust and effective estimators for subspaces.
For simplicity, we discuss here estimators of linear subspaces and thus assume that the data
is centered at the origin.1 A main obstacle is due to the fact that the set of d-dimensional
linear subspaces in R

D, that is, the Grassmannian G(D, d), is not convex. Therefore, a
direct optimization on G(D, d) (or a union of G(D, d) over different d’s) will not be convex
(even not geodesically convex) and may result in several (or many) local minima. Another
problem is that extensions of simple robust estimators of vectors to subspaces (e.g., using
l1-type averages) can fail by a single far away outlier. For example, one may extend the
d-dimensional geometric median minimizing (1) to the minimizer over L ∈ G(D, d) of the
function

N
∑

i=1

‖xi −PLxi‖ ≡
N
∑

i=1

‖PL⊥xi‖ , (2)

where L⊥ is the orthogonal complement of L and PL and PL⊥ are the orthogonal projections
on L and L⊥ respectively (see, e.g., Ding et al., 2006; Lerman and Zhang, 2010). However,
a single outlier with arbitrarily large magnitude will enforce the minimizer of (2) to contain
it.

The first obstacle can be resolved by applying a convex relaxation of the minimization
of (2) so that subspaces are mapped into a convex set of matrices (the objective function
may be adapted respectively). Indeed, the subspace recovery proposed by Xu et al. (2010b)
can be interpreted in this way. Their objective function has one component which is similar
to (2), though translated to matrices. They avoid the second obstacle by introducing a
second component, which penalizes inliers of large magnitude (so that outliers of large
magnitude may not be easily identified as inliers). However, the combination of the two
components involves a parameter that needs to be carefully estimated.

Here, we suggest a different convex relaxation that does not introduce arbitrary param-
eters and its implementation is significantly faster. However, it introduces some restrictions
on the distributions of inliers and outliers. Some of these restrictions have analogs in other

1. This is a common assumption to reduce the complexity of the subspace recovery problem (Candès
et al., 2011; Xu et al., 2010b, 2012; McCoy and Tropp, 2011), where McCoy and Tropp (2011) suggest
centering by the geometric median. Nevertheless, our methods easily adapt to affine subspace fitting by
simultaneously estimating both the offset and the shifted linear component, but the justification is a bit
more complicated then.
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works (see, e.g., §2.2), while others are unique to this framework (see §2.3 and the non-
technical description of all of our restrictions in §1.2).

1.1 Previous Work

Many algorithms (or pure estimators) have been proposed for robust subspace estimation
or equivalently robust low rank approximation of matrices. Maronna (1976), Huber and
Ronchetti (2009, §8), Devlin et al. (1981), Davies (1987), Xu and Yuille (1995), Croux
and Haesbroeck (2000) and Maronna et al. (2006, §6) estimate a robust covariance matrix.
Some of these methods use M-estimators (Maronna et al., 2006, §6) and compute them via
iteratively re-weighted least squares (IRLS) algorithms, which linearly converge (Arslan,
2004). The convergence of algorithms based on other estimators or strategies is not as
satisfying. The objective functions of the MCD (Minimum Covariance Determinant) and
S-estimators converge (Maronna et al., 2006, §6), but no convergence rates are specified.
Moreover, there are no guarantees for the actual convergence to the global optimum of these
objective functions. There is no good algorithm for the MVE (Minimum Volume Ellipsoid)
or Stahel-Donoho estimators (Maronna et al., 2006, §6). Furthermore, convergence analysis
is problematic for the online algorithm of Xu and Yuille (1995).

Li and Chen (1985), Ammann (1993), Croux et al. (2007), Kwak (2008) and McCoy
and Tropp (2011, §2) find low-dimensional projections by “Projection Pursuit” (PP), now
commonly referred to as PP-PCA (the initial proposal is due to Huber, see, e.g., Huber and
Ronchetti, 2009, p. 204 of first edition). The PP-PCA procedure is based on the observa-
tion that PCA maximizes the projective variance and can be implemented incrementally
by computing the residual principal component or vector each time. Consequently, PP-
PCA replaces this variance by a more robust function in this incremental implementation.
Most PP-based methods are based on non-convex optimization and consequently lack sat-
isfying guarantees. In particular, Croux et al. (2007) do not analyze convergence of their
non-convex PP-PCA and Kwak (2008) only establishes convergence to a local maximum.
McCoy and Tropp (2011, §2) suggest a convex relaxation for PP-PCA. However, they do not
guarantee that the output of their algorithm coincides with the exact maximizer of their
energy (though they show that the energies of the two are sufficiently close). Ammann
(1993) applies a minimization on the sphere, which is clearly not convex. It iteratively tries
to locate vectors spanning the orthogonal complement of the underlying subspace, that is,
D−d vectors for a subspace in G(D, d). We remark that our method also suggests an opti-
mization revealing the orthogonal complement, but it requires a single convex optimization,
which is completely different from the method of Ammann (1993).

Torre and Black (2001, 2003), Brubaker (2009) and Xu et al. (2010a) remove possible
outliers, followed by estimation of the underlying subspace by PCA. These methods are
highly non-convex. Nevertheless, Xu et al. (2010a) provide a probabilistic analysis for their
near recovery of the underlying subspace.

The non-convex minimization of (2) as a robust alternative for principal component anal-
ysis was suggested earlier by various authors for hyperplane modeling (Osborne and Watson,
1985; Späth and Watson, 1987; Nyquist, 1988; Bargiela and Hartley, 1993), surface mod-
eling (Watson, 2001, 2002), subspace modeling (Ding et al., 2006) and multiple subspaces
modeling (Zhang et al., 2009). This minimization also appeared in a pure geometric-analytic
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context of general surface modeling without outliers (David and Semmes, 1991). Lerman
and Zhang (2010, 2011) have shown that this minimization can be robust to outliers under
some conditions on the sampling of the data.

Ke and Kanade (2003) tried to minimize (over all low-rank approximations) the element-
wise l1 norm of the difference of a given matrix and its low-rank approximation. Chan-
drasekaran et al. (2011) and Candès et al. (2011) have proposed to minimize a linear com-
bination of such an l1 norm and the nuclear norm of the low-rank approximation in order
to find the optimal low-rank estimator. Candès et al. (2011) considered the setting where
uniformly sampled elements of the low-rank matrix are corrupted, which does not apply
to our outlier model (where only some of the rows are totally corrupted). Chandrasekaran
et al. (2011) consider a general setting, though their underlying condition is too restric-
tive; weaker condition was suggested by Hsu et al. (2011), though it is still not sufficiently
general. Nevertheless, Chandrasekaran et al. (2011) and Candès et al. (2011) are ground-
breaking to the whole area, since they provide rigorous analysis of exact low-rank recovery
with unspecified rank.

Xu et al. (2010b) and McCoy and Tropp (2011) have suggested a strategy analogous to
Chandrasekaran et al. (2011) and Candès et al. (2011) to solve the outlier problem. They
divide the matrix X whose rows are the data points as follows: X = L+O, where L is low-
rank and O represents outliers (so that only some of its rows are non-zero). They minimize
‖L‖∗ + λ‖O‖(2,1), where ‖ · ‖∗ and ‖ · ‖(2,1) denote the nuclear norm and sum of l2 norms of
rows respectively and λ is a parameter that needs to be carefully chosen. We note that the
term ‖O‖(2,1) is analogous to (2). Xu et al. (2012) have established an impressive theory
showing that under some incoherency conditions, a bound on the fraction of outliers and
correct choice of the parameter λ, they can exactly recover the low-rank approximation.
Hsu et al. (2011) and Agarwal et al. (2012a) improved error bounds for this estimator as
well as for the ones of Chandrasekaran et al. (2011) and Candès et al. (2011).

In practice, the implementations by Chandrasekaran et al. (2011), Candès et al. (2011),
Xu et al. (2010b) and McCoy and Tropp (2011) use the iterative procedure described by
Lin et al. (2009). The difference between the objective functions of the minimizer and its
estimator obtained at the kth iteration is of order O(k−2) (Lin et al., 2009, Theorem 2.1).
On the other hand, for our algorithm the convergence rate is of order O(exp(−ck)) for some
constant c (i.e., it r-linearly converges). This rate is the order of the Frobenius norm of the
difference between the minimizer sought by our algorithm (formulated in (4) below) and its
estimator obtained at the kth iteration (it is also the order of the difference of the regularized
objective functions of these two matrices). Recently, Agarwal et al. (2012b) showed that
projected gradient descent algorithms for these estimators obtain linear convergence rates,
though with an additional statistical error.

Our numerical algorithm can be categorized as IRLS. Weiszfeld (1937) used a procedure
similar to ours to find the geometric median. Lawson (1961) later used it to solve uniform
approximation problems by the limits of weighted lp-norm solutions. This procedure was
generalized to various minimization problems, in particular, it is native to M-estimators
(Huber and Ronchetti, 2009; Maronna et al., 2006), and its linear convergence was proved
for special instances (see, e.g., Cline, 1972; Voss and Eckhardt, 1980; Chan and Mulet, 1999).
Recently, IRLS algorithms were also applied to sparse recovery and matrix completion
(Daubechies et al., 2010; Fornasier et al., 2011).
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1.2 This Work

We suggest another convex relaxation of the minimization of (2). We note that the original
minimization is over all subspaces L or equivalently all orthogonal projectors P ≡ PL⊥ . We
can identify P with a D ×D matrix satisfying P2 = P and PT = P (where ·T denotes the
transpose). Since the latter set is not convex, we relax it to include all symmetric matrices,
but avoid singularities by enforcing unit trace. That is, we minimize over the set:

H := {Q ∈ R
D×D : Q = QT , tr(Q) = 1} (3)

as follows

Q̂ = argmin
Q∈H

F (Q), whereF (Q) :=
N
∑

i=1

‖Qxi‖. (4)

For the noiseless case (i.e., inliers lie exactly on L∗), we estimate the subspace L∗ by

L̂ := ker(Q̂). (5)

If the intrinsic dimension d is known (or can be estimate from the data), we estimate
the subspace by the span of the bottom d eigenvectors of Q̂ (or equivalently, the top d
eigenvectors of −Q̂). This procedure is robust to sufficiently small levels of noise. We refer
to it as the Geometric Median Subspace (GMS) algorithm and summarize it in Algorithm 1.
We elaborate on this scheme throughout the paper,

Algorithm 1 The Geometric Median Subspace Algorithm

Input: X = {xi}Ni=1 ⊆ R
D: data, d: dimension of L∗, an algorithm for minimizing (4)

Output: L̂: a d-dimensional linear subspace in R
D.

Steps:
• {vi}di=1 = the bottom d eigenvectors of Q̂ (see (4))
• L̂ = Sp({vi}di=1)

We remark that Q̂ is semi-definite positive (we verify this later in Lemma 14). We can
thus restrict H to contain only semi-definite positive matrices and thus make it even closer
to a set of orthogonal projectors. Theoretically, it makes sense to require that the trace of
the matrices in H is D−d (since they are relaxed versions of projectors onto the orthogonal
complement of a d-dimensional subspace). However, scaling of the trace in (3) results in
scaling the minimizer of (4) by a constant, which does not effect the subspace recovery
procedure.

We note that (4) is an M-estimator with residuals ri = ‖Qxi‖, 1 ≤ i ≤ N , and ρ(x) = |x|.
Unlike (2), which can also be seen as a formal M-estimator, the estimator Q̂ is unique under
a weak condition that we will state later.

We are unaware of similar formulations for the problem of robust PCA. Nevertheless,
the Low-Rank Representation (LRR) framework of Liu et al. (2010, 2013) for modeling
data by multiple subspaces (and not a single subspace as in here) is formally similar. LRR
tries to assign to a data matrix X, which is viewed as a dictionary of N column vectors in
R
D, dictionary coefficients Z by minimizing λ‖Z‖∗+‖(X(I−Z))T ‖(2,1) over all Z ∈ R

N×N ,
where λ is a free parameter. Our formulation can be obtained by their formulation with

753



Teng Zhang and Gilad Lerman

λ = 0, Q = (I − Z)T and the additional constraint tr(Z) = D − 1 (which is equivalent
with the scaling tr(Q) = 1), where {xi}Ni=1 are the row vectors of X (and not the column
vectors that represent the original data points). In fact, our work provides some intuition
for LRR as robust recovery of the low rank row space of the data matrix and its use (via
Z) in partitioning the column space into multiple subspaces. We also remark that a trace 1
constraint is quite natural in convex relaxation problems and was applied, for example, in
the convex relaxation of sparse PCA (d’Aspremont et al., 2007), though the optimization
problem there is completely different.

Our formulation is rather simple and intuitive, but results in the following fundamental
contributions to robust recovery of subspaces:

1. We prove that our proposed minimization can achieve exact recovery under some
assumptions on the underlying data (which we clarify below) and without introducing
an additional parameter.

2. We propose a fast iterative algorithm for achieving this minimization and prove its
linear convergence.

3. We demonstrate the state-of-the-art accuracy and speed of our algorithm when com-
pared with other methods on both synthetic and real data sets.

4. We establish the robustness of our method to noise and to a common regularization
of IRLS algorithms.

5. We explain how to incorporate knowledge of the intrinsic dimension and also how to
estimate it empirically.

6. We show that when replacing the sum of norms in (4) by the sum of squares of
norms, then the modified minimizer Q̂ is a scaled version of the empirical inverse
covariance. The subspace spanned by the bottom d eigenvectors is clearly the d-
dimensional subspace obtained by PCA. The original minimizer of (4) can thus be
interpreted as a robust version of the inverse covariance matrix.

7. We show that previous and well-known M-estimators (Maronna, 1976; Huber and
Ronchetti, 2009; Maronna et al., 2006) do not solve the subspace recovery problem
under a common assumption.

1.3 Exact Recovery and Conditions for Exact Recovery by GMS

In order to study the robustness to outliers of our estimator for the underlying subspace,
we formulate the exact subspace recovery problem (see also Xu et al. 2012). This problem
assumes a fixed d-dimensional linear subspace L∗, inliers sampled from L∗ and outliers
sampled from its complement; it asks to recover L∗ as well as identify correctly inliers and
outliers.

In the case of point estimators, like the geometric median minimizing (1), robustness is
commonly measured by the breakdown point of the estimator (Huber and Ronchetti, 2009;
Maronna et al., 2006). Roughly speaking, the breakdown point measures the proportion of
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arbitrarily large observations (that is, the proportion of “outliers”) an estimator can handle
before giving an arbitrarily large result.

In the case of estimating subspaces, we cannot directly extend this definition, since the
set of subspaces, that is, the Grassmannian (or unions of it), is compact, so we cannot
talk about “an arbitrarily large result”, that is, a subspace with arbitrarily large distance
from all other subspaces. Furthermore, given an arbitrarily large data point, we can always
form a subspace containing it; that is, this point is not arbitrarily large with respect to
this subspace. Instead, we identify the outliers as the ones in the compliment of L∗ and we
are interested in the largest fraction of outliers (or smallest fraction of inliers per outliers)
allowing exact recovery of L∗. Whenever an estimator can exactly recover a subspace under
a given sampling scenario we view it as robust and measure its effectiveness by the largest
fraction of outliers it can tolerate. However, when an estimator cannot exactly recover
a subspace, one needs to bound from below the distance between the recovered subspace
and the underlying subspace of the model. Alternatively, one would need to point out at
interesting scenarios where exact recovery cannot even occur in the limit when the number
of points approaches infinity. We are unaware of other notions of robustness of subspace
estimation (but of robustness of covariance estimation, which does not apply here; see, for
example, §6.2.1 of Maronna et al. 2006).

In order to guarantee exact recovery of our estimator we basically require three kinds of
restrictions on the underlying data, which we explain here on a non-technical level (technical
discussion appears in §2). First of all, the inliers need to permeate through the whole
underlying subspace L∗, in particular, they cannot concentrate on a lower dimensional
subspace of L∗. Second of all, outliers need to permeate throughout the whole complement
of L∗. This assumption is rather restrictive and its violation is a failure mode of the
algorithm. We thus show that this failure mode does not occur when the knowledge of
d is used appropriately. We also suggest some practical methods to avoid this failure
mode when d is unknown (see §5.1). Third of all, the “magnitude’ of outliers needs to be
restricted. We may initially scale all points to the unit sphere in order to avoid extremely
large outliers. However, we still need to avoid outliers concentrating along lines, which may
have an equivalent effect of a single arbitrarily large outlier. Figure 1 (which appears later
in §2) demonstrates cases where these assumptions are not satisfied.

The failure mode discussed above occurs in particular when the number of outliers is
rather small and the dimension d is unknown. While we suggest some practical methods to
avoid it (see §5.1), we also note that there are many modern applications with high percent-
ages of outliers, where this failure mode may not occur. In particular, computer vision data
often contain high percentages of outliers (Stewart, 1999; Chin et al., 2012). However, such
data usually involve multiple geometric models, in particular, multiple underlying linear
subspaces. We believe that the robust subspace modeling is still relevant to these kinds
of data. First of all, robust single subspace strategies can be well-integrated into com-
mon schemes of modeling data by multiple subspaces. For example, the K-flats algorithm
is based on repetitive clustering and single subspace modeling per cluster (Tipping and
Bishop, 1999; Bradley and Mangasarian, 2000; Tseng, 2000; Ho et al., 2003; Zhang et al.,
2009, 2012) and the LBF and SLBF algorithms use local subspace modeling (Zhang et al.,
2010, 2012). Second of all, some of the important preprocessing tasks in computer vision
require single subspace modeling. For example, in face recognition, a preprocessing step
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requires efficient subspace modeling of images of the same face under different illuminating
conditions (Basri and Jacobs, 2003; Basri et al., 2011). There are also problems in computer
vision with more complicated geometric models and large percentage of corruption, where
our strategies can be carefully adapted. One important example is the synchronization
problem, which finds an important application in Cryo-EM. The goal of this problem is to
recover rotation matrices R1, . . ., RN ∈ S0(3) from noisy and mostly corrupted measure-
ments of R−1

i Rj for some values of 1 ≤ i, j ≤ N . Wang and Singer (2013) adapted ideas of
both this work and Lerman et al. (2012) to justify and implement a robust solution for the
synchronization problem.

1.4 Recent Subsequent Work

In the case where d is known, Lerman et al. (2012) followed this work and suggested a
tight convex relaxation of the minimization of (31) over all projectors PL⊥ of rank d. Their
optimizer, which they refer to as the REAPER (of the needle-in-haystack problem) minimize
the same function F (Q) (see (4)) over the set

H
′ = {Q ∈ R

D×D : Q = QT , tr(Q) = 1, ‖Q‖ ≤ 1

D − d
}.

They estimate the underlying subspace by the bottom d eigenvectors of the REAPER.
The new constraints in H

′ result in more elegant conditions for exact recovery and tighter
probabilistic theory (due to the tighter relaxation). Since d is known the failure mode of
GMS mentioned above is avoided. Their REAPER algorithm for computing the REAPER
is based on the IRLS procedure of this paper with additional constraints, which complicate
its analysis. The algorithmic and theoretical developments of Lerman et al. (2012) are based
on the ones here.

