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In recent years, a lot of vulnerabilities of smart contracts have been found. Hackers used these vulnerabilities to attack the
corresponding contracts developed in the blockchain system such as Ethereum, and it has caused lots of economic losses.
*erefore, it is very important to find out the potential problems of the smart contracts and develop more secure smart contracts.
As blockchain security events have raised more important issues, more and more smart contract security analysis methods have
been developed. Most of these methods are based on traditional static analysis or dynamic analysis methods. *ere are only a few
methods that use emerging technologies, such as machine learning. Some models that use machine learning to detect smart
contract vulnerabilities cost much time in extracting features manually. In this paper, we introduce a novel machine learning-
based analysis model by introducing the shared child nodes for smart contract vulnerabilities. We build the Abstract-Syntax-Tree
(AST) for smart contracts with some vulnerabilities from two data sets including SmartBugs and SolidiFI-benchmark. *en, we
build the Abstract-Syntax-Tree (AST) of the labeled smart contract for data sets named Smartbugs-wilds. Next, we get the shared
child nodes from both of the ASTs to obtain the structural similarity, and then, we construct a feature vector composed of the
values that measure structural similarity automatically to build our machine learningmodel. Finally, we get a KNNmodel that can
predict eight types of vulnerabilities including Re-entrancy, Arithmetic, Access Control, Denial of Service, Unchecked Low Level
Calls, Bad Randomness, Front Running, and Denial of Service.*e accuracy, recall, and precision of our KNNmodel are all higher
than 90%. In addition, compared with some other analysis tools including Oyente and SmartCheck, our model has higher
accuracy. In addition, we spent less time for training .

1. Introduction

In recent years, blockchain technology has attracted more
and more attention. Blockchain technology represents a
fully distributed public ledger and a peer-to-peer platform
that makes use of cryptography to securely host applica-
tions, transfer digital currencies, messages, and store data
[1]. Bitcoin, proposed by Nakamoto in 2008 [2], is the
representative blockchain application in the early stage [3].
*e stage is often called Blockchain 1.0. Ethereum, which
represents the blockchain application of the next stage, is
what we call blockchain 2.0. Compared with Bitcoin,
Ethereum proposed a novel technology named smart
contract. A smart contract is the core of Ethereum, which
enables developers to program their own applications in an

immune and low-cost manner on the basis of blockchain
structure [4]. *ey are automatically enforced by the
consensus mechanism of the blockchain without relying
on a trusted authority [4]. Once the smart contract was
developed on Ethereum, it could not be changed. Everyone
can get the source code of smart contracts developed in
Ethereum. Because of its’ openness, the smart contract has
become the target of many attackers. Since the first
Ethereum block was excavated in 2015, a large number of
security incidents have occurred. *e most famous attack
event was the DAO attack [5] in June 2016, which stole
nearly 3.5 million ethers from Ethereum. As shown in
Table 1, there are so many vulnerabilities of smart con-
tracts for Ethereum. So before smart contracts are released
in the blockchain system, it is very important to find
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vulnerabilities existing in smart contracts in advance for
the security of the blockchain system.

For protecting and checking the security of the smart
contract, some code analysis methods were proposed. *ese
methods can mainly be divided into two categories: static
analysis methods and dynamic analysis methods. Common
dynamic analysis methods include dynamic fuzzing, taint
tracking, and so on. Traditional static analysis methods
include data flow analysis, static symbolic execution, etc.
Fuzzing is a technique for automatically and quickly gen-
erating test inputs and running them against a target pro-
gram to uncover security vulnerabilities [6]. Symbolic
execution is a natural extension of normal execution, pro-
viding the normal computations as a special case [7]. Dy-
namic analysis methods need to execute smart contracts in
the real blockchain system. *e method requires expert
knowledge of smart contracts, such as the syntax and se-
mantics of smart contracts. *e process of dynamic analysis
is very complex because it needs to interact with the real-
time blockchain environment. Static analysis methods do
not need to run the smart contracts in the real blockchain
system. *ese methods just need source code or bytecode of
the smart contract. *e static analysis uses a compliance
pattern to check the vulnerability of a contract [8]. In order
to analyze smart contracts more accurately, static analysis
methods often need to provide a lot of matching rules for
their pattern. *erefore, both dynamic analysis and static
analysis are time-consuming.