While the REAPER framework applies a tighter relaxation, the GMS framework still
has several advantages over the REAPER framework. First of all, in various practical situa-
tions the dimension of the data is unknown and thus REAPER is inapplicable. On the other
hand, GMS can be used for dimension estimation, as we demonstrate in §6.3. Second of all,
the GMS algorithm is faster than REAPER (the REAPER requires additional eigenvalue
decomposition of a D ×D matrix at each iteration of the IRLS algorithm). Furthermore,
we present here a complete theory for the linear convergence of the GMS algorithm, where
the convergence theory for the REAPER algorithm is currently incomplete. Third of all,
when the failure mode mentioned above is avoided, the empirical performances of REAPER
and GMS are usually comparable (while GMS is faster). At last, GMS and REAPER have
different objectives with different consequences. REAPER aims to find a projector onto the
underlying subspace. On the other hand, GMS aims to find a “generalized inverse covari-
ance” (see §3.3) and is formally similar to other M-estimators (see §3.1 and §3.2). Therefore,
the eigenvalues and eigenvectors of the GMS estimator (i.e., the “generalized inverse covari-
ance”) can be interpreted as robust eigenvalues and eigenvectors of the empirical covariance
(see §6.3 and §6.5).

1.5 Structure of This Paper

In §2 we establish exact and near subspace recovery via the GMS algorithm. We also
carefully explain the common obstacles for robust subspace recovery and the way they are
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handled by previous rigorous solutions (Candès et al., 2011; Chandrasekaran et al., 2011;
Xu et al., 2012) as well as our solution. Section 3 aims to interpret our M-estimator in two
different ways. First of all, it shows a formal similarity to a well-known class of M-estimators
(Maronna, 1976; Huber and Ronchetti, 2009; Maronna et al., 2006), though clarifies the
difference. Those estimators aims to robustly estimate the sample covariance. However, we
show there that unlike our M-estimator, they cannot solve the subspace recovery problem
(under a common assumption). Second of all, it shows that non-robust adaptation of our
M-estimator provides both direct estimation of the inverse covariance matrix as well as
convex minimization equivalent to the non-convex total least squares (this part requires
full rank data and thus a possible initial dimensionality reduction but without any loss of
information). We thus interpret (4) as a robust estimation of the inverse covariance. In §4 we
propose an IRLS algorithm for minimizing (4) and establish its linear convergence. Section
5 discusses practical versions of the GMS procedure that allow more general distributions
than the ones guaranteed by the theory. One of these versions, the Extended GMS (EGMS)
even provides robust alternative to principal components. In §6 we demonstrate the state-
of-the-art accuracy and speed of our algorithm when compared with other methods on both
synthetic and real data sets and also numerically clarify some earlier claims. Section 7
provides all details of the proofs and §8 concludes with brief discussion.

2. Exact and Near Subspace Recovery by GMS

We establish exact and near subspace recovery by the GMS algorithm. In §2.1 we formulate
the problems of exact and near subspace recovery. In §2.2 we describe common obstacles for
solving these problems and how they were handled in previous works; in §2.3 we formulate
some conditions that the data may satisfy; whereas in §2.4 we claim that these conditions
are sufficient to avoid the former obstacles, that is, they guarantee exact recovery (see
Theorem 1); We also propose weaker conditions for exact recovery and demonstrate their
near-tightness in §2.4.1. Section 2.5 describes a simple general condition for uniqueness of
GMS (beyond the setting of exact recovery). Section 2.6 establishes (with some specified
limitations) unique exact recovery with high probability under basic probabilistic models
(see Theorems 4 and 5); it also covers cases with asymmetric outliers. At last, §2.7 and §2.8
establish results for near recovery under noise and under regularization respectively.

2.1 Problem Formulation

Let us repeat the formulation of the exact subspace recovery problem, which we motivated
in §1.2 as a robust measure for the performance of our estimator. We assume a linear
subspace L∗ ∈ G(D, d) and a data set X = {xi}Ni=1, which contains inliers sampled from
L∗ and outliers sampled from R

D \ L∗. Given the data set X and no other information,
the objective of the exact subspace recovery problem is to exactly recover the underlying
subspace L∗.

In order to make the problem well-defined, one needs to assume some conditions on the
sampled data set, which may vary with the proposed solution. We emphasize that this is a
formal mathematical problem, which excludes some ambiguous scenarios and allows us to
determine admissible distributions of inliers and outliers.
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In the noisy case (where inliers do not lie on L∗, but perturbed by noise), we ask about
near subspace recovery, that is, recovery up to an error depending on the underlying noise
level. We argue below that in this case additional information on the model is needed. Here
we assume the knowledge of d, though under some assumptions we can estimate d from
the data (as we demonstrate later). We remark that exact asymptotic recovery under some
conditions on the noise distribution is way more complicated and is discussed in another
work (Coudron and Lerman, 2012).

2.2 Common Difficulties with Subspace Recovery

We introduce here three typical enemies of subspace recovery and exemplify them in Fig-
ure 1. We also explain how they are handled by the previous convex solutions for exact
recovery of subspaces as well as low-rank matrices (Chandrasekaran et al., 2011; Candès
et al., 2011; Xu et al., 2012).

A type 1 enemy occurs when the inliers are mainly sampled from a subspace L′ ⊂ L∗.
In this case, it seems impossible to recover L∗. We would expect a good algorithm to
recover L′ (instead of L∗) or a subspace containing it with slightly higher dimension (see
for example Figure 1(a)). Chandrasekaran et al. (2011), Candès et al. (2011) and Xu et al.
(2012) have addressed this issue by requiring incoherence conditions for the inliers. For
example, if m and N − m points are sampled from L′ and L∗ \ L′ respectively, then the
incoherency condition of Xu et al. (2012) requires that µ ≥ N/(dim(L∗) · (N −m)), where µ
is their incoherency parameter. That is, their theory holds only when the fraction of points
sampled from L∗ \ L′ is sufficiently large.

A type 2 enemy occurs when the outliers are mainly sampled from a subspace L̃ such
that dim(L̃ ⊕ L∗) < D. In this case L∗ ⊕ L̃ can be mistakenly identified as the low-rank
subspace (see for example Figure 1(b)). This is a main issue when the intrinsic dimension
is unknown; if on the other hand the intrinsic dimension is known, then one can often
overcome this enemy. Candès et al. (2011) handle it by assuming that the distribution
of corrupted elements is uniform. Chandrasekaran et al. (2011) address it by restricting
their parameter µ (see their main condition, which is used in Theorem 2 of their work, and
their definition of µ in (1.2) of their work) and consequently limit the values of the mixture
parameter (denoted here by λ). On the other hand, Xu et al. (2012) use the true percentage
of outliers to infer the right choice of the mixture parameter λ. That is, they practically
invoke model selection (for estimating this percentage) in order to reject L̃⊕L∗ and choose
the true model, which is L∗.

A type 3 enemy occurs due to large magnitudes of outliers. For example, a single outlier
with arbitrarily large magnitude will be contained in the minimizer of (2), which will thus
be different than the underlying subspace (see for example Figure 1(c)). Also, many outliers
with not-so-small magnitudes that lie around a fixed line may have the effect of a single
large outlier (see for example Figure 1(d)). This enemy is avoided by Chandrasekaran et al.
(2011), Candès et al. (2011) and Xu et al. (2012) by the additional mixture component
of nuclear norm, which penalizes the magnitude (or combined magnitude) of the supposed
inliers (so that outliers of large magnitude may not be easily identified as inliers). It is
interesting to note that if the rank is used instead of the nuclear norm (as sometimes
advocated), then it will not resolve this issue.

758



A Novel M-Estimator for Robust PCA

−3 −2 −1 0 1 2 3

−5

0

5

−1.5

−1

−0.5

0

0.5

1

1.5

L
∗

(a) Example of a type 1 enemy: L∗ is a plane
represented by a rectangle, “inliers” (in L∗) are
colored blue and “outliers” (in R

3 \ L∗) red. Most
inliers lie on a line inside L∗. It seems unlikely to
distinguish between inliers, which are not on “the
main line”, and the outliers. It is thus likely to
recover the main line instead of L∗.
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(b) Example of a type 2 enemy: L∗ is a line rep-
resented by a black line segment, “inliers” (in L∗)
are colored blue and “outliers” (in R

3\L∗) red. All
outliers but one lie within a plane containing L∗,
which is represented by a dashed rectangle. There
seems to be stronger distinction between the points
on this plane and the isolated outlier than the orig-
inal inliers and outliers. Therefore, an exact recov-
ery algorithm may output this plane instead of L∗.
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(c) Example 1 of a type 3 enemy: The inliers (in
blue) lie on the line L∗ and there is a single outlier
(in red) with relatively large magnitude. An exact
recovery algorithm can output the line L̃ (deter-
mined by the outlier) instead of L∗. If the data
is normalized to the unit circle, then any reason-
able robust subspace recovery algorithm can still
recover L∗.
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(d) Example 2 of a type 3 enemy: Points are nor-
malized to lie on the unit circle, inliers (in blue)
lie around the line L∗ and outliers (in red) concen-
trate around another line, L̃. A subspace recovery
algorithm can output L̃ instead of L∗.

Figure 1: Enemies of the mathematical formulation of exact subspace recovery.

759



Teng Zhang and Gilad Lerman

Another issue for our mathematical problem of exact subspace recovery is whether the
subspace obtained by a proposed algorithm is unique. Many of the convex algorithms de-
pend on convex l1-type methods that may not be strictly convex. But it may still happen
that in the setting of pure inliers and outliers and under some conditions avoiding the three
types of enemies, the recovered subspace is unique (even though it may be obtained by
several non-unique minimizers). This is indeed the case in Chandrasekaran et al. (2011),
Candès et al. (2011), Xu et al. (2012) and our own work. Nevertheless, uniqueness of our
minimizer (and not the recovered subspace) is important for analyzing the numerical algo-
rithm approximating it and for perturbation analysis (e.g., when considering near recovery
with noisy data). It is also helpful for practically verifying the conditions we will propose
for exact recovery. Uniqueness of the minimizer (and not just the subspace) is also impor-
tant in Chandrasekaran et al. (2011) and Candès et al. (2011) and they thus established
conditions for it.

At last, we comment that subspace recovery with unknown intrinsic dimension may
require a model selection procedure (possibly implicitly). That is, even though one can
provide a theory for exact subspace recovery (under some conditions), which might be stable
to perturbations, in practice, some form of model selection will be necessary in noisy cases.
For example, the impressive theories by Chandrasekaran et al. (2011) and Xu et al. (2012)
require the estimation of the mixture parameter λ. Xu et al. (2012) propose such an estimate
for λ, which is based on knowledge of the data set (e.g., the distribution of corruptions and
the fraction of outliers). However, we noticed that in practice this proposal did not work
well (even for simple synthetic examples), partly due to the fact that the deduced conditions
are only sufficient, not necessary and there is much room left for improvement. The theory
by Candès et al. (2011) specified a choice for λ that is independent of the model parameters,
but it applies only for the special case of uniform corruption without noise; moreover, they
noticed that other values of λ could achieve better results.

2.3 Conditions for Handling the Three Enemies

We introduce additional assumptions on the data to address the three types of enemies. We
denote the sets of exact inliers and outliers by X1 and X0 respectively, that is, X1 = X ∩L∗

and X0 = X \ L∗. The following two conditions simultaneously address both type 1 and
type 3 enemies:

min
Q∈H,QP

L∗⊥=0

∑

x∈X1

‖Qx‖ >
√
2 min

v∈L∗⊥,‖v‖=1

∑

x∈X0

|vTx|, (6)

min
Q∈H,QP

L∗⊥=0

∑

x∈X1

‖Qx‖ >
√
2 max

v∈L∗,‖v‖=1

∑

x∈X0

|vTx|. (7)

A lower bound on the common LHS of both (6) and (7) is designed to avoid type
1 enemies. This common LHS is a weak version of the permeance statistics, which was
defined in (3.1) of Lerman et al. (2012) as follows:

P(L∗) := min
u∈L∗

‖u‖=1

∑

x∈X1

|uTx|.
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Similarly to the permeance statistics, it is zero if and only if all inliers are contained in a
proper subspace of L∗. Indeed, if all inliers lie in a subspace L′ ⊂ L∗, then this common
LHS is zero with the minimizer Q = PL′⊥∩L∗/ tr(PL′⊥∩L∗). Similarly, if it is zero, then
Qx = 0 for any x ∈ X1 and for some Q with kernel containing L∗⊥. This is only possible
when X1 is contained in a proper subspace of L∗. Similarly to the permeance statistics, if
the inliers nicely permeate through L∗, then this common LHS clearly obtain large values.

The upper bounds on the RHS’s of (6) and (7) address two complementing type 3
enemies. If X0 contains few data points of large magnitude, which are orthogonal to L∗,
then the RHS of (6) may be too large and (6) may not hold. If on the other hand X0

contains few data points with large magnitude and a small angle with L∗, then the RHS
of (7) will be large so that (7) may not hold. Conditions (6) and (7) thus complete each
other.

The RHS of condition (7) is similar to the linear structure statistics (for L∗), which was
defined in (3.3) of Lerman et al. (2012). The linear structure statistics uses an l2 average
of dot products instead of the l1 average used here and was applied in this context to R

D

(instead of L∗) in Lerman et al. (2012). Similarly to the linear structure statistics, the
RHS of (7) is large when outliers either have large magnitude or they lie close to a line
(so that their combined contribution is similar to an outlier with a very large magnitude as
exemplified in Figure 1(d)). The RHS of condition (7) is a very weak analog of the linear
structure statics of L∗⊥ since it uses a minimum instead of a maximum. There are some
significant outliers within L∗⊥ that will not be avoided by requiring (7). For example, if
the codimension of L∗ is larger than 1 and there is a single outlier with an arbitrary large
magnitude orthogonal to L∗, then the RHS of (7) is zero.

The next condition avoids type 2 enemies and also significant outliers within L∗⊥ (i.e.,
type 3 enemies) that were not avoided by condition (7). This condition requires that any
minimizer of the following oracle problem

Q̂0 := argmin
Q∈H,QPL∗=0

F (Q) (8)

satisfies
rank(Q̂0) = D − d. (9)

We note that the requirement QPL∗ = 0 is equivalent to the condition ker(Q) ⊇ L∗ and
therefore the rank of the minimizer is at most D − d. Enforcing the rank of the minimizer
to be exactly D−d restricts the distribution of the projection of X onto L∗⊥. In particular,
it avoids its concentration on lower dimensional subspaces and is thus suitable to avoid
type 2 enemies. Indeed, if all outliers are sampled from L̃ ⊂ L∗⊥, then any Q ∈ H with
ker(Q) ⊃ L̃+L∗ satisfies F (Q) = 0 and therefore it is a minimizer of the oracle problem (4),
but it contradicts (9).

We note that this condition also avoids some type 3 enemies, which were not handled by
conditions (6) and (7). For example, any D−d−1 outliers with large magnitude orthogonal
to L∗ will not be excluded by requiring (6) or (7), but will be avoided by (9).

This condition is restrictive though, especially in very high ambient dimensions. Indeed,
it does not hold when the number of outliers is smaller than D − d (since then the outliers
are sampled from some L̃ with dim(L̃⊕ L∗) < D). We thus explain in §5.2 and §5.2.1 how
to avoid this condition when knowing the dimension. We also suggest in §5.1 some practical
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solutions to overcome the corresponding restrictive lower bound on the number of outliers
when the dimension is unknown.

Example 1 We demonstrate the violation of the conditions above for the examples depicted
in Figure 1. The actual calculations rely on ideas explained in §2.4.1.

For the example in Figure 1(a), which represents a type 1 enemy, both conditions (6)
and (7) are violated. Indeed, the common LHS of (6) and (7) is 5.69, whereas the RHS
of (6) is 8.57 and the RHS of (7) is larger than 10.02 (this lower bound is obtained by
substituting v = [0, 1, 0] in the RHS of (7); note that v is a unit vector in L∗).

For the example in Figure 1(b), which represents a type 2 enemy, condition (9) is vio-
lated. Indeed, we obtained numerically a solution Q̂0 with rank(Q̂0) = 1 6= D − d = 2 (one
can actually prove in this case that Q̂0 is the projector onto the orthogonal complement of
the plane represented by the dashed rectangle).

For the example in Figure 1(c), which represents a type 3 enemy, both conditions (6)
and (7) are violated. Indeed, the common LHS of (6) and (7) is 1.56 and the RHS’s of
(6) and (7) are 5.66 and 4.24 respectively. However, if we normalize all points to lie on the
unit circle, then this enemy can be overcome. Indeed, for the normalized data, the common
LHS of (6) and (7) is 6 and the RHS’s of (6) and (7) are 1.13 and 0.85 respectively.

For the example in Figure 1(d), which also represents a type 3 enemy, both conditions
(6) and (7) are violated. Indeed, the LHS of (6) and (7) are 5.99 and the RHS’s of (6) and
(7) are 6.91 and 7.02 respectively.

2.4 Exact Recovery Under Combinatorial Conditions

We show that the minimizer of (4) solves the exact recovery problem under the above
combinatorial conditions.

Theorem 1 Assume that d,D ∈ N, d < D, X is a data set in R
D and L∗ ∈ G(D, d).

If conditions (6), (7) and (9) hold (w.r.t. X and L∗), then any minimizer of (4), Q̂,
recovers the subspace L∗ in the following way: ker(Q̂) = L∗. If only (6) and (7) hold, then
ker(Q̂) ⊇ L∗.

2.4.1 Weaker Alternatives of Conditions (6) and (7)

It is sufficient to guarantee exact recovery by requiring (9) and that for an arbitrarily chosen
solution of (8), Q̂0, the following two conditions are satisfied:

min
Q∈H,QP

L∗⊥=0

∑

x∈X1

‖Qx‖ >
√
2

∥

∥

∥

∥

∥

∥

∑

x∈X0

Q̂0xx
TPL∗⊥/‖Q̂0x‖

∥

∥

∥

∥

∥

∥

(10)

and

min
Q∈H,QP

L∗⊥=0

∑

x∈X1

‖Qx‖ >
√
2

∥

∥

∥

∥

∥

∥

∑

x∈X0

Q̂0xx
TPL∗/‖Q̂0x‖

∥

∥

∥

∥

∥

∥

. (11)

We note that condition (9) guarantees that Q̂0x 6= 0 for all x ∈ X0 and thus the RHS’s
of (10) and (11) are well-defined. We prove this statement in (7.3).
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We note that conditions (10) and (11) can be verified when X0, X1 and L∗ are known
(unlike (6) and (7)), where Q̂0 can be found by Algorithm 2. Furthermore, (10) and (11) are
weaker than (6) and (7), though they are more technically involved and harder to motivate.

In order to demonstrate the near-tightness of (10) and (11), we formulate the following
necessary conditions for the recovery of L∗ as ker(Q̂) (see the idea of their justification at
the end of §7.3): For an arbitrarily chosen solution of (8), Q̂0:

min
Q∈H,QP

L∗⊥=0

∑

x∈X1

‖Qx‖ ≥ ‖
∑

x∈X1

Q̂0xx
TPL∗⊥/‖Q̂0x‖‖ (12)

and
∑

x∈X1

‖Q(P̃L∗x)‖ ≥
∑

x∈X0

〈

Q, P̃T
L∗⊥Q̂0xx

T P̃L∗/‖Q̂0x‖
〉

F
for any Q ∈ R

(D−d)×d, (13)

where for matrices A, B ∈ R
k×l: 〈A,B〉F = tr(ABT ) is the Frobenius dot product. Indeed,

conditions (12) and (13) are close to conditions (10) and (11). In particular, (12) and (10)
are only different by the constant factor

√
2, that is, (10) is practically tight.

2.5 Uniqueness of the Minimizer

We recall that Theorem 1 implies that if (6), (7) and (9) hold, then ker(Q̂) is unique.
Here we guarantee the uniqueness of Q̂ (which is required in §2.4.1, §2.7, §2.8 and §4.2)
independently of the exact subspace recovery problem.