In this paper, we propose a model that uses machine
learning to analyze the smart contract. Because we get AST
(abstract-syntax-tree) from solidity source code, we do not
need to execute the smart contract in the real Ethereum
system, which is similar to the static analysis method. But we
do not make a lot of rules or patterns to check the source
code. *is method extracts some features from the AST of
the smart contract. We will introduce these features and the
process of extracting them in Section 3. *en, we use these
features to build our machine learning model by applying
some machine learning classification algorithms such as
KNN [9] and so on. Once we have built our model, we can
use it to predict whether the smart contract has the vul-
nerability.*e process of predicting is quicker than the static
analysis method and dynamic analysis method. Some tools
such as SoliAudit [10] extract features from opcodes directly
and then combine machine learning with code analysis to
detect smart contract’s vulnerabilities. *ere are still some
models that draw features from the AST and CFG (control-

flow-graph) and use machine learning for smart contract
security analysis [11]. When using these methods, some
appropriate feature attributes need to be chosen manually by
observing the statistical rules of data they collect. We pro-
pose different ways to extract features using shared child
nodes. We firstly collect some smart contracts with vul-
nerabilities. *en, we collect a lot of smart contracts with
Etherscan, from which we can get the solidity source code in
the real Ethereum. Finally, we compare the structural
similarity [12] between ASTs of the smart contract with
vulnerability and that of smart contract to test in Etherscan
to determine whether there are vulnerabilities in these smart
contracts we want to analyze. So we do not need to choose
some features manually. Our method predicted many smart
contracts’ vulnerabilities with overall accuracy, recall, and
precision of 90%, which is much higher than that of some
common smart contract analysis tools such as Oyente and
SmartCheck.

*e remainder of this paper is organized as follows.
Section 2 introduces the overview of smart contract security.
We describe the methodology and implementation of our
method in Section 3. Subsequently, in Section 4, we present
the result of our experiment and evaluate the accuracy,
precision, and recall of themethod.*en, we list the common
analysis models and compare them with our novel model in
Section 5. Finally, we conclude the paper in Section 6.

2. Background

In this section, we introduce the background and overview
of smart contract security. Firstly, we list some famous
vulnerable Solidity codes and the causes of these vulnera-
bilities. *en, we offer some existing tools that can analyze
the security of smart contracts.

2.1. Vulnerabilities of Smart Contract. Firstly, we will in-
troduce some famous vulnerabilities of the smart contract
and the cause of them. Since now Solidity is the most
common language used to write smart contract, we mainly
present some smart contract written in Solidity. Many of
these vulnerabilities are described in Table 1.

2.1.1. Re-Entrancy. Re-entrancy is the primary culprit of the
DAO attack. Figure 1 gives an example of the solidity source
code with Re-entrancy vulnerability. We call this contract
A. *e cause of re-entrancy is in Line 11 and Line 12. Firstly,
msg.sender.call.value is a function by which a smart con-
tract can send ETH to the callers’ address (msg.sender) that
invokes the withdraw function. But this function is more
vulnerable compared to transfer (another function that can
send ETH from smart contract to the invoker). It does not
limit the value of the gas that is generated in the process of
the transaction. So we can take advantage of the fallback
function to start our attack. Figure 2 shows the corre-
sponding attack smart contract of the example in Figure 1,
which we call B. *e fallback function lies in the 11th line of
the code. Every time a smart contract gets ETH from other
smart contracts, it will execute the fallback function.

Table 1: DASP TOP 8.