Theorem 2 If the following condition holds:

{X ∩ L1} ∪ {X ∩ L2} 6= X for all (D − 1)-dimensional subspaces L1,L2 ⊂ R
D, (14)

then F (Q) is a strictly convex function on H.

2.6 Exact Recovery under Probabilistic Models

We show that our conditions for exact recovery (or the main two of them) and our condition
for uniqueness of the minimizer Q̂ hold with high probability under basic probabilistic mod-
els. Such a probabilistic theory is cleaner when the outliers are sampled from a spherically
symmetric distribution as we carefully demonstrate in §2.6.1 (with two different models).
The problem is that when the outliers are spherically symmetric then various non-robust
algorithms (such as PCA) can asymptotically approach exact recovery and nearly recover
the underlying subspace with sufficiently large sample. We thus also show in §2.6.2 how the
theory in §2.6.1 can be slightly modified to establish exact recovery of the GMS algorithm
in an asymmetric case, where PCA cannot even nearly recover the underlying subspace.

2.6.1 Cases with Spherically Symmetric Distributions of Outliers

First we assume a more general probabilistic model. We say that µ on R
D is an Outliers-

Inliers Mixture (OIM) measure (w.r.t. the fixed subspace L∗ ∈ G(D, d)) if µ = α0µ0+α1µ1,
where α0, α1 > 0, α0 + α1 = 1, µ1 is a sub-Gaussian probability measure and µ0 is a
sub-Gaussian probability measure on R

D (representing outliers) that can be decomposed to
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a product of two independent measures µ0 = µ0,L∗ × µ0,L∗⊥ such that the supports of µ0,L∗

and µ0,L∗⊥ are L∗ and L∗⊥ respectively, and µ0,L∗⊥ is spherically symmetric with respect to

rotations within L∗⊥.
To provide cleaner probabilistic estimates, we also invoke the needle-haystack model

of Lerman et al. (2012). It assumes that both µ0 and µ1 are the Gaussian distributions:
µ0 = N(0, σ2

0I/D) and µ1 = N(0, σ2
1PL∗PT

L∗/d) (the factors 1/D and 1/d normalize the
magnitude of outliers and inliers respectively so that their norms are comparable). While
Lerman et al. (2012) assume a fixed number of outliers and inliers independently sampled
from µ0 and µ1 respectively, here we independently sample from the mixture measure µ =
α0µ0 + α1µ1; we refer to µ as a needle-haystack mixture measure.

In order to prove exact recovery under any of these models, one needs to restrict the
fraction of inliers per outliers (or equivalently, the ratio α1/α0). We refer to this ratio as
SNR (signal to noise ratio) since we may view the inliers as the pure signal and the outliers
as some sort of “noise”. For the needle-haystack model we require the following SNR, which
is similar to the one of Lerman et al. (2012):

α1

α0
> 4

σ0
σ1

d
√

(D − d)D
. (15)

We later explain how to get rid of the term σ1/σ0. For the OIM model we assume the
following more general condition:

α1 min
Q∈H,QP

L∗⊥
=0

∫

‖Qx‖ dµ1(x) > 2
√
2

α0

D − d

∫

‖PL∗⊥x‖ dµ0(x). (16)

Under the needle-haystack model, this condition is a weaker version of (15). That is,

Lemma 3 If µ is a needle-haystack mixture measure, then (15) implies (16).

For i.i.d. samples from an OIM measure satisfying (16), we can establish our modified
conditions of unique exact recovery (i.e., (10), (11) and (9)) with overwhelming probability
in the following way (we also guarantee the uniqueness of the minimizer Q̂).

Theorem 4 If X is an i.i.d. sample from an OIM measure µ satisfying (16), then con-
ditions (10), (11), and (9) hold with probability 1 − C exp(−N/C), where C is a constant
depending on µ and its parameters. Moreover, (14) holds with probability 1 if there are at
least 2D − 1 outliers (i.e., the number of points in X \ L∗ is at least 2D − 1).

Under the needle-haystack model, the SNR established by Theorem 4 is comparable
to the best SNR among other convex exact recovery algorithms (this is later clarified in
Table 1). However, the probabilistic estimate under which this SNR holds is rather loose
and thus its underlying constant C is not specified. Indeed, the proof of Theorem 4 uses ǫ-
nets and union-bounds arguments, which are often not useful for deriving tight probabilistic
estimates (see, e.g., Mendelson 2003, page 18). One may thus view Theorem 4 as a near-
asymptotic statement.

The statement of Theorem 4 does not contradict our previous observation that the
number of outliers should be larger than at least D−d. Indeed, the constant C is sufficiently
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large so that the corresponding probability is negative when the number of outliers is smaller
than D − d.

In the next theorem we assume only a needle-haystack model and thus we can provide
a stronger probabilistic estimate based on the concentration of measure phenomenon (our
proof follows directly Lerman et al., 2012). However, the SNR is worse than the one in
Theorem 4 by a factor of order

√
D − d. This is because we are unable to estimate Q̂0

of (8) by concentration of measure. Similarly, in this theorem we do not estimate the
probability of (9) (which also involves Q̂0). Nevertheless, we observed in experiments that
(9) holds with high probability for N0 = 2(D − d) and the probability seems to go to 1 as
N0 = 2(D − d) and D − d → ∞. Moreover, one of the algorithms proposed below (EGMS)
does not require condition (9).

Theorem 5 If X is an i.i.d. sample of size N from a needle-haystack mixture measure µ
and if

α1

α0
>

σ0
σ1

√

2/π − 1/4− 1/10
√

2/π + 1/4 + 1/10

√

d2

D
(17)

and

N > 64 max(2d/α1, 2d/α0, 2(D − d)/α0), (18)

then (6) and (7) hold with probability 1− e−α2
1N/2 − 2e−α2

0N/2 − e−α1N/800 − e−α0N/800.

In Table 1 we present the theoretical asymptotic SNRs for exact recovery of some recent
algorithms. We assume the needle-haystack model with fixed d, D, α0, α1, σ0 and σ1 and
N → ∞. Let us clarify these results. We first remark that the pure SNR of the High-
dimensional Robust PCA (HR-PCA) algorithm of Xu et al. (2010a) approaches infinity
(see Remark 3 of Xu et al. 2010a). However, as we explained earlier the violation of exact
recovery does not necessarily imply non-robustness of the estimator as it may nearly recover
the subspace. Indeed, Xu et al. (2010a) show that if (for simplicity) σ0 = σ1 and the SNR
is greater than 1, then the subspace estimated by HR-PCA is a good approximation in
the following sense: there exists a constant c > 0 such that for the inliers set X0 and
the estimated subspace L:

∑

x∈X0
‖PLx‖22 > c

∑

x∈X0
‖x‖22 (see Remark 4 of Xu et al.

(2010a)). We thus use the notation: SNR(HR-PCA) “'” 1 (see Table 1 with appropriate
scales of σ0 and σ1). Xu et al. (2012) established the SNR for their Outlier Pursuit (OP)
algorithm (equivalently the Low-Leverage Decomposition (LLD) of McCoy and Tropp 2011)
in Theorem 1 of their work. Their analysis assumes a deterministic condition, but it is
possible to show that this condition is asymptotically valid under the needle-haystack model.
Lerman et al. (2012) established w.h.p. the SNR of the REAPER algorithm in Theorem 1
of their work (for simplicity of their expressions they assumed that d ≤ (D − 1)/2). Zhang
(2012) established the SNR for Tyler’s M-Estimator (TME) in Theorem 1 of his work.
His result is deterministic, but it is easy to show that the deterministic condition holds
with probability 1 under the needle-haystack model. Hardt and Moitra (2013) proposed
randomized and deterministic robust recovery algorithms, RF (or RandomizedFind) and
DRF (or DERandomizedFind) respectively, and proved that they obtained the same SNR
as in Zhang (2012) under a similar (slightly weaker) combinatorial condition (they only
guarantee polynomial time, where Zhang, 2012 specifies a complexity similar to that of
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HR-PCA LLD (OP) L̂ := ker(Q̂) REAPER (d ≤ (D − 1)/2) TME & D/RF
σ1α1
σ0α0

“'” 1 α1
α0

≥ 121d
9

α1
α0

> 4σ0
σ1

d√
(D−d)D

α1
α0

> σ0
σ1

(

C1
d
D − d

C2α1

)

α1
α0

> d
D−d

Table 1: Theoretical SNR (lowest bound on α1/α0) for exact recovery when N → ∞

GMS). We remark that both Zhang (2012) and Hardt and Moitra (2013) appeared after
the submission of this manuscript.

The asymptotic SNR of the minimization proposed in this paper is of the same order
as that of the REAPER algorithm (which was established for d ≤ (D − 1)/2) and both of
them are better than that of the HR-PCA algorithm. The asymptotic SNRs of OP, TME,
RF and DRF are independent of σ1 and σ0. However, by normalizing all data points to the
unit sphere, we may assume that σ1 = σ0 in all other algorithms and treat them equally
(see Lerman et al., 2012). In this case, the SNR of OP is significantly worse than that of
the minimization proposed in here, especially when d ≪ D (it is also worse than the weaker
SNR specified in (17)). When d ≪ D, the SNR of TME, RF and DRF is of the same order
as the asymptotic SNR of our formulation. However, when d is very close to D, the SNR of
our formulation is better than the SNR of TME by a factor of

√
D. We question whether

a better asymptotic rate than the one of GMS and REAPER can be obtained by a convex
algorithm for robust subspace recovery for the needle-haystack model. Hardt and Moitra
(2013) showed that it is small set expansion hard for any algorithm to obtain better SNR
than theirs for all scenarios satisfying their combinatorial condition.

We note though that there are non-convex methods for removing outliers with asymp-
totically zero SNRs. Such SNRs are valid only for the noiseless case and may be differently
formulated for detecting the hidden low-dimensional structure among uniform outliers. For
example, Arias-Castro et al. (2005) proved that the scan statistics may detect points sam-
pled uniformly from a d-dimensional graph in R

D of an m-differentiable function among
uniform outliers in a cube in R

D with SNR of order O(N−m(D−d)/(d+m(D−d))). Arias-Castro
et al. (2011) used higher order spectral clustering affinities to remove outliers and thus detect
differentiable surfaces (or certain unions of such surfaces) among uniform outliers with sim-
ilar SNR to that of the scan statistics. Soltanolkotabi and Candès (2012) removed outliers
with “large dictionary coefficients” and showed that this detection works well for outliers

uniform in SD−1, inliers uniform in SD−1 ∩ L∗ and SNR at least d
D · ((α1N−1

d )
cD
d
−1 − 1)−1

(where α1 is the fraction of inliers) as long as N < ec
√
D/D. For fixed D and d and suf-

ficiently large N , this SNR, which depends on N , can be arbitrarily small. Furthermore,
Lerman and Zhang (2010) showed that the global minimizer of (2) (that we relax in this
paper so that the minimization is convex) can in theory recover the subspace with asymptot-
ically zero SNR. They also showed that the underlying subspace is a local minimum of (2)
with SNR of order ω(1/

√
N). However, these non-convex procedures do not have efficient

or sufficiently fast implementations for subspace recovery. Furthermore, their impressive
theoretical estimates often break down in the presence of noise. Indeed, in the noisy case
their near-recovery is not better than the one stated for GMS in Theorem 6 (see, e.g., (16)
and (17) of Arias-Castro et al. (2011) or Theorem 1.2 of Lerman and Zhang (2010)). On
the other hand, in view of Coudron and Lerman (2012) we may obtain significantly better
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asymptotic SNR for GMS when the noise is symmetrically distributed with respect to the
underlying subspace.

2.6.2 A Special Case with Asymmetric Outliers

In the case of spherically symmetric outliers, PCA cannot exactly recover the underlying
subspace, but it can asymptotically recover it (see, e.g., Lerman and Zhang, 2010). In
particular, with sufficiently large sample with spherically symmetric outliers, PCA nearly
recovers the underlying subspace. We thus slightly modify the two models of §2.6.1 so that
the distribution of outliers is asymmetric and show that our combinatorial conditions for
exact recovery still hold (with overwhelming probability). On the other hand, the subspace
recovered by PCA, when sampling data from these models, is sufficiently far from the
underlying subspace for any given sample size.

We first generalize Theorem 5 under a generalized needle-haystack model: Let µ =
α0µ0 + α1µ1, µ0 = N(0,Σ0/D), where Σ0 is an arbitrary positive definite matrix (not
necessarily a scalar matrix as before), and as before µ1 = N(0, σ2

1PL∗PT
L∗/d). We claim

that Theorem 5 still holds in this case if we replace σ0 in the RHS of (17) with
√

λmax(Σ0),
where λmax(Σ0) denotes the largest eigenvalue of Σ0 (see justification in §7.6.1).

In order to generalize Theorem 4 for asymmetric outliers, we assume that the outlier
component µ0 of the OIM measure µ is a sub-Gaussian distribution with an arbitrary
positive definite covariance matrix Σ0. Following Coudron and Lerman (2012), we define
the expected version of F , FI , and its oracle minimizer, Q̂I , which is analogous to (8) (the
subscript I indicates integral):

FI(Q) =

∫

‖Qx‖ dµ(x) (19)

and
Q̂I = argmin

Q∈H,QPL∗=0

FI(Q). (20)

We assume that Q̂I is the unique minimizer in (20) (we remark that the two-subspaces
criterion in (25) for the projection of µ onto L∗⊥ implies this assumption). Under these
assumptions Theorem 4 still holds if we multiply the RHS of (16) by the ratio between
the largest eigenvalue of PL∗⊥Q̂IPL∗⊥ and the (D − d)th eigenvalue of PL∗⊥Q̂IPL∗⊥ (see
justification in §7.5.1).

2.7 Near Subspace Recovery for Noisy Samples

We show that in the case of sufficiently small additive noise (i.e., the inliers do not lie exactly
on the subspace L∗ but close to it), the GMS algorithm nearly recovers the underlying
subspace.

We use the following notation: ‖A‖F and ‖A‖ denote the Frobenius and spectral norms
of A ∈ R

k×l respectively. Furthermore, H1 denotes the set of all positive semidefinite
matrices in H, that is, H1 = {Q ∈ H : Q < 0}. We also define the following two constants

γ0 =
1

N
min

Q∈H1,‖∆‖F=1,tr(∆)=0

N
∑

i=1

‖∆xi‖2‖Qxi‖2 − (xT
i ∆Qxi)

2

‖Qxi‖3
, (21)
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and

γ′0 =
1

N
min

Q∈H1,‖∆‖=1,tr(∆)=0

N
∑

i=1

‖∆xi‖2‖Qxi‖2 − (xT
i ∆Qxi)

2

‖Qxi‖3
. (22)

The sum in the RHS’s of (21) and (22) is the following second directional derivative:
d2

dt2
F (Q + t∆); when Qxi = 0, its ith term can be set to 0. It is interesting to note

that both (21) and (22) express the Restricted Strong Convexity (RSC) parameter γl of
Agarwal et al. (2012b, Definition 1), where their notation translates into ours as follows:
Ln(Q) := F (Q)/N , τl := 0, Ω′ := H1 and θ− θ′ := ∆. The difference between γ0 and γ′0 of
(21) and (22) is due to the choice of either the Frobenius or the spectral norms respectively
for measuring the size of θ − θ′.

Using this notation, we formulate our noise perturbation result as follows.

Theorem 6 Assume that {ǫi}Ni=1 is a set of positive numbers, X = {xi}Ni=1 and X̃ =
{x̃i}Ni=1 are two data sets such that ‖x̃i − xi‖ ≤ ǫi ∀1 ≤ i ≤ N and X satisfies (14). Let
FX (Q) and FX̃ (Q) denote the corresponding versions of F (Q) w.r.t. the sets X and X̃ and

let Q̂ and Q̃ denote their respective minimizers. Then we have

‖Q̃− Q̂‖F <

√

√

√

√2

N
∑

i=1

ǫi/(Nγ0) and ‖Q̃− Q̂‖ <

√

√

√

√2

N
∑

i=1

ǫi/(Nγ′0). (23)

Moreover, if L̃ and L̂ are the subspaces spanned by the bottom d eigenvectors of Q̃ and Q̂

respectively and νD−d is the (D − d)th eigengap of Q̂, then

‖PL̂ −PL̃‖F ≤
2
√

2
∑N

i=1 ǫi/(Nγ0)

νD−d
and ‖PL̂ −PL̃‖ ≤

2
√

2
∑N

i=1 ǫi/(Nγ′0)

νD−d
. (24)

We note that if X and X̃ satisfy the conditions of Theorem 6, then given the perturbed
data set X̃ and the dimension d, Theorem 6 guarantees that GMS nearly recovers L∗. More
interestingly, the theorem also implies that we may properly estimate the dimension of
the underlying subspace in this case (we explain this in details in §7.7.1). Such dimension
estimation is demonstrated later in Figure 2.

Theorem 6 is a perturbation result in the spirit of the stability analysis by Candès et al.
(2006) and Xu et al. (2012, Theorem 2). In order to observe that the statement of Theorem 6
is comparable to that of Theorem 2 of Xu et al. (2012), we note that asymptotically the
bounds on the recovery errors in (23) and (24) depend only on the empirical mean of {ǫi}Ni=1

and do not grow with N . To clarify this point we formulate the following proposition.

Proposition 7 If X is i.i.d. sampled from a bounded distribution µ and

µ(L1) + µ(L2) < 1 for any two D − 1-dimensional subspaces L1 and L2, (25)

then there exist constants c0(µ) > 0 and c′0(µ) > 0 depending on µ such that

lim inf
N→∞

γ0(X ) ≥ c0(µ) and lim inf
N→∞

γ′0(X ) ≥ c′0(µ) almost surely. (26)
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If (25) is strengthened so that µ(L1) + µ(L2) is sufficiently smaller than 1, then it can be
noticed empirically that c0(µ) and c′0(µ) are sufficiently larger than zero.

Nevertheless, the stability theory of Candès et al. (2006), Xu et al. (2012) and this
section is not optimal. Stronger stability results require nontrivial analysis and we leave it
to a possible future work. We comment though on some of the deficiencies of our stability
theory and their possible improvements.

We first note that the bounds in Theorem 6 are generally not optimal. Indeed, if
ǫi = O(ǫ) for all 1 ≤ i ≤ N , then the error bounds in Theorem 6 are O(

√
ǫ), whereas we

empirically noticed that these error bounds are O(ǫ). In §7.7.2 we sketch a proof for this
empirical observation when ǫ is sufficiently small and rank(Q̂) = D.

The dependence of the error on D, which follows from the dependence of γ0 and γ′0 on
D, is a difficult problem and strongly depends on the underlying distribution of X and of
the noise. For example, in the very special case where the set X is sampled from a subspace
L0 ⊂ R

D of dimension D0 < D, and the noise distribution is such that X̃ also lies in L0,
then practically we are performing GMS over PL0(X ) and PL0(X̃ ), and the bound in (23)
would depend on D0 instead of D.

Coudron and Lerman (2012) suggested a stronger perturbation analysis and also re-
marked on the dependence of the error on D in a very special scenario.

2.8 Near Subspace Recovery for Regularized Minimization

For our practical algorithm it is advantageous to regularize the function F as follows (see
Theorems 11 and 12 below):

Fδ(Q) :=
N
∑

i=1,‖Qxi‖≥δ

‖Qxi‖+
N
∑

i=1,‖Qxi‖<δ

(‖Qxi‖2
2δ

+
δ

2

)

.

We remark that other convex algorithms (Candès et al., 2011; Xu et al., 2012; McCoy and
Tropp, 2011) also regularize their objective function by adding the term δ‖X − L −O‖2F .
However, their proofs are not formulated for this regularization.