Num Vulnerability category Security event

1 Re-entrancy THE DAO
2 Arithmetic BeautyChain
3 Access control ICON
4 Denial of services GovernMental
5 Bad randomness SmartBillions lottery
6 Front running ERC-20
7 Unchecked low level calls King of the ether
8 Short address Unkown exchanges
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*erefore, the attackers invoke withdraw function of Fig-
ure 1 in their own fallback function. *en, B can use the
fallback function to let A send ETH to B until A has no
enough ETH.

2.1.2. Arithmetic. As a common high-risk vulnerability,
arithmetic referred to integer overflow and integer under-
flow, which caused the BEC attack with a huge loss [13]. *e
attack scenario of arithmetic is shown in Figure 3. Line 9 of
this attack scenario requires that the Token of their caller
must be greater than the value that he wants to transfer to
others. Suppose that balances[msg.sender] � 0 and value
� 1, we can get that balances[msg.sender]< value. But in
fact balances[msg.sender] − valuevalue � 1. We can bypass
the rules of Line 9 in Figure 3 easily.

2.1.3. Access Control. Access control [14] issues are wide-
spread in all programs, not just smart contracts. While
insecure visibility settings give attackers straightforward

ways to access a contract’s private values or logic, access
control bypasses are sometimes more subtle. *ese vul-
nerabilities can occur when the smart contracts use the
deprecated tx.origin to validate callers, handle large au-
thorization logic with lengthy requirements, and make
reckless use of delegatecall in proxy libraries or proxy
contracts. In the following example shown in Figure 4, the
owner represents the administrator. But the initContract
function is public, which means that everyone can invoke
this function. In other words, everyone has the privileges of
the administrator.

2.1.4. Denial of Service. Denial of Service is very dangerous
in smart contracts. *is kind of attack can break the normal
operation of smart contracts and even lead to the collapse of
smart contracts. Denial of Service will consume the service
capacity of smart contracts. Finally, the attacked smart
contracts cannot provide services to other users. In the
following example of Figure 5 [15], the attacker can set a too
large value for the variable largestWinner to end the loop. In
this case, this smart contract cannot accept other users’
requests and serve them.

2.1.5. Unchecked Low Level Calls. Some of the deeper
features of Solidity are the low-level functions call(),
callcode(), delegatecall(), and send(). *ey will not
propagate (or bubble up) and will not lead to a total re-
version of the current execution. Instead, they will return a
Boolean value set to be false, and the code will still run. If
the return values of such low-level calls are not checked, it
can lead to fail-opens and other unwanted outcomes. As
Figure 6 shows, this smart contract uses amsg.sender.send
function in Line 5. If users transfer ETH to another smart
contract that cannot accept ETH, the function of with-
drawal will fail. But msg.sender.send function will con-
tinue to run and return a false Boolean value. *is function
will cause an incorrect value of etherLeft and affect the
function of withdrawing.

Figure 2: Exploitation of the re-entrancy.

Figure 3: Attack situation of integer overflow.Figure 1: Re-entrancy.
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2.1.6. Bad Randomness. Real Randomness is hard to gen-
erate in Ethereum. Some functions and variables that access
apparently hard-to-predict values are generally more public
than they seem because the sources of randomness are easy
to predict. *e function Keccak256 in Line 5 of the code
example in Figure 7 [15] can generate a random value
according to the variable seed. *ough the variable seed is
private, it must have been set via a transaction at a certain
time. So it is visible on the blockchain.

2.1.7. Front Running. Users can specify higher fees to have their
transactions mined more quickly. Since the Ethereum block is
public, everyone can see the contents of others’ pending transac-
tions. *is situation means that if a given user is revealing the
solution to a puzzle or other valuable secret, a malicious user can
steal the solution and copy their transaction with a higher fee to
preempt the original solution.