In order to address the regularization in our case and conclude that the GMS algorithm
nearly recovers L∗ for the regularized objective function, we adopt a similar perturbation
procedure as in §2.7. We denote by Q̂δ and Q̂ the minimizers of Fδ(Q) and F (Q) in H

respectively. Furthermore, let L̂δ and L̂ denote the subspaces recovered by the bottom d
eigenvectors of Q̂δ and Q̂ respectively. Using the constants νD−d and γ0 of Theorem 6, the
difference between the two minimizers and subspaces can be controlled as follows.

Theorem 8 If X is a data set satisfying (14), then

‖Q̂δ − Q̂‖F <
√

δ/2γ0

and

‖PL̂δ
−PL̂‖F ≤ 2

√

δ/2γ0
νD−d

. (27)
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3. Understanding Our M Estimator: Interpretation and Formal

Similarities with Other M Estimators

We highlight the formal similarity of our M-estimator with a common M-estimator and
with Tyler’s M-estimator in §3.1 and §3.2 respectively. We also show that in view of the
standard assumptions on the algorithm for computing the common M-estimator, it may fail
in exactly recovering the underlying subspace (see §3.1.1). At last, in §3.3 we interpret our
M-estimator as a robust inverse covariance estimator.

3.1 Formal Similarity with the Common M-estimator for Robust Covariance

Estimation

A well-known robust M-estimator for the 0-centered covariance matrix (Maronna, 1976;
Huber and Ronchetti, 2009; Maronna et al., 2006) minimizes the following function over all
D ×D positive definite matrices (for some choices of a function ρ)

L(A) =
N
∑

i=1

ρ(xT
i A

−1xi)−
N

2
log(det(A−1)). (28)

The image of the estimated covariance is clearly an estimator to the underlying subspace
L∗.

If we set ρ(x) =
√
x and A−1 = Q2 then the objective function L(A) in (28) is

∑N
i=1 ‖Qxi‖ −N log(det(Q)). This energy function is formally similar to our energy func-

tion. Indeed, using Lagrangian formulation, the minimizer Q̂ in (4) is also the minimizer
of
∑N

i=1 ‖Qxi‖ − λ tr(Q) among all D × D symmetric matrices (or equivalently nonnega-
tive symmetric matrices) for some λ > 0 (the parameter λ only scales the minimizer and
does not effect the recovered subspace). Therefore, the two objective functions differ by
their second terms. In the common M-estimator (with ρ(x) =

√
x and A−1 = Q2) it is

log(det(Q)), or equivalently, tr(log(Q)), where in our M-estimator, it is tr(Q).

3.1.1 Problems with Exact Recovery by the Common M-estimator

The common M-estimator is designed for robust covariance estimation, however, we show
here that in general it cannot exactly recover the underlying subspace. To make this state-
ment more precise we recall the following uniqueness and existence conditions for the min-
imizer of (28), which were established by Kent and Tyler (1991): 1) u = 2ρ′ is positive,
continuous and non-increasing. 2) Condition M: u(x)x is strictly increasing. 3) Condition
D0: For any linear subspace L: |X ∩L|/N < 1−(D−dim(L))/ limx→∞ xu(x). The following
Theorem 9 shows that the uniqueness and existence conditions of the common M-estimator
are incompatible with exact recovery.

Theorem 9 Assume that d,D ∈ N, d < D, X is a data set in R
D and L∗ ∈ G(D, d) and

let Â be the minimizer of (28). If conditions M and D0 hold, then Im(Â) 6= L∗.

For symmetric outliers (as the ones of §2.6.1) the common M-estimator can still asymp-
totically achieve exact recovery (similarly to PCA). However, for many scenarios of asym-
metric outliers, in particular, the one of §2.6.2, the subspace recovered by the common
M-estimator is sufficiently far from the underlying subspace for any given sample size.
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We remark that Tyler’s M-estimator (Tyler, 1987) can still recover the subspace exactly.
This estimator uses ρ(x) = D log(x)/2 in (28) and adds an additional assumption tr(A) = 1.
Zhang (2012) recently showed that this M-estimator satisfies Im(Â) = L∗. However, it does
not belong to the class of estimators of Kent and Tyler (1991) addressed by Theorem 9
(it requires that tr(A) = 1, otherwise it has multiple minimizers; it also does not satisfy
condition M).

3.2 Formal Similarity with Tyler’s M-Estimator

We show here that the algorithms for our estimator and Tyler’s M-estimator (Tyler, 1987)
are formally similar. Following Tyler (1987), we write the iterative algorithm for the Tyler’s
M-estimator for robust covariance estimation as follows:

Σn+1 =
N
∑

i=1

xix
T
i

xT
i Σ

−1
n xi

/

tr

(

N
∑

i=1

xix
T
i

xT
i Σ

−1
n xi

)

. (29)

The unregularized iterative algorithm for GMS is later described in (38). Let us formally
substitute Σ = Q−1/ tr(Q−1) in (38); in view of the later discussion of 3.3, Σ (if exists) can
be interpreted as a robust estimator for the covariance matrix (whose top d eigenvectors
span the estimated subspace). Then an unregularized version for GMS can be formally
written as

Σn+1 =
N
∑

i=1

xix
T
i

‖Σ−1
n xi‖

/

tr

(

N
∑

i=1

xix
T
i

‖Σ−1
n xi‖

)

. (30)

Clearly, (30) is obtained from (29) by replacing xT
i Σ

−1
n xi with ‖Σ−1

n xi‖ ≡
√

xT
i Σ

−2
n xi.

3.3 Interpretation of Q̂ as Robust Inverse Covariance Estimator

The total least squares subspace approximation is practically the minimization over L ∈
G(D, d) of the function

N
∑

i=1

‖xi −PLxi‖2 ≡
N
∑

i=1

‖PL⊥xi‖2 . (31)

Its solution is obtained by the span of the top d right vectors of the data matrix X (whose
rows are the data points in X ), or equivalently, the top d eigenvectors of the covariance
matrix XTX. The convex relaxation used in (31) can be also applied to (31) to obtain the
following convex minimization problem:

Q̂2 := argmin
Q∈H

N
∑

i=1

‖Qxi‖2. (32)

The “relaxed” total least squares subspace is then obtained by the span of the bottom d
eigenvectors of Q̂.

We show here that Q̂2 coincides with a scaled version of the empirical inverse covariance
matrix. This clearly imply that the “relaxed” total least squared subspace coincides with
the original one (as the bottom eigenvectors of the inverse empirical covariance are the
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top eigenvectors of the empirical covariance). We require though that the data is of full
rank so that the empirical inverse covariance is well-defined. This requirement does not
hold if the data points are contained within a lower-dimensional subspace, in particular, if
their number is smaller than the dimension. We can easily avoid this restriction by initial
projection of the data points onto the span of eigenvectors of the covariance matrix with
nonzero eigenvalues. That is, by projecting the data onto the lowest-dimensional subspace
containing it without losing any information.

Theorem 10 If X is the data matrix, Q̂2 is the minimizer of (32) and rank(X) = D
(equivalently the data points span R

D), then

Q̂2 = (XTX)−1/ tr((XTX)−1). (33)

We view (4) as a robust version of (32). Since we verified robustness of the subspace
recovered by (4) and also showed that (32) yields the inverse covariance matrix, we some-
times refer to the solution of (4) as a robust inverse covariance matrix (though we have
only verified robustness to subspace recovery). This idea helps us interpret our numerical
procedure for minimizing (4), which we present in §4.

4. IRLS Algorithms for Minimizing (4)

We propose a fast algorithm for computing our M-estimator by using a straightforward
iterative re-weighted least squares (IRLS) strategy. We first motivate this strategy in §4.1
(in particular, see (38) and (40)). We then establish its linear convergence in §4.2. At last,
we describe its practical choices in §4.3 and summarize its complexity in §4.4.

4.1 Heuristic Proposal for Two IRLS Algorithms

The procedure for minimizing (4) formally follows from the simple fact that the directional
derivative of F at Q̂ in any direction Q̃− Q̂, where Q̃ ∈ H, is 0, that is,

〈

F ′(Q̂)
∣

∣

∣

Q=Q̂
, Q̃− Q̂

〉

F

= 0 for any Q̃ ∈ H. (34)

We remark that since H is an affine subspace of matrices, (34) holds globally in H and not
just locally around Q̂.

We formally differentiate (4) at Q̂ as follows (see more details in (44), which appears
later):

F ′(Q)
∣

∣

∣

Q=Q̂
=

N
∑

i=1

Q̂xix
T
i + xix

T
i Q̂

2‖Q̂xi‖
. (35)

Throughout the formal derivation we ignore the possibility of zero denominator in (35),
that is, we assume that Q̂xi 6= 0 ∀ 1 ≤ i ≤ N ; we later address this issue.

Since F ′(Q̂) is symmetric and Q̃ − Q̂ can be any symmetric matrix with trace 0, it is
easy to note that (34) implies that F ′(Q̂) is a scalar matrix (e.g., multiply it by a basis of
symmetric matrices with trace 0 whose members have exactly 2 nonzero matrix elements).
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That is,
N
∑

i=1

Q̂xix
T
i + xix

T
i Q̂

2‖Q̂xi‖
= cI (36)

for some c ∈ R. This implies that

Q̂ = c

(

N
∑

i=1

xix
T
i

‖Q̂xi‖

)−1

. (37)

Indeed, we can easily verify that (37) solves (36), furthermore, (36) is a Lyapunov equation
whose solution is unique (see, e.g., page 1 of Bhatia and Drissi (2005)). Since tr(Q̂) = 1,
we obtain that

Q̂ =

(

N
∑

i=1

xix
T
i

‖Q̂xi‖

)−1

/ tr





(

N
∑

i=1

xix
T
i

‖Q̂xi‖

)−1


 ,

which suggests the following iterative estimate of Q̂:

Qk+1 =

(

N
∑

i=1

xix
T
i

‖Qkxi‖

)−1

/ tr





(

N
∑

i=1

xix
T
i

‖Qkxi‖

)−1


 . (38)

Formula (38) is undefined whenever Qkxi = 0 for some k ∈ N and 1 ≤ i ≤ N . In theory,
we address it as follows. Let I(Q) = {1 ≤ i ≤ N : Qxi = 0}, L(Q) = Sp{xi}i∈I(Q) and

T (Q)=PL(Q)⊥





∑

i/∈I(Q)

xix
T
i

‖Qxi‖





−1

PL(Q)⊥/ tr



PL(Q)⊥





∑

i/∈I(Q)

xix
T
i

‖Qxi‖





−1

PL(Q)⊥



.

Using this notation, the iterative formula can be corrected as follows

Qk+1 = T (Qk). (39)

In practice, we can avoid data points satisfying ‖Qkxi‖ ≤ δ for a sufficiently small parameter
δ (instead of ‖Qkxi‖ = 0). We follow a similar idea by replacing F with the regularized
function Fδ for a regularized parameter δ. In this case, (39) obtains the following form:

Qk+1 =

(

N
∑

i=1

xix
T
i

max(‖Qkxi‖, δ)

)−1

/ tr





(

N
∑

i=1

xix
T
i

max(‖Qkxi‖, δ)

)−1


 . (40)

We note that the RHS of (39) is obtained as the limit of the RHS of (40) when δ approaches
0.

The two iterative formulas, that is, (39) and (40), give rise to IRLS algorithms. For sim-
plicity of notation, we exemplify this idea with the formal expression in (38). It iteratively
finds the solution to the following weighted (with weight 1/‖Qkxi‖) least squares problem:

argmin
Q∈H

N
∑

i=1

1

‖Qkxi‖
‖Qxi‖2. (41)
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To show this, we note that (41) is a quadratic function and any formal directional derivative
at Qk+1 is 0. Indeed,

d

dQ

N
∑

i=1

1

‖Qkxi‖
‖Qxi‖2

∣

∣

∣

Q=Qk+1

=Qk+1

(

N
∑

i=1

xix
T
i

‖Qkxi‖

)

+

(

N
∑

i=1

xix
T
i

‖Qkxi‖

)

Qk+1= cI

for some c ∈ R, and
〈

I, Q̃−Qk+1

〉

F
= 0 for any Q̃ ∈ H. Consequently, Qk+1 of (38) is

the minimizer of (41).

Formula (40) (as well as (39)) provides another interpretation for Q̂ as robust inverse
covariance (in addition to the one discussed in §3.3). Indeed, we note for example that the
RHS of (40) is the scaled inverse of a weighted covariance matrix; the scaling enforces the
trace of the inverse to be 1 and the weights of xix

T
i are significantly larger when xi is an

inlier. In other words, the weights apply a shrinkage procedure for outliers. Indeed, since
Qkxi approaches Q̂xi and the underlying subspace, which contain the inliers, is recovered
by ker(Q̂), for an inlier xi the coefficient of xix

T
i approaches 1/δ, which is a very large

number (in practice we use δ = 10−20). On the other hand, when xi is sufficiently far from
the underlying subspace, the coefficient of xix

T
i is significantly smaller.

4.2 Theory: Convergence Analysis of the IRLS Algorithms

The following theorem analyzes the convergence of the sequence proposed by (39) to the
minimizer of (4).

Theorem 11 Let X = {xi}Ni=1 be a data set in R
D satisfying (14), Q̂ the minimizer of (4),

Q0 an arbitrary symmetric matrix with tr(Q0) = 1 and {Qi}i∈N the sequence obtained by
iteratively applying (39) (while initializing it with Q0), then {Qi}i∈N converges to a matrix
Q̃ ∈ H. If Q̃xi 6= 0 for all 1 ≤ i ≤ N , then Q̃ = Q̂ and furthermore, {F (Qi)}i∈N converges
linearly to F (Q̃) and {Qi}i∈N converges r-linearly to Q̃.

The condition for the linear convergence to Q̂ in Theorem 11 (i.e., Q̂xi 6= 0 for all 1 ≤ i ≤
N) usually does not occur for noiseless data. This condition is common in IRLS algorithms
whose objective functions are l1-type and are not twice differentiable at 0. For example,
Weiszfeld’s Algorithm (Weiszfeld, 1937) may not converge to the geometric median but to
one of the data points (Kuhn, 1973, §3.4). On the other hand, regularized IRLS algorithms
often converge linearly to the minimizer of the regularized function. We demonstrate this
principle in our case as follows.

Theorem 12 Let X = {xi}Ni=1 be a data set in R
D satisfying (14), Q0 an arbitrary symmet-

ric matrix with tr(Q0) = 1 and {Qi}i∈N the sequence obtained by iteratively applying (40)
(while initializing it with Q0). Then, the sequence {Fδ(Qi)}i∈N converges linearly to the
unique minimum of Fδ(Q), and {Qi}i∈N converges r-linearly to the unique minimizer of
Fδ(Q).
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The convergence rate of the iterative application of (40) depends on δ. Following The-
orem 6.1 of Chan and Mulet (1999), this rate is at most

r(δ) =

√

√

√

√

√ max
∆=∆T ,tr(∆)=0

∑N
i=1,‖Q∗xi‖>δ

(xT
i ∆Q∗xi)2

‖Q∗xi‖3
∑N

i=1
‖∆xi‖2

max(‖Q∗xi,δ‖)
.

That is, ‖Qk − Q̂‖ < C · r(δ)k for some constant C > 0. If (14) holds, then r(δ) < 1 for all
δ > 0 and r(δ) is a non-increasing function. Furthermore, if {xi ∈ X : ‖Q̂xi‖ 6= 0} satisfies
assumption (14), then limδ→0 r(δ) < 1.

4.3 The Practical Choices for the IRLS Algorithm

Following the theoretical discussion in §4.2 we prefer using the regularized version of the
IRLS algorithm. We fix the regularization parameter to be smaller than the rounding error,
that is, δ = 10−20, so that the regularization is very close to the original problem (even with-
out regularization the iterative process is stable, but may have few warnings on badly scaled
or close to singular matrices). The idea of the algorithm is to iteratively apply (40) with
an arbitrary initialization (symmetric with trace 1). We note that in theory {Fδ(Qk)}k∈N
is non-increasing (see, e.g., the proof of Theorem 12). However, empirically the sequence
decreases when it is within the rounding error to the minimizer. Therefore, we check Fδ(Qk)
every four iterations and stop our algorithm when we detect an increase (we noticed empir-
ically that checking every four iterations, instead of every iteration, improves the accuracy
of the algorithm). Algorithm 2 summarizes our practical procedure for minimizing (4).

Algorithm 2 Practical and Regularized Minimization of (4)

Input: X = {x1,x2, · · · ,xN} ⊆ R
D: data

Output: Q̂: a symmetric matrix in R
D×D with tr(Q̂) = 1.

Steps:
• δ = 10−20

• Arbitrarily initialize Q0 to be a symmetric matrix with tr(Q0) = 1
• k = −1
repeat

• k=k+1

• Qk+1 =
(

∑N
i=1

xix
T
i

max(‖Qkxi‖,δ)

)−1
/ tr

(

(

∑N
i=1

xix
T
i

max(‖Qkxi‖,δ)

)−1
)

.

until F (Qk+1) > F (Qk−3) and mod (k + 1, 4) = 0
• Output Q̂ := Qk

4.4 Complexity of Algorithm 2

Each update of Algorithm 2 requires a complexity of order O(N · D2), due to the sum of
N D × D matrices. Therefore, for ns iterations the total running time of Algorithm 2 is
of order O(ns · N · D2). In most of our numerical experiments ns was less than 40. The
storage of this algorithm is O(N ×D), which amounts to storing X . Thus, Algorithm 2 has
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the same order of storage and complexity as PCA. In practice, it might be a bit slower due
to a larger constant for the actual complexity.

5. Subspace Recovery in Practice

We view the GMS algorithm as a prototype for various subspace recovery algorithms. We
discuss here modifications and extensions of this procedure in order to make it even more
practical. Sections 5.1 and 5.2 discuss the cases where d is unknown and known respectively;
in particular, §5.2.1 proposes the EGMS algorithm when d is known. At last, §5.3 concludes
with the computational complexity of the GMS and EGMS algorithms.

5.1 Subspace Recovery without Knowledge of d

In theory, the subspace recovery described here can work without knowing the dimension d.
In the noiseless case, one may use (5) to estimate the subspace as guaranteed by Theorem 1.
In the case of small noise one can estimate d from the eigenvalues of Q̂ and then apply the
GMS algorithm. This strategy is theoretically justified by Theorems 1 and 6 as well as
the discussion following (81). The problem is that condition (9) for guaranteeing exact
recovery by GMS is restrictive; in particular, it requires the number of outliers to be larger
than at least D − d (according to our numerical experiments it is safe to use the lower
bound 1.5 (D − d)). For practitioners, this is a failure mode of GMS, especially when the
dimension of the data set is large (for example, D > N).

While this seems to be a strong restriction, we remark that the problem of exact subspace
recovery without knowledge of the intrinsic dimension is rather hard and some assumptions
on data sets or some knowledge of data parameters would be expected. Other algorithms for
this problem, such as Chandrasekaran et al. (2011), Candès et al. (2011), Xu et al. (2010b)
and McCoy and Tropp (2011), require estimates of unknown regularization parameters
(which often depend on various properties of the data, in particular, the unknown intrinsic
dimension) or strong assumptions on the underlying distribution of the outliers or corrupted
elements.

We first note that if only conditions (6) and (7) hold, then Theorem 1 still guarantees
that the GMS algorithm outputs a subspace containing the underlying subspace. Using
some information on the data one may recover the underlying subspace from the outputted
subspace containing it, even when dealing with the failure mode.

In the rest of this section we describe several practical solutions for dealing with the
failure mode, in particular, with small number of outliers. We later demonstrate them
numerically in §6.2 for artificial data and in §6.7 and §6.8 for real data.

Our first practical solution is to reduce the ambient dimension of the data. When the
reduction is not too aggressive, it can be performed via PCA. In §5.2.1 we also propose a
robust dimensionality reduction which can be used instead. There are two problems with
this strategy. First of all, the reduced dimension is another parameter that requires tuning.
Second of all, some information may be lost by the dimensionality reduction and thus exact
recovery of the underlying subspace is generally impossible.

A second practical solution is to add artificial outliers. The number of added outliers
should not be too large (otherwise (6) and (7) will be violated), but they should sufficiently
permeate through R

D so that (9) holds. In practice, the number of outliers can be 2D,
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since empirically (9) holds with high probability when N0 = 2(D − d). To overcome the
possible impact of outliers with arbitrarily large magnitude, we project the data with arti-
ficial outliers onto the sphere (following Lerman et al. 2012). Furthermore, if the original
data matrix does not have full rank (in particular if N < D) we reduce the dimension of
the data (by PCA) to be the rank of the data matrix. This dimensionality reduction clearly
does not result in any loss of information. We refer to the whole process of initial “lossless
dimensionality reduction” (if necessary), addition of 2D artificial Gaussian outliers, nor-
malization onto the sphere and application of GMS (with optional estimation of d by the
eigenvalues of Q̂) as the GMS2 algorithm. We believe that it is the best practical solution
to avoid condition (9) when d is unknown.

A third solution is to regularize our M estimator, that is, to minimize the following
objective function with the regularization parameter λ:

Q̂ = argmin
tr(Q)=1,Q=QT

N
∑

i=1

‖Qxi‖+ λ‖Q‖2F . (42)

The IRLS algorithm then becomes

Qk+1 =

(

N
∑

i=1

xix
T
i

max(‖Qkxi‖, δ)
+ 2λI

)−1

/ tr





(

N
∑

i=1

xix
T
i

max(‖Qkxi‖, δ)

)−1

+ 2λI



 .

We note that if λ = 0 and there are only few outliers, then in the noiseless case dim(ker(Q̂)) >
d and in the small noise case the number of significantly small eigenvalues is bigger than
d. On the other hand when λ → ∞, Q̂ → I/D, whose kernel is degenerate (similarly, it
has no significantly small eigenvalues). Therefore, there exists an appropriate λ for which
dim(ker(Q̂)) (or the number of significantly small eigenvalues of Q̂) is d. This formulation
transforms the estimation of d into estimation of λ. This strategy is in line with other com-
mon regularized solutions to this problem (see, e.g., Chandrasekaran et al. 2011; Candès
et al. 2011; Xu et al. 2010b; McCoy and Tropp 2011), however, we find it undesirable to
estimate a regularization parameter that is hard to interpret in terms of the data.

5.2 Subspace Recovery with Knowledge of d

Knowledge of the intrinsic dimension d can help improve the performance of GMS or sug-
gest completely new variants (especially as GMS always finds a subspace containing the
underlying subspace). For example, knowledge of d can be used to carefully estimate the
parameter λ of (42), for example, by finding λ yielding exactly a d-dimensional subspace
via a bisection procedure.

Lerman et al. (2012) modified the strategy described in here by requiring an additional
constraint on the maximal eigenvalue of Q in (28): λmax(Q) ≤ 1

D−d (where λmax(Q) is
the largest eigenvalue of Q). This approach has theoretical guarantees, but it comes with
the price of additional SVD in each iteration, which makes the algorithm slightly more
expensive. Besides, in practice (i.e., noisy setting) this approach requires tuning the upper
bound on λmax(Q). Indeed, the solutionQ′ to their minimization problem (with λmax(Q

′) ≤
1/(D−d) and tr(Q′) = 1) satisfies that dim(ker(Q′) is at most d and equals d when Q′ is a
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scaled projector operator. They proved that dim(ker(Q′) = d for the setting of pure inliers
(lying exactly on a subspace) under some conditions avoiding the three types of enemies.
However, in practice (especially in noisy cases) the actual subspace often has dimension
smaller than d and thus the bound on λmax(Q) has to be tuned as an additional parameter.
In some cases, one may take λmax(Q) > 1

D−d and find the subspace according to the bottom
d eigenvectors. In other cases, a bisection method on the bound of λmax(Q) provide more
accurate results (see related discussion in Lerman et al. (2012, §6.1.6)).

5.2.1 The EGMS Algorithm

We formulate in Algorithm 3 the Extended Geometric Median Subspace (EGMS) algorithm
for subspace recovery with known intrinsic dimension.

Algorithm 3 The Extended Geometric Median Subspace Algorithm

Input: X = {xi}Ni=1 ⊆ R
D: data, d: dimension of L∗, an algorithm for minimizing (4)

Output: L̂: a d-dimensional linear subspace in R
D.

Steps:
• L̂ = R

D

repeat

• Q̂ = argminQ∈H,QP
L̂⊥=0 F (Q)

• u = the top eigenvector of Q̂
• L̂ = L̂ ∩ Sp(u⊥)

until dim(L̂) = d

We justify this basic procedure in the noiseless case without requiring (9) as follows.

Theorem 13 Assume that d,D ∈ N, d < D, X is a data set in R
D and L∗ ∈ G(D, d). If

only conditions (6) and (7) hold, then the EGMS Algorithm exactly recovers L∗.

In §6.5 we show how the vectors obtained by EGMS at each iteration can be used to
form robust principal components (in reverse order), even when Q̂ is degenerate.

5.3 Computational Complexity of GMS and EGMS

The computational complexity of GMS is of the same order as that of Algorithm 2, that
is, O(ns ·N ·D2) (where ns is the number of required iterations for Algorithm 2). Indeed,
after obtaining Q̂, computing L∗ by its smallest d eigenvectors takes an order of O(d ·D2)
operations.

EGMS on the other hand repeats Algorithm 2 D − d times; therefore it adds an order
of O((D − d) · ns · N · D2) operations, where ns denotes the total number of iterations
for Algorithm 2. In implementation, we can speed up the EGMS algorithm by excluding
the span of some of the top eigenvectors of Q̂ from L̂ (instead of excluding only the top
eigenvector in the third step of Algorithm 3). We demonstrate this modified procedure on
artificial setting in §6.2.
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6. Numerical Experiments

We compare our proposed estimator to other algorithms, while using both synthetic and
real data. We also demonstrate the effectiveness of some of our practical proposals. In
§6.1 we describe a model for generating synthetic data. Using this model, we respectively
demonstrate in §6.2-§6.4 the effectiveness of the following strategies: the practical solutions
of §5.1 and §5.2, our estimation of the subspace dimension, and our regularization (more
precisely, its effect on the recovery error). In §6.5 we demonstrate the use of our M estimator
for robust estimation of eigenvectors of the covariance (or the inverse covariance) matrix.
At last, actual comparisons are demonstrated in §6.6-§6.8 for synthetic data, face data and
video surveillance data respectively.

6.1 Model for Synthetic Data

In §6.2-§6.4 and §6.6 we generate data from the following model. We randomly choose
L∗ ∈ G(D, d), sample N1 inliers from the d-dimensional Multivariate Normal distribu-
tion N(0, Id×d) on L∗ and add N0 outliers sampled from a uniform distribution on [0, 1]D.
The outliers are strongly asymmetric around the subspace to make the subspace recovery
problem more difficult (Lerman and Zhang, 2010). In some experiments below additional
Gaussian noise is considered. When referring to this synthetic data we only need to specify
its parameters N1, N0, D, d and possibly the standard deviation for the additive noise.
For any subspace recovery algorithm (or heuristics), we denote by L̃ its output (i.e., the
estimator for L∗) and measure the corresponding recovery error by eL̃ = ‖PL̃ −PL∗‖F .

6.2 Demonstration of Practical Solutions of §5.1 and §5.2

We present two different artificial cases, where in one of them condition (9) holds and in
the other one it does not hold and test the practical solutions of §5.1 and §5.2 in the second
case.

The two cases are the following instances of the synthetic model of §6.1: (a) (N1, N0, D, d)
= (100 , 100, 100, 20) and (b) (N1, N0, D, d) = (100, 20, 100, 20). The GMS algorithm es-
timates the underlying subspace L∗ given d = 20 with recovery errors 2.1 × 10−10 and
3.4 in cases (a) and (b) respectively. In case (a) there are sufficiently many outliers (with
respect to D − d) and the GMS algorithm is successful. We later show in §6.3 that the
underlying dimension (d = 20) can be easily estimated by the eigenvalues of Q̂. In case (b)
N0 = 0.25 ∗ (D− d), therefore, condition (9) is violated and the GMS algorithm completely
fails.

We demonstrate the success of the practical solutions of §5.1 and §5.2 in case (b). We
assume that the dimension d is known, though in §6.3 we estimate d correctly for the non-
regularized solutions of §5.1. Therefore, these solutions can be also applied without knowing
the dimension. If we reduce the dimension of the data set in case (b) from D = 100 to
D = 35 (via PCA; though one can also use EGMS), then GMS (with d = 20) achieves a
recovery error of 0.23, which indicates that GMS almost recovers the subspace correctly.
We remark though that if we reduce the dimension to, for example, D = 55, then the GMS
algorithm will still fail. We also note that the recovery error is not as attractive as the
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ones below; this observation probably indicates that some information was lost during the
dimension reduction.

The GMS2 algorithm with d = 20 recovers the underlying subspace in case (b) with
error 1.2 × 10−10. This is the method we advocated for when possibly not knowing the
intrinsic dimension.

The regularized minimization of (42) with λ = 100 works well for case (b). In fact, it
recovers the subspace as ker Q̂ (without using its underlying dimension) with error 3.3 ×
10−13. The only issue is how to determine the value of λ. We claimed in §5.2 that if d is
known, then λ can be carefully estimated by the bisection method. This is true for this
example, in fact, we initially chose λ this way.

We remark that the REAPER algorithm of Lerman et al. (2012) did not perform well
for this particular data, though in general it is a very successful solution. The recovery
error of the direct REAPER algorithm was 3.725 (and 3.394 for S-REAPER) and the error
for its modified version via bisection (relaxing the bound on the largest eigenvalue so that
dim(ker(Q̂)) = 20) was 3.734 (and 3.175 for S-REAPER).

At last we demonstrate the performance of EGMS and its faster heuristic with d = 20.
The recovery error of the original EGMS for case (b) is only 0.095. We suggested in §5.3
a faster heuristic for EGMS, which can be reformulated as follows: In the third step of
Algorithm 3, we replace u (the top eigenvector of Q̂) with U, the subspace spanned by
several top eigenvectors. In the noiseless case, we could let U be the span of the nonzero
eigenvectors of Q̂. This modification of EGMS (for the noiseless case) required only two
repetitions of Algorithm 2 and its recovery error was 2.2 × 10−13. In real data sets with
noise we need to determine the number of top eigenvectors spanning U, which makes this
modification of EGMS less automatic.

6.3 Demonstration of Dimension Estimation

We test dimension estimation by eigenvalues of Q̂ for cases (a) and (b) of §6.2. The
eigenvalues of Q̂ obtained by Algorithm 2 for the two cases are shown in Figure 2. In
case (a), the largest logarithmic eigengap (i.e., the largest gap in logarithms of eigenvalues)
occurs at 80, so we can correctly estimate that d = D − 80 = 20 (the eigenvalues are not
zero since Algorithm 2 uses the δ-regularized objective function). However, in case (b) the
largest eigengap occurs at 60 and thus mistakenly predicts d = 40.

As we discussed in §6.2, the dimension estimation fails here since condition (9) is not
satisfied. However, we have verified that if we try any of the solutions proposed in §5.1
then we can correctly recover that d = 20 by the logarithmic eigengap. For example, in
Figure 2 we demonstrate the logarithms of eigenvalues of Q̂ in case (b) after dimensionality
reduction (via PCA) onto dimension D = 35 and it is clear that the largest gap is at
d = 20 (or D−d = 80). We obtained similar graphs when using 2D artificial outliers (more
precisely, the GMS2 algorithm without the final application of the GMS algorithm) or the
regularization of (42) with λ = 100.

6.4 The Effect of the Regularization Parameter δ

We assume a synthetic data set sampled according to the model of §6.1 with (N1, N0, D, d) =
(250, 250, 100, 10). We use the GMS algorithm with d = 10 and different values of the
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Figure 2: Dimension estimation: In the left figure, the starred points and the dotted point
represent log-scaled eigenvalues of the output of Algorithm 2 for cases (a) and (b)
respectively (see §6.3). The right figure corresponds to case (b) with dimension
reduced to 35.

regularization parameter δ and record the recovery error in Figure 3. For 10−14 ≤ δ ≤ 10−2,
log(error) − log(δ) is constant. We thus empirically obtain that the error is of order O(δ)
in this range. On the other hand, (27) only obtained an order of O(

√
δ). It is possible

that methods similar to those of Coudron and Lerman (2012) can obtain sharper error
bounds. We also expect that for δ sufficiently small (here smaller than 10−14), the rounding
error becomes dominant. On the other hand, perturbation results are often not valid for
sufficiently large δ (here this is the case for δ > 10−2).
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Figure 3: The recovery errors and the regularization parameters δ

6.5 Information Obtained from Eigenvectors

Throughout the paper we emphasized the subspace recovery problem, but did not discuss
at all the information that can be inferred from the eigenvectors of our robust PCA strat-
egy. Since in standard PCA these vectors have significant importance, we exemplify the
information obtained from our robust PCA and compare it to that obtained from PCA and
some other robust PCA algorithms.
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We create a sample from a mixture of two Gaussian distributions with the same mean
and same eigenvalues of the covariance matrices, but different eigenvectors of the covariance
matrices. The mixture percentages are 25% and 75%. We expect the eigenvectors of any
good robust PCA algorithm (robust to outliers as perceived in this paper) to be close to
that of the covariance of the main component (with 75%).

More precisely, we sample 300 points from N(0,Σ1), where Σ1 is a 10×10 diagonal ma-
trix with elements 1, 2−1, 2−2, · · · , 2−9 and 100 points from N(0,Σ2), where Σ2 = UΣ1U

T ,
where U is randomly chosen from the set of all orthogonal matrices in R

10×10. The goal is
to estimate the eigenvectors of Σ1 (i.e., the standard basis vectors in R

10) in the presence of
25% “outliers”. Unlike the subspace recovery problem, where we can expect to exactly re-
cover a linear structure among many outliers, here the covariance structure is more complex
and we cannot exactly recover it with 25% outliers.

We estimated the eigenvectors of Σ1 by the the eigenvectors of Q̂ of Algorithm 2 in
reverse order (recall that Q̂ is a scaled and robust version of the inverse covariance). We
refer to this procedure as “EVs (eigenvectors) of Q̂−1”. We also estimated these eigenvectors
by standard PCA, LLD (McCoy and Tropp, 2011) with λ = 0.8

√

D/N and PCP (Candès
et al., 2011) with λ = 1/

√

max(D,N). We repeated the random simulation (with different
samples for the random orthogonal matrix U) 100 times and reported in Table 2 the average
angles between the estimated and actual top two eigenvectors ofΣ1 according to the different
methods. We note that the “EVs of Q̂−1” outperforms PCA, LLD (or OP) and PCP in
terms of estimation of the top two eigenvectors of Σ1. We remark though that PCP does
not suit for robust estimation of the empirical covariance and thus the comparison is unfair
for PCP.

EVs of Q̂−1 LLD PCP PCA

Eigenvector 1 3.0◦ 5.5◦ 45.7◦ 14.8◦

Eigenvector 2 3.0◦ 5.5◦ 47.4◦ 40.3◦

Table 2: Angles (in degrees) between the estimated and actual top two eigenvectors of Σ1.

When the covariance matrix Σ1 (and consequently also Σ2) is degenerate, Q̂ might
be singular and therefore Q̂ cannot be directly used to robustly estimate eigenvectors of
the covariance matrix. For this case, EGMS (Algorithm 3) can be used, where the vector
u obtained in the ith iteration of Algorithm 3 can be considered as the (D − i + 1)st
robust eigenvector (that is, we reverse the order again). To test the performance of this
method, we modify Σ1 in the above model as follows: Σ1=diag(1, 0.5, 0.25, 0, 0, · · · , 0).
We repeated the random simulations of this modified model 100 times and reported in
Table 2 the average angles between the estimated and actual top two eigenvectors of Σ1

according to the different methods. Here LLD did slightly better than EGMS and they
both outperformed PCA (and PCP).
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EGMS LLD PCP PCA

Eigenvector 1 5.2◦ 3.4◦ 42.6◦ 8.2◦

Eigenvector 2 5.2◦ 3.4◦ 47.3◦ 16.1◦

Table 3: Angles (in degrees) between the estimated and actual top two eigenvectors of Σ1.

6.6 Detailed Comparison with Other Algorithms for Synthetic Data

Using the synthetic data of §6.1, we compared the GMS algorithm with the following al-
gorithms: MDR (Mean Absolute Deviation Rounding) of McCoy and Tropp (2011), LLD
(Low-Leverage Decomposition) of McCoy and Tropp (2011), OP (Outlier Pursuit) of Xu
et al. (2010b), PCP (Principal Component Pursuit) of Candès et al. (2011), MKF (Me-
dian K-flats with K = 1) of Zhang et al. (2009), HR-PCA (High-dimensional Robust
PCA) of Xu et al. (2010a), a common M-estimator (Huber and Ronchetti, 2009, see,
e.g.,) and R1-PCA of Ding et al. (2006). The codes of OP and HR-PCA were obtained
from http://guppy.mpe.nus.edu.sg/~mpexuh, the code of MKF from http://www.math.

umn.edu/~zhang620/mkf, the code of PCP from http://perception.csl.illinois.edu/

matrix-rank/sample_code.html with the Accelerated Proximal Gradient and full SVD
version, the codes of MDR and LLD from http://www.acm.caltech.edu/~mccoy/code/

and the codes of the common M-estimator, R1-PCA and GMS will appear in a supplemental
webpage. We also record the output of standard PCA, where we recover the subspace by
the span of the top d eigenvectors. We ran the experiments on a computer with Intel Core
2 CPU at 2.66GHz and 2 GB memory.

We remark that since the basic GMS algorithm already performed very well on these
artificial instances, we did not test its extensions and modifications described in §5 (e.g.,
GMS2 and EGMS).

For all of our experiments with synthetic data, we could correctly estimate d by the
largest logarithmic eigengap of the output of Algorithm 2. Nevertheless, we used the knowl-
edge of d for all algorithms for the sake of fair comparison.

For LLD, OP and PCP we estimated L∗ by the span of the top d eigenvectors of the
low-rank matrix. Similarly, for the common M-estimator we used the span of the top d
eigenvectors of the estimated covariance A. For the HR-PCA algorithm we also used the
true percentage of outliers (50% in our experiments). For LLD, OP and PCP we set the
mixture parameter λ as 0.8

√

D/N, 0.8
√

D/N, 1/
√

max(D,N) respectively (following the
suggestions of McCoy and Tropp (2011) for LLD/OP and Candès et al. (2011) for PCP).
These choices of parameters are also used in experiments with real data sets in §6.7 and
§6.8.

For the common M-estimator, we used u(x) = 2max(ln(x)/x, 1030) and the algorithm
discussed by Kent and Tyler (1991). Considering the conditions in §3.1.1, we also tried other
functions: u(x) = max(x−0.5, 1030) had a significantly larger recovery error and u(x) =
max(x−0.9, 1030) resulted in a similar recovery error as max(ln(x)/x, 1030) but a double
running time.
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We used the syntectic data with different values of (N1, N0, D, d). In some instances we
also add noise from the Gaussian distribution N(0, η2I) with η = 0.1 or 0.01. We repeated
each experiment 20 times (due to the random generation of data). We record in Table 4
the mean running time, the mean recovery error and their standard deviations.

We remark that PCP is designed for uniformly corrupted coordinates of data, instead
of corrupted data points (i.e., outliers), therefore, the comparison with PCP is somewhat
unfair for this kind of data. On the other hand, the applications in §6.7 and §6.8 are tailored
for the PCP model (though the other algorithms still apply successfully to them).

From Table 4 we can see that GMS is the fastest robust algorithm. Indeed, its running
time is comparable to that of PCA. We note that this is due to its linear convergence rate
(usually it converges in less than 40 iterations). The common M-estimator is the closest
algorithm in terms of running time to GMS, since it also has the linear convergence rate.
In contrast, PCP, OP and LLD need a longer running time since their convergence rates
are much slower. Overall, GMS performs best in terms of exact recovery. The PCP, OP
and LLD algorithms cannot approach exact recovery even by tuning the parameter λ. For
example, in the case where (N1, N0, D, d) = (125, 125, 10, 5) with η = 0, we checked a geo-
metric sequence of 101 λ values from 0.01 to 1, and the smallest recovery errors for LLD,
OP and PCP are 0.17, 0.16 and 0.22 respectively. The common M-estimator performed
very well for many cases (sometimes slightly better than GMS), but its performance de-
teriorates as the density of outliers increases (e.g., poor performance for the case where
(N1, N0, D, d) = (125, 125, 10, 5)). Indeed, Theorem 9 indicates problems with the exact
recovery of the common M-estimator.

At last, we note that the empirical recovery error of the GMS algorithm for noisy data
sets is in the order of

√
η, where η is the size of noise.

6.7 Yale Face data

Following Candès et al. (2011), we apply our algorithm to face images. It has been shown
that face images from the same person lie in a low-dimensional linear subspace of dimen-
sion at most 9 (Basri and Jacobs, 2003). However, cast shadows, specular reflections and
saturations could possibly distort this low-rank modeling. Therefore, one can use a good
robust PCA algorithm to remove these errors if one has many images from the same face.

We used the images of the first two persons in the extended Yale face database B (Lee
et al., 2005), where each of them has 65 images of size 192×168 under different illumination
conditions. Therefore we represent each person by 65 vectors of length 32256. Following
Basri and Jacobs (2003) we applied GMS, GMS2 and EGMS with d = 9 and we also
reduced the 65×32256 matrix to 65×65 (in fact, we only reduced the representation of the
column space) by rejecting left vectors with zero singular values. We also applied the GMS
algorithm after initial dimensionality reduction (via PCA) to D = 20. The running times of
EGMS and GMS (without dimensionality reduction) are 13 and 0.16 seconds respectively
on average for each face (we used the same computer as in §6.6). On the other hand, the
running times of PCP and LLD are 193 and 2.7 seconds respectively. Moreover, OP ran
out of memory. The recovered images are shown in Figure 4, where the shadow of the nose
and the parallel lines were removed best by EGMS. The GMS algorithm without dimension
reduction did not perform well, due to the difficulty explained in §5 and demonstrated in
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(N1, N0, D, d) GMS MDR LLD OP PCP HR-PCA MKF PCA M-est.R1-PCA

e 6e-11 0.275 1.277 0.880 0.605 0.210 0.054 0.193 0.102 0.121
(125, 125, 10, 5) std.e 4e-11 0.052 0.344 0.561 0.106 0.049 0.030 0.050 0.037 0.048

η = 0 t(s) 0.008 0.371 0.052 0.300 0.056 0.378 0.514 0.001 0.035 0.020
std.t 0.002 0.120 0.005 0.054 0.002 0.001 0.262 8e-06 4e-04 0.014

e 0.011 0.292 1.260 1.061 0.567 0.233 0.069 0.213 0.115 0.139
(125, 125, 10, 5) std.e 0.004 0.063 0.316 0.491 0.127 0.075 0.036 0.073 0.054 0.073

η = 0.01 t(s) 0.008 0.340 0.053 0.287 0.056 0.380 0.722 0.001 0.035 0.052
std.t 0.001 0.075 0.007 0.033 0.001 0.009 0.364 1e-05 4e-04 0.069

e 0.076 0.264 1.352 0.719 0.549 0.200 0.099 0.185 0.122 0.128
(125, 125, 10, 5) std.e 0.023 0.035 0.161 0.522 0.102 0.051 0.033 0.048 0.041 0.050

η = 0.1 t(s) 0.007 0.332 0.055 0.301 0.056 0.378 0.614 0.001 0.035 0.032
std.t 0.001 0.083 0.004 0.044 0.001 0.001 0.349 7e-06 4e-04 0.037

e 2e-11 0.652 0.258 0.256 0.261 0.350 0.175 0.350 1e-12 0.307
(125, 125, 50, 5) std.e 3e-11 0.042 0.030 0.032 0.033 0.023 0.028 0.025 5e-12 0.029

η = 0 t(s) 0.015 0.420 0.780 1.180 3.164 0.503 0.719 0.006 0.204 0.020
std.t 0.001 0.128 0.978 0.047 0.008 0.055 0.356 9e-05 0.001 0.011

e 0.061 0.655 0.274 0.271 0.273 0.355 0.196 0.359 0.007 0.321
(125, 125, 50, 5) std.e 0.009 0.027 0.039 0.038 0.040 0.038 0.038 0.033 0.001 0.038

η = 0.01 t(s) 0.023 0.401 4.155 1.506 0.499 0.653 0.656 0.006 0.191 0.028
std.t 0.002 0.079 0.065 0.197 0.006 0.044 0.377 8e-05 0.001 0.022

e 0.252 0.658 0.292 0.290 0.296 0.358 0.264 0.363 0.106 0.326
(125, 125, 50, 5) std.e 0.027 0.033 0.032 0.032 0.033 0.027 0.031 0.032 0.014 0.032

η = 0.1 t(s) 0.021 0.363 0.923 1.726 0.501 0.638 0.641 0.006 0.191 0.025
std.t 0.001 0.063 0.033 0.470 0.009 0.051 0.240 1e-04 0.001 0.012

e 3e-12 0.880 0.214 0.214 0.215 0.332 0.161 0.330 2e-12 0.259
(250, 250, 100, 10)std.e 2e-12 0.018 0.019 0.019 0.019 0.014 0.024 0.012 9e-12 0.016

η = 0 t(s) 0.062 1.902 3.143 7.740 2.882 1.780 1.509 0.039 0.819 1.344
std.t 0.006 0.354 4.300 0.038 0.014 0.041 1.041 3e-04 0.023 0.708

e 0.077 0.885 0.217 0.216 0.219 0.334 0.164 0.335 0.009 0.263
(250, 250, 100, 10)std.e 0.006 0.031 0.019 0.018 0.020 0.019 0.019 0.017 3e-04 0.018

η = 0.01 t(s) 0.084 1.907 21.76811.319 2.923 1.785 1.412 0.039 0.400 1.086
std.t 0.010 0.266 0.261 0.291 0.014 0.041 0.988 3e-04 0.002 0.738

e 0.225 0.888 0.238 0.237 0.262 0.342 0.231 0.345 0.136 0.276
(250, 250, 100, 10)std.e 0.016 0.020 0.019 0.019 0.019 0.019 0.018 0.015 0.010 0.019

η = 0.1 t(s) 0.076 1.917 4.430 16.649 2.876 1.781 1.555 0.039 0.413 1.135
std.t 0.007 0.299 0.069 1.184 0.014 0.025 0.756 4e-04 0.011 0.817

e 4e-11 1.246 0.162 0.164 0.167 0.381 0.136 0.381 3e-13 0.239
(500, 500, 200, 20)std.e 1e-10 0.018 0.011 0.011 0.011 0.010 0.009 0.008 6e-14 0.009

η = 0 t(s) 0.464 23.33216.77889.09016.604 8.602 5.557 0.347 6.517 15.300
std.t 0.024 2.991 0.878 1.836 0.100 0.216 4.810 0.009 0.126 3.509

e 0.082 1.247 0.160 0.162 0.166 0.374 0.139 0.378 0.012 0.236
(500, 500, 200, 20)std.e 0.003 0.018 0.007 0.007 0.008 0.011 0.010 0.006 2e-04 0.007

η = 0.01 t(s) 0.592 23.214128.51122.6116.823 8.541 6.134 0.354 2.361 15.165
std.t 0.060 3.679 1.155 6.500 0.036 0.219 4.318 0.019 0.064 3.485

e 0.203 1.262 0.204 0.204 0.250 0.391 0.275 0.398 0.166 0.270
(500, 500, 200, 20)std.e 0.007 0.012 0.007 0.007 0.007 0.012 0.272 0.009 0.005 0.008

η = 0.1 t(s) 0.563 24.11224.312202.2216.473 8.552 8.745 0.348 2.192 15.150
std.t 0.061 2.362 0.226 8.362 0.050 0.155 3.408 0.010 0.064 3.420

Table 4: Mean running times, recovery errors and their standard deviations for synthetic
data.
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§6.2. The GMS2 algorithm turns out to work well, except for the second image of face
2. However, other algorithms such as PCP and GMS with dimension reduction (D = 20)
performed even worse on this image and LLD did not remove any shadow at all; the only
good algorithm for this image is EGMS.

Figure 4: Recovering faces: (a) given images, (b)-(f) the recovered images by EGMS, GMS
without dimension reduction, GMS2, GMS with dimension reduced to 20, PCP
and LLD respectively

6.8 Video Surveillance

For background subtraction in surveillance videos (Li et al., 2004), we consider the follow-
ing two videos used by Candès et al. (2011): “Lobby in an office building with switching
on / off lights” and “Shopping center” from http://perception.i2r.a-star.edu.sg/bk_

model/bk_index.html. In the first video, the resolution is 160 × 128 and we used 1546
frames from ‘SwitchLight1000.bmp’ to ‘SwitchLight2545.bmp’. In the second video, the
resolution is 320×256 and we use 1000 frames from ‘ShoppingMall1001.bmp’ to ‘Shopping-
Mall2000.bmp’. Therefore, the data matrices are of size 1546 × 20480 and 1001 × 81920.
We used a computer with Intel Core 2 Quad Q6600 2.4GHz and 8 GB memory due to the
large size of these data.
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We applied GMS, GMS2 and EGMS with d = 3 and with initial dimensionality reduction
to 200 to reduce running time. For this data we are unaware of a standard choice of d; though
we noticed empirically that the outputs of our algorithms as well as other algorithms are
very stable to changes in d within the range 2 ≤ d ≤ 5. We obtain the foreground by
the orthogonal projection to the recovered 3-dimensional subspace. Figure 5 demonstrates
foregrounds detected by EGMS, GMS, GMS2, PCP and LLD, where PCP and LLD used
λ = 1/

√

max(D,N), 0.8
√

D/N . We remark that OP ran out of memory. Using truth
labels provided in the data, we also form ROC curves for GMS, GMS2, EGMS and PCP in
Figure 6 (LLD is not included since it performed poorly for any value of λ we tried). We note
that PCP performs better than both GMS and EGMS in the ‘Shoppingmall’ video, whereas
the latter algorithms perform better than PCP in the ‘SwitchLight’ video. Furthermore,
GMS is significantly faster than EGMS and PCP. Indeed, the running times (on average)
of GMS, EGMS and PCP are 91.2, 1018.8 and 1209.4 seconds respectively.

Figure 5: Video surveillance: (a) the given frames (b)-(e) the detected foreground by
EGMS, GMS, GMS2, PCP, LLD respectively
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Figure 6: ROC curves for EGMS, GMS, GMS2 and PCP in the ’SwitchLight’ video (the
left figure) and the ’Shoppingmall’ video (the right figure)

7. Proofs of Theorems

We present the technical proofs of the theoretical statements of this paper according to
their order of appearance.

7.1 Proof of Theorem 1

We will prove that if conditions (6) and (7) hold, then the set of all minimizers satisfying (4)
coincides with the set of all minimizers satisfying (8). This clearly implies that if conditions
(6) and (7) hold, then any minimizer Q̂ of (4) satisfies ker(Q̂) ⊇ L∗ (indeed, this condition
is equivalent with the condition QPL∗ = 0, which appears in the formulation of (8)). If
condition (9) also holds, then ker(Q̂) = L∗ and the theorem is concluded.

We assume that conditions (6) and (7) hold and arbitrarily fix a minimizer Q̂0 of the
oracle problem (8). We claim that in order to establish the equivalence of the sets of
solutions of (4) and (8), it is sufficient to prove that

F (Q̂0 +∆)− F (Q̂0) > 0 for any symmetric ∆ with tr(∆) = 0 and ∆PL∗ 6= 0. (43)

Indeed, we first note that (43) implies that Q̂0 is also a minimizer of (4). This observation
follows from combining (43) with the following equation:

F (Q̂0 +∆)− F (Q̂0) ≥ 0 for any symmetric ∆ with tr(∆) = 0 and ∆PL∗ = 0,

which is an immediate consequence of the definition of (8). To conclude the equivalence,
we assume on the contrary that there exists Q̂0, which is a minimizer of (8) but not a
minimizer of (4). We denote by Q̂′

0 a minimizer of (8), which is also a minimizer of (4) and
let ∆ := Q̂′

0 − Q̂0. Then by the definitions of Q̂0, Q̂
′
0 and ∆: tr(∆) = 0, ∆PL∗ 6= 0 and

F (Q̂′
0) = F (Q̂0). This contradicts (43) and thus concludes the proof.
In order to conclude (43) (and thus the theorem) we first differentiate ‖Qx‖ at Q = Q0

when x ∈ ker(Q0)
⊥ as follows:

d

dQ
‖Qx‖

∣

∣

∣

Q=Q0

=
d

dQ

√

‖Qx‖2
∣

∣

∣

Q=Q0

=
d

dQ

QxxTQT

2‖Q0x‖
∣

∣

∣

Q=Q0

=
Q0xx

T + xxTQ0

2‖Q0x‖
. (44)
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We note that for any x ∈ R
D \ {0} satisfying Q̂0x 6= 0 and ∆ ∈ R

D×D symmetric:

‖(Q̂0 +∆)x‖ − ‖Q̂0x‖ ≥
〈

∆, (Q̂0xx
T + xxT Q̂0)/2‖Q̂0x‖

〉

F
=
〈

∆, Q̂0xx
T /‖Q̂0x‖

〉

F
.

(45)
Indeed, the first equality follows from (44) and the convexity of ‖Qx‖ in Q and the second
equality follows from the symmetry of ∆ and Q̂0 as well as the definition of the Frobenius
dot product.

If on the other hand Q̂0x = 0, then clearly

‖(Q̂0 +∆)x‖ − ‖Q̂0x‖ = ‖∆x‖. (46)

For simplicity of our presentation, we use (46) only for x ∈ X1 (where obviously Q̂0x = 0

since Q̂0PL∗ = 0). On the other hand, we use (45) for all x ∈ X0. One can easily check
that if x ∈ X0 and Q̂0x = 0, then replacing (45) with (46) does not change the analysis
below. Using these observations we note that

F (Q̂0 +∆)− F (Q̂0) ≥
∑

x∈X1

‖∆x‖+
∑

x∈X0

〈

∆, Q̂0xx
T /‖Q̂0x‖

〉

F
. (47)

We assume first that ∆PL∗ = 0. In this case, Q̂0+∆ ∈ H and (Q̂0+∆)PL∗ = 0. Since
Q̂0 is the minimizer of (8), we obtain the following identity (which is analogous to (34)):

∑

x∈X0

〈

∆,
Q̂0xx

T

‖Q̂0x‖

〉

F

≥ 0 ∀ ∆ ∈ R
D×D s.t. tr(∆) = 0 ,∆PL∗ = 0. (48)

We will prove (43) by showing that the RHS of (47) is positive for any symmetric ∆

with tr(∆) = 0 and ∆PL∗ 6= 0. Using (47) and the facts that X1 ⊂ L∗ and Q̂0 = PL∗⊥Q̂0

(since PL∗Q̂0 = Q̂0PL∗ = 0), we establish the following inequality:

F (Q̂0 +∆)− F (Q̂0) ≥
∑

x∈X1

‖∆x‖+
∑

x∈X0

〈

∆, Q̂0xx
T /‖Q̂0x‖

〉

F

=
∑

x∈X1

‖∆PL∗x‖+
∑

x∈X0

〈

(∆PL∗ +∆PL∗⊥),PL∗⊥Q̂0xx
T /‖Q̂0x‖

〉

F

≥
∑

x∈X1

(‖PL∗∆PL∗x‖+ ‖PL∗⊥∆PL∗x‖) /
√
2

+
∑

x∈X0

〈

(PL∗⊥∆PL∗ +PL∗⊥∆PL∗⊥), Q̂0xx
T /‖Q̂0x‖

〉

F
. (49)

For ease of notation we denote ∆0 = tr(PL∗∆PL∗)v0v
T
0 , where v0 is the minimizer

of the RHS of (6). Combining the following two facts: tr(∆0) − tr(PL∗∆PL∗) = 0 and
tr(PL∗∆PL∗) + tr(PL∗⊥∆PL∗⊥) = tr(∆) = 0, we obtain that

tr(∆0 +PL∗⊥∆PL∗⊥) = 0.

Further application of (48) implies that

∑

x∈X0

〈

∆0 +PL∗⊥∆PL∗⊥ , Q̂0xx
T /‖Q̂0x‖

〉

F
≥ 0. (50)
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We note that
〈

PL∗⊥∆PL∗⊥ , Q̂0xx
T /‖Q̂0x‖

〉

F
=
〈

PL∗⊥∆PL∗⊥PL∗⊥ , Q̂0xx
T /‖Q̂0x‖

〉

F

=
〈

PL∗⊥∆PL∗⊥ , Q̂0xx
TPL∗⊥/‖Q̂0x‖

〉

F
. (51)

Combining (50) and (51) we conclude that

−
∑

x∈X0

〈

PL∗⊥∆PL∗⊥ , Q̂0xx
T /‖Q̂0x‖

〉

F
≤
∑

x∈X0

〈

∆0, Q̂0xx
TPL∗⊥/‖Q̂0x‖

〉

F

=
∑

x∈X0

tr(PL∗∆PL∗)(vT
0 Q̂0x/‖Q̂0x‖)(vT

0 PL∗⊥x) ≤ | tr(PL∗∆PL∗)|
∑

x∈X0

|vT
0 x|. (52)

We apply (52) and then use (6) with Q = PL∗∆PL∗/ tr(PL∗∆PL∗) to obtain the inequality:

∑

x∈X1

‖PL∗∆PL∗x‖/
√
2 +

∑

x∈X0

〈

PL∗⊥∆PL∗⊥ , Q̂0xx
T /‖Q̂0x‖

〉

F

≥
∑

x∈X1

‖PL∗∆PL∗x‖/
√
2− | tr(PL∗∆PL∗)|

∑

x∈X0

|vT
0 x| > 0. (53)

We define H1 = {Q ∈ H : QPL∗⊥ = 0} and claim that (7) leads to the following
inequality:

∑

x∈X1

‖Q(PL∗x)‖ >
√
2
∑

x∈X0

‖Q(PL∗x)‖ ∀Q ∈ H1. (54)

Indeed, since the RHS of (54) is a convex function of Q, its maximum is achieved at the
set of all extreme points of H1, which is {Q ∈ R

D×D : Q = vvT ,where v ∈ L∗, ‖v‖ = 1}.
Therefore the maximum of the RHS of (54) is the RHS of (7). Since the minimum of the
LHS of (54) is also the LHS of (7), (54) is proved.

We also claim that (54) can be extended from H1 to allQ ∈ R
D×D such thatQPL∗⊥ = 0.

Indeed, for any Q ∈ R
D×D satisfying QPL∗⊥ = 0 and having the SVD decomposition Q =

UΣVT , we can assign the following matrix Q′ = Q′(Q) ∈ H1: Q′ := VΣVT / tr(VΣVT ).
It is not hard to note that the inequality in (54) holds for Q if and only if it holds for Q′.

By first applying Cauchy’s inequality, then using the defining property of projections
and at last applying (54) with Q = PL∗⊥∆PL∗ (while using its latter extension beyond
H1), we obtain the inequality:

∑

x∈X1

‖PL∗⊥∆PL∗x‖/
√
2 +

∑

x∈X0

〈

PL∗⊥∆PL∗ , Q̂0xx
T /‖Q̂0x‖

〉

F

≥
∑

x∈X1

‖PL∗⊥∆PL∗x‖/
√
2−

∑

x∈X0

‖PL∗⊥∆PL∗x‖

=
∑

x∈X1

‖PL∗⊥∆PL∗(PL∗x)‖/
√
2−

∑

x∈X0

‖PL∗⊥∆PL∗(PL∗x)‖ > 0. (55)

Finally, we combine (53) and (55) and conclude that the RHS of (49) is nonnegative and
consequently (43) holds.
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7.2 Proof of Theorem 2

Assume on the contrary that F is not strictly convex, in particular, there exists 0 < t0 < 1
such that

t0 · F (Q1) + (1− t0) · F (Q2) = F (t0 ·Q1 + (1− t0) ·Q2) for Q1 6= Q2,

or equivalently,

t0 ·
N
∑

i=1

‖Q1xi‖+ (1− t0) ·
N
∑

i=1

‖Q2xi‖ =
N
∑

i=1

‖(t0 ·Q1 + (1− t0) ·Q2)xi‖. (56)

Combining (56) with the fact that ‖Q1xi‖ + ‖Q2xi‖ ≥ ‖(Q1 + Q2)xi‖, we obtain that
t0 · ‖Q1xi‖+(1− t0) · ‖Q2xi‖ = ‖(t0 ·Q1+(1− t0) ·Q2)xi‖ for any 1 ≤ i ≤ N and therefore
there exists a sequence {ci}Ni=1 ⊂ R such that

Q2xi = 0 or Q1xi = ciQ2xi for all 1 ≤ i ≤ N . (57)

We conclude Theorem 2 by considering two different cases. We first assume that
ker(Q1) = ker(Q2). We denote

Q̃1 = Pker(Q1)⊥Q1Pker(Q1)⊥ and Q̃2 = Pker(Q1)⊥Q2Pker(Q1)⊥ .

It follows from (57) that

Q̃1(Pker(Q1)⊥xi) = ci Q̃2(Pker(Q1)⊥xi)

and consequently that Pker(Q1)⊥xi lies in one of the eigenspaces of Q̃−1
1 Q̃2. We claim

that Q̃−1
1 Q̃2 is a scalar matrix. Indeed, if on the contrary Q̃−1

1 Q̃2 is not a scalar matrix,
then {Pker(Q1)⊥xi}Ni=1 lies in a union of several eigenspaces with dimensions summing to

dim(Pker(Q1)⊥) and this contradicts (14). In view of this property of Q̃−1
1 Q̃2 and the fact

that tr(Q̃1) = tr(Q̂1) = 1 we have that Q̃1 = Q̃2 and Q1 = Q2, which contradicts our
current assumption.

Next, assume that ker(Q1) 6= ker(Q2). We will first show that if 1 ≤ i ≤ N is arbitrarily
fixed, then xi ∈ ker(Q2) ∪ ker(Pker(Q1)Q2). Indeed, if xi /∈ ker(Q2), then using (57) we
have Q1xi = ciQ2xi. This implies that ciPker(Q1)Q2xi = Pker(Q1)Q1xi = 0 and thus
xi ∈ ker(Pker(Q1)Q2). That is, X is contained in the union of the 2 subspaces ker(Q2) and
ker(Pker(Q1)Q2). The dimensions of both spaces are less than D. This obvious for ker(Q2),
since tr(Q2) = 1. For ker(Pker(Q1)Q2) it follows from the fact that ker(Q1) 6= ker(Q2) and
thus Pker(Q1)Q2 6= 0. We thus obtained a contradiction to (14).

7.3 Verification of (10) and (11) as Sufficient Conditions and (12) and (13) as

Necessary Ones

We revisit the proof of Theorem 1 and first show that (10) and (11) can replace (6) and
(7) in the first part of Theorem 1. We only deal with the first part of Theorem 1, which
assumes that (9) holds, since (9) guarantees that (10) and (11) are well-defined (see the
discussion in §2.4.1).
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To show that (11) can replace (7), we prove the inequality in (55) using (11) as fol-
lows. Assuming that the SVD of PL∗⊥∆PL∗ is UΣVT , then Q′ := VΣVT / tr(Σ) satisfies
Q′ ∈ H,Q′PL∗⊥ = 0 and ‖Q′x‖ = ‖PL∗⊥∆PL∗x‖/ tr(Σ) = ‖PL∗⊥∆PL∗x‖/‖PL∗⊥∆PL∗‖∗.
Using this fact, we obtain that

∑

x∈X1

‖PL∗⊥∆PL∗x‖ ≥ ‖PL∗⊥∆PL∗‖∗ min
Q′∈H,Q′P

L∗⊥=0

∑

x∈X1

‖Q′x‖. (58)

We also note that

∑

x∈X0

〈

PL∗⊥∆PL∗ , Q̂0xx
T /‖Q̂0x‖

〉

F
=
∑

x∈X0

〈

PL∗⊥∆PL∗ , Q̂0xx
TPL∗/‖Q̂0x‖

〉

F

≥− ‖PL∗⊥∆PL∗‖∗

∥

∥

∥

∥

∥

∥

∑

x∈X0

Q̂0xx
TPL∗/‖Q̂0x‖

∥

∥

∥

∥

∥

∥

. (59)

Therefore (55) follows from (11), (58) and (59). Similarly, one can show that (10) may
replace (6).

One can also verify that (12) and (13) are necessary conditions for exact recovery by
revisiting the proof of Theorem 1 and reversing inequalities.

7.4 Proof of Lemma 3

We first note by symmetry that the minimizer of the LHS of (16) for the needle-haystack
model is Q = PL∗/d. We can thus rewrite (16) in this case as α1 E r1/d > 2

√
2α0 E r0/(D−

d), where the “radii” r1 and r0 are the norms of the normal distributions with covariances
σ2
1d

−1PL∗ and σ2
0D

−1PL∗⊥ respectively. Let r̃1 and r̃2 be the χ-distributed random variables
with d and D − d degrees of freedoms, then (16) obtains the form

α1σ1

d
√
d
E r̃1 >

2
√
2α0σ0

(D − d)
√
D

E r̃0.

Applying (B.7) of Lerman et al. (2012), E r̃1 ≥
√

d/2 and E r̃0 ≤
√
D − d. Therefore (16)

follows from (15).

7.5 Proof of Theorem 4

For simplicity of the proof we first assume that the supports of µ0 and µ1 are contained in
a ball centered at the origin of radius M .

We start with the proof of (9) “in expectation” and then extend it to hold with high
probability. We use the notation FI(Q) and Q̂I defined in (19) and (20) respectively. The
spherical symmetry of µ0,L∗⊥ implies that

Q̂I =
1

D − d
PL∗⊥PT

L∗⊥ (60)

is the unique minimizer of (20). To see this formally, we first note that µ0,L∗⊥ satisfies the
two-subspaces criterion of Coudron and Lerman (2012) for any 0 < γ ≤ 1 (this criterion
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generalizes (14) of this paper to continuous measures) and thus by Theorem 2.1 of Coudron
and Lerman (2012) (whose proof follows directly the one of Theorem 2 here) the solution
of this minimization must be unique. On the other hand, any application of an arbitrary
rotation of L∗ (within R

D) to the minimizer expressed in the RHS of (20) should also be
a minimizer of the RHS of (20). We note that 1

D−dPL∗⊥PT
L∗⊥ is the only element in the

domain of this minimization that is preserved under any rotation of L∗. Therefore, due to
uniqueness, this can be the only solution of this minimization problem.

Let

H2 = {Q ∈ H : QPL∗ = 0, Q � 0 and cond(PL∗⊥QPL∗⊥) ≥ 2}, (61)

where Q � 0 denotes the positive semidefiniteness of Q and cond(PL∗⊥QPL∗⊥) denotes
the condition number of this matrix, that is, the ratio between the largest and lowest
eigenvalues of PL∗⊥QPL∗⊥ , or equivalently, the ratio between the top eigenvalue and the
(D − d)th eigenvalue of Q. Since Q̂I is the unique minimizer of (20) and Q̂I ∈/H2, then

c1 := min
Q∈H2

(FI(Q)− FI(Q̂I)) > 0. (62)

We note that if x is a random variable sampled from µ andQ ∈ H (so that ‖Q‖ ≤ ‖Q‖∗ = 1),
then ‖Qx‖ ≤ M . Applying this fact, (62) and Hoeffding’s inequality, we conclude that for
any fixed Q ∈ H2

F (Q)− F (Q̂I) > c1N/2 w.p. 1− exp(−c21N/2M2). (63)

We also observe that

F (Q1)− F (Q2) ≤ ‖Q1 −Q2‖
N
∑

i=1

‖x‖ ≤ ‖Q1 −Q2‖N M . (64)

Combining (63) and (64), we obtain that for all Q in a ball of radius r1 := c1/2M centered
around a fixed element in H2: F (Q)− F (Q̂I) > 0 w.p. 1− exp(−c21N/2M2).

We thus cover the compact space H2 by an r1-net. Denoting the corresponding covering
number by N(H2, r1) and using the above observation we note that w.p.
1−N(H2, r1) exp(−c21N/2M2)

F (Q)− F (Q̂I) > 0 for all Q ∈ H2. (65)

The definition of Q̂0 (that is, (8)) implies that F (Q̂0) ≤ F (Q̂I). Combining this obser-
vation with (65), we conclude that w.h.p. Q̂0 ∈/H2. We also claim that Q̂0 � 0 (see, e.g.,
the proof of Lemma 14, which appears later). Since Q̂0 ∈/H2 and Q̂0 � 0, Q̂0 satisfies the
following property w.h.p.:

cond(PT
L∗⊥Q̂0P

T
L∗⊥) < 2. (66)

Consequently, (9) holds w.h.p. (more precisely, w.p. 1−N(H2, c1/2M) exp(−c21N/2M2)).

Next, we verify (10) w.h.p. as follows. Since Q̂0 is symmetric and Q̂0PL∗ = 0 (see (8)),
then

Q̂0 = PL∗⊥Q̂0PL∗⊥ . (67)
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Applying (67), basic inequalities of operators’ norms and (66), we bound the RHS of (10)
from above as follows:

√
2

∥

∥

∥

∥

∥

∥

∑

x∈X0

Q̂0xx
TPL∗⊥/‖Q̂0x‖

∥

∥

∥

∥

∥

∥

=
√
2

∥

∥

∥

∥

∥

∥

PL∗⊥Q̂0PL∗⊥ ·
∑

x∈X0

PL∗⊥xxTPL∗⊥/‖Q̂0x‖

∥

∥

∥

∥

∥

∥

≤
√
2 ·
∥

∥

∥PL∗⊥Q̂0PL∗⊥

∥

∥

∥ ·

∥

∥

∥

∥

∥

∥

∑

x∈X0

PL∗⊥xxTPL∗⊥/‖Q̂0x‖

∥

∥

∥

∥

∥

∥

(68)

≤
√
2 · λmax(PL∗⊥Q̂0PL∗⊥) · ‖

∑

x∈X0

PL∗⊥xxTPL∗⊥/‖λmin(PL∗⊥Q̂0PL∗⊥)PL∗⊥x‖‖

<
√
8
∥

∥

∥

∑

x∈X0

PL∗⊥xxTPL∗⊥/‖PL∗⊥x‖
∥

∥

∥
= max

u∈SD−1∩L∗⊥

√
8uT (

∑

x∈X0

PL∗⊥xxTPL∗⊥/‖PL∗⊥x‖)u.

Therefore to prove (10), we only need to prove that with high probability

min
Q∈H,QP

L∗⊥=0

∑

x∈X1

‖Qx‖ > max
u∈SD−1∩L∗⊥

√
8uT (

∑

x∈X0

PL∗⊥xxTPL∗⊥/‖PL∗⊥x‖)u. (69)

We will prove that the LHS and RHS of (69) concentrates w.h.p. around the LHS
and RHS of (16) respectively and consequently verify (69) w.h.p. Let ǫ1 be the difference
between the RHS and LHS of (69). Theorem 1 of Coudron and Lerman (2012) implies that
the LHS of (69) is within distance ǫ1/4 to the RHS of (16) with probability 1−C exp(−N/C)
(where C is a constant depending on ǫ1, µ and its parameters).

The concentration of the RHS of (16) can be concluded as follows. The spherical sym-
metry of µ0,L∗⊥ implies that the expectation (w.r.t. µ0) of

∑

x∈X0
PL∗⊥xxTPL∗⊥/‖PL∗⊥x‖

is a scalar matrix within L∗⊥, that is, it equals ρµPL∗⊥xxTPL∗⊥/‖PL∗⊥x‖ for some ρµ ∈ R.
We observe that

Eµ0 tr(PL∗⊥xxTPL∗⊥/‖PL∗⊥x‖) = Eµ0 ‖PL∗⊥x‖
and thus conclude that ρµ = Eµ0 ‖PL∗⊥x‖/(D − d). Therefore, for any u ∈ SD−1 ∩ L∗⊥

Eµ0 u
T (PL∗⊥xxTPL∗⊥/‖PL∗⊥x‖)u = Eµ0 ‖PL∗⊥x‖/(D − d) =

∫

‖PL∗⊥x‖ dµ0(x)/(D − d).

(70)
We thus conclude from (70) and Hoeffding’s inequality that for any fixed u ∈ SD−1∩L∗⊥

the function
√
8uT (

∑

x∈X0
PL∗⊥xxTPL∗⊥/‖PL∗⊥x‖)u is within distance ǫ1/4 to the RHS of

(16) with probability 1− C exp(−N/C) (where C is a constant depending on ǫ1, µ and its
parameters). Furthermore, applying ǫ-nets and covering (i.e., union bounds) arguments with
regards to SD−1 ∩ L∗⊥, we obtain that for all u ∈ SD−1 ∩ L∗⊥,√
8uT (

∑

x∈X0
PL∗⊥xxTPL∗⊥/‖PL∗⊥x‖)u is within distance ǫ1/2 to the RHS of (16) with

probability 1 − C exp(−N/C) (where C is a constant depending on ǫ1, µ and its parame-
ters). In particular, the RHS of (69) is within distance ǫ1/2 to the RHS of (16) with the
same probability. We thus conclude (69) with probability 1− C ′ exp(−N/C ′).

Similarly we can also prove (11), noting that the expectation (w.r.t. µ0) of
Q̂0xx

TPL∗/‖Q̂0x‖ is 0, since Q̂0x/‖Q̂0x‖ and xTPL∗ are independent when x is restricted
to lie in the complement of L∗ (that is, x ∈ X0).
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If we remove the assumption of bounded supports (with radius M), then we need to
replace Hoeffding’s inequality with the Hoeffding-type inequality for sub-Gaussian measures
of Proposition 5.10 of Vershynin (2012), where in this proposition ai = 1 for all 1 ≤ i ≤ n.

We emphasize that our probabilistic estimates are rather loose and can be interpreted
as near-asymptotic; we thus did not fully specify their constants. We clarify this point for
the probability estimate we have for (9), that is, 1 − N(H2, c1/2M) exp(−c21N/2M2). Its
constant N(H2, r1) can be bounded from above by the covering number N(H0, r1) of the
larger set H0 = {Q ∈ R

D×D : |Qi,i| ≤ 1}, which is bounded from above by (8/r1)
D(D−1)/2

(see, e.g., Lemma 5.2 of Vershynin, 2012). This is clearly a very loose estimate that cannot
reveal interesting information, such as, the right dependence of N on D and d in order to
obtain a sufficiently small probability.

At last, we explain why (14) holds with probability 1 if there are at least 2D − 1
outliers. We denote the set of outliers by {y1,y2, · · · ,yN0}, where N0 ≥ 2D − 1, and
assume on the contrary that (14) holds with probability smaller than 1. Then, there exists
a sequence {ij}D−1

j=1 ⊂ {1, 2, 3, · · · , N0} such that the subspace spanned by the D− 1 points
yi1 ,yi2 , · · · ,yiD−1 contains another outlier with positive probability. However, this is not
true for haystack model and thus our claim is proved.

7.5.1 Proof of the Extension of Theorem 4 to the Asymmetric Case

We recall our assumptions that µ0 is a sub-Gaussian distribution with covariance Σ0 and
that Q̂I is unique. We follow the proof of Theorem 4 in §7.5 with the following changes.
First of all, we replace the requirement

cond(PL∗⊥QPL∗⊥) ≥ 2. (71)

in (61) with the following one:

cond(PL∗⊥QPL∗⊥) ≥ 2 · cond(PL∗⊥Q̂IPL∗⊥). (72)

We note that (71) follows from (72) in the symmetric case. Indeed, in this case the expression
of Q̂I in (60) implies that the RHS of (72) is 2. Similarly, instead of (66) we prove that

cond(PT
L∗⊥Q̂0P

T
L∗⊥) < 2 · cond(PL∗⊥Q̂IPL∗⊥).

Second of all, in the third inequality of (68) the term
√
2λmax(PL∗⊥Q̂0PL∗⊥)/λmax(PL∗⊥Q̂0PL∗⊥)

needs to be bounded above by
√
8 cond(PL∗⊥Q̂IPL∗⊥), instead of

√
8. We can thus conclude

the revised theorem, in particular, the last modification in the proof clarifies why we need
to multiply the RHS of (16) by cond(PL∗⊥Q̂IPL∗⊥), which is the ratio between the largest
eigenvalue of PL∗⊥Q̂IPL∗⊥ and the (D − d)th eigenvalue of PL∗⊥Q̂IPL∗⊥ .

7.6 Proof of Theorem 5

This proof follows ideas of Lerman et al. (2012). We bound from below the LHS of (7) by
applying (A.15) of Lerman et al. (2012) as follows

min
Q∈H,QP

L∗⊥=0

∑

x∈X1

‖Qx‖ ≥ 1√
d

min
v∈L∗,‖v‖=1

∑

x∈X1

|vTx|. (73)
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We denote the number of inliers sampled from µ1 by N1 and the number of outliers sampled
from µ0 byN0(= N−N1). We bound from below w.h.p. the RHS of (73) by applying Lemma
B.2 of Lerman et al. (2012) in the following way:

1√
d

min
v∈L∗,‖v‖=1

∑

x∈X1

|vTx| ≥ σ1
d

(

√

2/πN1 − 2
√

N1d− t
√

N1

)

w.p. 1− e−t2/2. (74)

By following the proof of Lemma B.2 of Lerman et al. (2012) we bound from above w.h.p. the
RHS of (7) as follows

max
v∈L∗,‖v‖=1

∑

x∈X0

|vTx| ≤ σ0√
D

(

√

2/πN0 + 2
√

N0d+ t
√

N0

)

w.p. 1− e−t2/2. (75)

We need to show w.h.p. that the RHS of (75) is strictly less than the RHS of (74). We
note that Hoeffding’s inequality implies that

N1 > α1N/2 w.p. 1− e−α2
1N/2 and |N0 − α0N | < α0N/2 w.p. 1− 2e−α2

0N/2. (76)

Furthermore, (18) and (76) imply that

d < N1/4 w.p. 1− e−α2
1N/2 and d < N0/4 w.p. 1− e−α2

0N/2. (77)

Substituting t =
√
N1/10 (>

√
α1N/20 w.p. 1 − e−α2

1N/2) in (74) and t =
√
N0/10

(>
√
α0N/20 w.p. 1− 2e−α2

0N/2) in (75) and combining (17) and (73)-(77), we obtain that
(7) holds w.p. 1 − e−α2

1N/2 − 2e−α2
0N/2 − e−α1N/800 − e−α0N/800. We can similarly obtain

that (6) holds with the same probability.

7.6.1 Proof of the Extension of Theorem 5 to the Asymmetric Case

We assume the generalized needle-haystack model of §2.6.2. The proof of Theorem 5 in
§7.6 immediately extends to this model, where σ0 in the RHS of (75) needs to be replaced
with

√

λmax(Σ0) (recall that λmax(Σ0) denotes the largest eigenvalue of Σ0). Consequently,
Theorem 5 still holds in this case when replacing σ0 in the RHS of (17) with

√

λmax(Σ0).

7.7 Proof of Theorem 6

We first establish the following lemma.

Lemma 14 The minimizer of F (Q), Q̂, is a semi-definite positive matrix.

Proof We assume that Q̂ has some negative eigenvalues and show that this assumption
contradicts the defining property of Q̂, that is, being the minimizer of F (Q). We denote
the eigenvalue decomposition of Q̂ by Q̂ = V

Q̂
Σ

Q̂
VT

Q̂
and define Σ+

Q̂
= max(Σ

Q̂
, 0) and

Q̂+ = V
Q̂
Σ+

Q̂
VT

Q̂
/ tr(Σ+

Q̂
) ∈ H. Then tr(Σ+

Q̂
) > tr(Σ

Q̂
) = tr(Q̂) = 1 and for any x ∈ R

D

we have

‖Q̂+x‖ < tr(Σ+

Q̂
)‖Q̂+x‖ = ‖Σ+

Q̂
(VT

Q̂
x)‖ ≤ ‖Σ

Q̂
(VT

Q̂
x)‖ = ‖Q̂x‖.

Summing it over all x ∈ X , we conclude the contradiction F (Q̂+) < F (Q̂).
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In order to prove Theorem 6 we first notice that by definition and the connection of γ0,
γ0 with second derivative of F (Q)

FX (Q̃)− FX (Q̃) ≥ Nγ0‖Q̃− Q̂‖2F , (78)

and

FX (Q̃)− FX (Q̃) ≥ Nγ′0‖Q̃− Q̂‖2. (79)

Next, we observe that

|FX (Q̂)− FX̃ (Q̂)|≤
N
∑

i=1

∣

∣

∣
‖Q̂x̃i‖−‖Q̂xi‖

∣

∣

∣
≤

N
∑

i=1

‖Q̂(x̃i − xi)‖≤
N
∑

i=1

‖x̃i − xi‖≤
N
∑

i=1

ǫi

and similarly |FX (Q̃)− FX̃ (Q̃)| ≤∑N
i=1 ǫi. Therefore,

FX (Q̃)− FX (Q̂) = (FX̃ (Q̃)− FX̃ (Q̂)) + (FX (Q̃)− FX̃ (Q̃)) + (FX̃ (Q̂)

−FX (Q̂)) ≤ 0 + |FX (Q̃)− FX̃ (Q̃)|+ |FX̃ (Q̂)− FX (Q̂)| ≤ 2
N
∑

i=1

ǫi. (80)

Therefore (23) follows from (78), (79) and (80). Applying the Davis-Kahan perturbation
Theorem (Davis and Kahan, 1970) to (23), we conclude (24).

7.7.1 Implication of Theorem 6 to Dimension Estimation

Theorem 6 implies that we may properly estimate the dimension of the underlying subspace
for low-dimensional data with sufficiently small perturbation. We make this statement more
precise by assuming the setting of Theorem 6 and further assuming that Q̂ is a low-rank
matrix with ker(Q̂) = L∗. We note that the (D − d + 1)st eigenvalue of Q̂ is 0. Thus
applying the following eigenvalue stability inequality (Tao, 2012, (1.63)):

|λi(A+B)− λi(A)| ≤ ‖B‖, (81)

we obtain that the (D − d + 1)st eigenvalue of Q̃ is smaller than
√

2
∑N

i=1 ǫi/γ0, and the

(D − d)th eigengap of Q̃ is larger than νD−d − 2
√

2
∑N

i=1 ǫi/γ0 (recall that νD−d is the

(D − d)th eigengap of Q̂). This means that when the noise is small and the conditions of
Theorem 1 hold, then we can estimate the dimension of the underlying subspace for X̃ from
the number of small eigenvalues.

7.7.2 Improved Bounds in a Restricted Setting

We assume that ǫi = O(ǫ) for all 1 ≤ i ≤ N , where ǫ is sufficiently small, and further
assume that rank(Q̂) = D. We show that in this special case the norm of Q̂− Q̃ is of order
O(ǫ) instead of order O(

√
ǫ) that is specified in Theorem 6.
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We note that since Q̂ is of full rank, then the first and second directional derivative of
F are well-defined in a sufficiently small neighborhood around Q̂. Therefore, if ∆ ∈ R

D×D

and ‖∆‖ is sufficiently small then

F ′
X (Q̂)− F ′

X (Q̂+∆) = O(‖∆‖). (82)

Furthermore, we note by basic calculations that

F ′
X (Q)− F ′

X̃ (Q) = O(ǫ). (83)

Combining (83) with the following facts: F ′
X (Q̂) = 0 and F ′

X̃ (Q̃) = 0, we obtain that

F ′
X (Q̂)− F ′

X (Q̃) = F ′
X̃ (Q̃)− F ′

X (Q̃) = O(ǫ). (84)

At last, the combination of (82) and (84) implies that ‖Q̂−Q̃‖ = O(ǫ). Clearly, the spectral
norm of Q̂− Q̃ can be replaced with any other norm, in particular, the Frobenius norm.

7.8 Proof of Proposition 7

We recall the function FI , which was defined in (19), and the notation FI,1
′′(Q,∆) should

be clear, where now FI replaces F .
The law of large numbers implies that F1

′′(Q,∆)/N → FI
′′(Q,∆) almost surely for

any ∆ and Q (see also related bounds in Coudron and Lerman 2012). Since Q and ∆ lie
in compact space, we conclude (26) for γ0 and c0; the proof is identical for γ′0 and c′0.

7.9 Proof of Theorem 8

The theorem follows from the observation that 0 ≤ F (Q) − Fδ(Q) ≤ Nδ/2 for all Q ∈ H

and the proof of Theorem 6.

7.10 Proof of Theorem 9

It is sufficient to verify that

If Ã ∈ R
D×D with Im(Ã) = L∗, then L(Ã+ ηI) → ∞ as η → 0. (85)

Indeed, since L(A) is a continuous function, (85) implies that L(Ã) is undefined (or infinite)
and therefore Ã is not the minimizer of (28) as stated in Theorem 9.

We fix a1 < limx→∞ xu(x) and note that Condition D0 (w.r.t. L∗) implies that

|X0|/N > (D − d)/a1. (86)

Condition M implies that there exists x1 such that for any x > x1: xu(x) ≥ a1 and therefore
(recalling that u = ρ′) ρ(x) ≥ a1 ln(x− x1)/2 + u(x1)/2. Thus for any xi ∈ X0, we have

ρ(xT
i (Ã+ ηI)−1xi) ≥ a1 ln(1/η − x1)/2 + Ci for some constant Ci ≡ Ci(xi, Ã) (87)

and
N

2
log(det(A)) ≤ NC0 + (D − d)/2 ln(η) for some C0 ≡ C0(Ã). (88)

Equation (85) thus follows from (86)-(88) and the theorem is concluded.
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7.11 Proof of Theorem 10

The derivative of the energy function in the RHS of (32) is QXTX + XTXQ. Using the
argument establishing (36) and the fact that Q̂2 is the minimizer of (32), we conclude
that QXTX + XTXQ is a scalar matrix. We then conclude (33) by using the argument
establishing (37) as well as the following two facts: tr(Q̂2) = 1 and X is full rank (so the
inverse of XTX exists).

7.12 Proof of Theorem 11

We frequently use here some of the notation introduced in §4.1, in particular, I(Q), L(Q)
and T (Q). We will first prove that F (Qk) ≥ F (Qk+1) for all k ≥ 1. For this purpose, we
use the convex quadratic function:

G(Q,Q∗) =
1

2

N
∑

i=1
i/∈I(Q∗)

(

‖Qxi‖2/‖Q∗xi‖+ ‖Q∗xi‖
)

.

Following the same derivation of (44) and (36), we obtain that

d

dQ
G(Q,Qk)

∣

∣

Q=Qk+1
=






Qk+1







N
∑

i=1
i/∈I(Qk)

xix
T
i

‖Qkxi‖






+







N
∑

i=1
i/∈I(Qk)

xix
T
i

‖Qkxi‖






Qk+1






/2.

We let Ak =
∑N

i=1, i/∈I(Qk)
xix

T
i

‖Qkxi‖ , ck = PL(Qk)⊥
A−1

k PL(Qk)⊥
and for any symmetric ∆ ∈

R
D×D with tr(∆) = 0 and PL(Qk)∆ = 0 we let ∆0 = P̃T

L(Qk)⊥
∆P̃L(Qk)⊥

. We note that

tr(∆0) = 〈∆0, I〉F =
〈

P̃T
L(Qk)⊥

∆P̃L(Qk)⊥
, I
〉

F
=
〈

∆, P̃L(Qk)⊥
P̃T

L(Qk)⊥

〉

F

=
〈

∆, I−PL(Qk)

〉

F
= 〈∆, I〉F −

〈

∆,PL(Qk)

〉

F
= 〈∆, I〉F = tr(∆) = 0.

Consequently, we establish that the derivative of G(Q,Qk) at Qk+1 in the direction ∆ is
zero as follows.

〈(Qk+1Ak +AkQk+1)/2,∆〉F = 〈Qk+1Ak,∆〉F = ck

〈

PL(Qk)⊥
A−1

k PL(Qk)⊥
Ak,∆

〉

F

=ck

〈

PL(Qk)⊥
A−1

k PL(Qk)⊥
Ak, P̃L(Qk)⊥

∆0P̃
T
L(Qk)⊥

〉

F

=ck

〈

(P̃T
L(Qk)⊥

A−1
k P̃L(Qk)⊥

)(P̃T
L(Qk)⊥

AkP̃L(Qk)⊥
),∆0

〉

F
= ck 〈I,∆0〉F = 0 .

This and the strict convexity of G(Q,Qk) (which follows from Sp({xi}i/∈I(Qk)) = R
D using

(14)) imply that Qk+1 is the unique minimizer of G(Q,Qk) among all Q ∈ H such that
PL(Qk)Q = 0.
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Combining this with the following two facts: Qk+1xi = 0 for any i ∈ I(Qk) and
G(Qk,Qk) = F (Qk), we conclude that

F (Qk+1) =
∑

i/∈I(Qk)

‖Qk+1xi‖ =
∑

i/∈I(Qk)

‖Qk+1xi‖‖Qkxi‖
‖Qkxi‖

≤
∑

i/∈I(Qk)

‖Qk+1xi‖2 + ‖Qkxi‖2
2‖Qkxi‖

= G(Qk+1,Qk) ≤ G(Qk,Qk) = F (Qk). (89)

Since F is positive, F (Qk) converges and

F (Qk)− F (Qk+1) → 0 as k → ∞. (90)

Applying (89) we also have that

F (Qk)−F (Qk+1)≥G(Qk,Qk)−G(Qk+1,Qk)=
1

2

∑

i/∈I(Qk)

‖(Qk −Qk+1)xi‖2/‖Qkxi‖. (91)

We note that if Qk 6= Qk+1, then Sp({xi}i/∈I(Qk)) = R
D ⊃ ker(Qk − Qk+1) and

1/‖Qkxi‖ ≥ 1/maxi ‖xi‖. Combining this observation with (90) and (91) we obtain that

‖Qk −Qk+1‖2 → 0 as k → ∞. (92)

Since for all k ∈ N, Qk is nonnegative (this follows from its defining formula (39)) and
tr(Qk) = 1, the sequence {Qk}k∈N lies in a compact space (of nonnegative matrices) and it
thus has a converging subsequence. Assume a subsequence of {Qk}k∈N, which converges to
Q̃. We claim the following property of Q̃:

Q̃ = argmin
Q∈H0

F (Q), where H0 := {Q ∈ H : kerQ ⊇ L(Q̃)}. (93)

In order to prove (93), we note that (89) and the convergence of the subsequence imply
that F (Q̃) = F (T (Q̃)). Combining this with (89) (though replacing Qk and Qk+1 in (89)
with Q̃ and T (Q̃) respectively) we get that G(T (Q̃), Q̃) = G(Q̃, Q̃). We conclude that
T (Q̃) = Q̃ from this observation and the following three facts: 1) Q = Q̃ is the unique
minimizer of G(Q, Q̃) among all Q ∈ H, 2) PL(Q̃)Q̃ = 0, 3) Q = T (Q̃) is the unique

minimizer of G(Q, Q̃) among all Q ∈ H such that PL(Q̃)Q = 0 (we remark that F (Q)

is strictly convex in H and consequently also in H0 by Theorem 2). Therefore, for any
symmetric ∆ ∈ R

D×D with tr(∆) = 0 and PL(Q̃)∆ = 0, the directional derivative at Q̃ is
0:

0 =

〈

∆,
d

dQ
G(Q, Q̃)

∣

∣

Q=Q̃

〉

F

=

〈

∆, Q̃
∑

i/∈I(Q̃)

xix
T
i

‖Q̃xi‖

〉

F

. (94)

We note that (94) is the corresponding directional derivative of F (Q) when restricted to
Q ∈ H0 and we thus conclude (93).

Next, we will prove that {Qk}k∈N converge to Q̃ by proving that there are only finite
choices for Q̃. In view of (93) and the strict convexity of F (Q) in H0, any limit Q̃ (of
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a subsequence as above) is uniquely determined by I(Q̃). Since the number of choices
for I(Q̃) is finite (independently of Q̃), the number of choices for Q̃ is finite. That is,
Y := {Q ∈ H : F (Q) = F (T (Q))} is a finite set. Combining this with (92) and the
convergence analysis of the sequence {Qk}k∈N (see Ostrowski, 1966, Theorem 28.1), we
conclude that {Qk}k∈N converges to Q̃.

At last, we assume that Q̃xi 6= 0 for all 1 ≤ i ≤ N . We note that I(Q̃) = ∅ and thus
Q̃ = Q̂ by (93). The proof for the rate of convergence follows the analysis of generalized
Weiszfeld’s method by Chan and Mulet (1999) (in particular see §6 of that work). We
practically need to verify Hypotheses 4.1 and 4.2 (see §4 of that work) and replace the
functions F and G in that work by F (Q) and

G̃(Q,Q∗) =
N
∑

i=1

(

‖Qxi‖2/‖Q∗xi‖+ ‖Q∗xi‖
)

respectively. We note that the functions G̃ and G (defined earlier in this work) coincide
in the following way: G̃(Q,Qk) = G(Q,Qk) for any k ∈ N (this follows from the fact
that Qkxi 6= 0 for all k ∈ N and 1 ≤ i ≤ N ; indeed, otherwise for some i, Qjxi = 0

for j ≥ k by (39) and this leads to the contradiction Q̂xi = 0). We remark that even
though Chan and Mulet (1999) consider vector-valued functions, their proof generalizes
to matrix-valued functions as here. Furthermore, we can replace the global properties
of Hypotheses 4.1 and 4.2 of Chan and Mulet (1999) by the local properties in B(Q̂, δ0)
for any δ0 > 0, since the convergence of Qk implies the existence of K0 > 0 such that
Qk ∈ B(Q̂, δ0) for all k > K0. In particular, there is no need to check condition 2 in
Hypothesis 4.1. Condition 1 in Hypothesis 4.1 holds since F (Q) is twice differentiable in
B(Q̂, δ0) (which follows from the assumption on the limit Q̃ ≡ Q̂ and the continuity of the
derivative). Conditions 1-3 in Hypothesis 4.2 are verified by the fact that C of Hypothesis
4.2 satisfies C(Q∗) =

∑N
i=1 xix

T
i /‖Q∗xi‖ and Q∗xi 6= 0 when Q∗ ∈ B(Q̂, δ0). Condition 3

in Hypothesis 3.1 and condition 4 in Hypothesis 4.2 are easy to check.

7.13 Proof of Theorem 12

The proof follows from the second part of the proof of Theorem 11, while using instead of
G̃(Q,Q∗) the function

Gδ(Q,Q∗) =
1

2

N
∑

i=1,‖Q∗xi‖≥δ

(

‖Qxi‖2/‖Q∗xi‖+ ‖Q∗xi‖
)

+

N
∑

i=1,‖Q∗xi‖<δ

(‖Qxi‖2/2δ + δ/2).

7.14 Proof of Theorem 13

We note that the minimization of F (Q) over all Q ∈ H such that QPL̂⊥ = 0 in Algo-

rithm 3 can be performed at each iteration with respect to the projected data: P̃L̂(X ) =

{P̃L̂x1, P̃L̂x2, · · · , P̃L̂xN}.
We note that conditions (6) and (7) hold for P̃L̂(X ) with any L̂ ⊇ L∗. Therefore,

Theorem 1 implies that u ⊥ L∗ and L̂ ⊇ L∗ in each iteration. Since dim(L̂) decreases by
one in each iteration, dim(L̂) = d in D − d iterations and thus L̂ = L∗.
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8. Conclusion

We proposed an M-estimator for the problems of exact and near subspace recovery. Sub-
stantial theory has been developed to quantify the recovery obtained by this estimator as
well as its numerical approximation. Numerical experiments demonstrated state-of-the-art
speed and accuracy for our corresponding implementation on both synthetic and real data
sets.

This work broadens the perspective of two recent ground-breaking theoretical works
for subspace recovery by Candès et al. (2011) and Xu et al. (2012). We hope that it will
motivate additional approaches to this problem.

There are many interesting open problems that stem from our work. We believe that by
modifying or extending the framework described in here, one can even yield better results
in various scenarios. For example, we have discussed in §1.2 the modification by Lerman
et al. (2012) suggesting tighter convex relaxation of orthogonal projectors when d is known.
We also discussed in §1.2 adaptation by Wang and Singer (2013) of the basic ideas in here
to the different synchronization problem. Another direction was recently followed up by
Coudron and Lerman (2012), where they established exact asymptotic subspace recovery
under specific sampling assumptions, which may allow relatively large magnitude of noise.
It is interesting to follow this direction and establish exact recovery when using in theory
a sequence of IRLS regularization parameters {δi}i∈N approaching zero (in analogy to the
work of Daubechies et al. 2010).

An interesting generalization that was not pursued so far is robust data modeling by
multiple subspaces or by locally-linear structures. It is also interesting to know whether
one can adapt the current framework so that it can detect linear structure in the presence
of both sparse elementwise corruption (as in Candès et al. 2011) and the type of outliers
addressed in here.
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n: au-delà des graphes
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