2.1.8. Short Addresses. *e principle of Short Addresses is
that EVM will automatically add 0 to the encoding of pa-
rameters with incomplete length. For example, there is a
function in Figure 8 that needs to accept two parameters. One
is an address and another is a uint type of number. Suppose

that the value of parameter “to” is 0xab0 and the value of
tokens is 1000, which means that this contract will transfer
1000 ether to 0xab0. If we change this address into 0xab (we
miss 0 at the end), EVM will fill 0 at the end of the encoding
of these parameters. If the normal encoding is ab0001000, the
changed encoding will become ab0010000.*e change of this
address leads to an increase in the transfer amount, but the
contract regards the transfer amount as a normal one.

2.2. Security Analysis Tools of Smart Contract. Secondly, we
will introduce some security analysis tools for smart con-
tracts. *ese tools are different in terms of principle and
implementation method. Some code analyzers obtain the
Abstract-Syntax-Tree (AST) or bytecode of smart contract
source code and extract data flow graph, CFG or XML parse
tree from the abstract-syntax-tree. By performing these
steps, these code analyzers are able to check all execution
paths through CFG for potential bugs [16]. Others rely on
the execution of the contract, leveraging symbolic execution,
taint tracking, and fuzzing to discover vulnerabilities.

2.2.1. SmartCheck. SmartCheck [17] is a static analysis tool
for Ethereum smart contracts implemented in Java. It runs
lexical and syntactical analysis on Solidity source code. It
uses ANTLR and Solidity grammar to generate an XML
parse tree as an intermediate representation (IR). *is tool
detects vulnerability patterns by using XPath queries on the
IR. *us, it provides full coverage: the analyzed code is fully
translated to the IR, and all of its elements can be reached
with XPath matching. But SmartCheck has its limitations, as
the detection of some bugs requires more dynamic analysis
methods such as taint analysis or even manual audit, and
SmartCheck detects smart contract’s vulnerabilities based on
the XPath patterns. In other words, XPath patterns decide
the accuracy and effectiveness of SmartCheck. But, there are
no perfect ways to get the most precise patterns. So this tool
might miss some smart contracts with the vulnerability
which has no corresponding XPath patterns. However,
SmartCheck is quicker than some tools with dynamic
analysis methods to find the problems of smart contracts.

Figure 6: Example of unchecked low level calls.

Figure 7: Example of bad randomness.

Figure 8: *e example of short addresses.

Figure 4: Example of the access control.

Figure 5: Example of the king of the ether.
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2.2.2. Oyente. Oyente [18] is also a static security analysis
tool. Oyente is one of the first tools for the analysis and
detection of security issues in Ethereum smart contracts. It is
developed by Melonport and its code is open-sourced.
Oyente uses symbolic execution on EVM bytecode to
identify vulnerabilities. Some of Oyente’s detection schemes
are not perfect, and the vulnerabilities involved are not
comprehensive enough. Compared to some other static
analysis tools, Oyente needs to cost more time executing
smart contracts in the virtual Ethereum environment.

3. Methodology

In this section, we will introduce the steps of our method. As
Figure 9 shows, first of all, we need to build abstract-syntax-
tree (A) from the smart contracts that we want to analyze.
*en, we collect the AST (B) of some malicious source codes
(smart contracts with basic vulnerabilities). To extract the
feature vector, we need to get the shared child nodes between
A and B and transform these child nodes into vectors. Next,
we use some analysis tools, including Slither [19] and
Ethainter [20], to label these smart vectors. Finally, we use
some machine learning classification algorithms, such as
K-Nearest Neighbor Classification (KNN) and Stochastic
Gradient Descent (SGD [21]), to train our model.

3.1. Building AST of Smart Contracts. AST is an abstract
representation of the source code syntax structure. It ex-
presses the grammatical structure of the programming
language in a tree-like form, and each node in the tree
represents a structure in the source code. Static code ana-
lyzers favor AST as it provides rich details about the char-
acteristics of source codes, such as the number of function
definitions.*e description of smart contract’s AST is shown
in Figure 10. *e ASTs of smart contracts can be parsed in
terms of type, name, child nodes, and value. In the mean-
time, child nodes also can be parsed in these four characters.
By the special syntax structure, child nodes are easy to be
traversed, which is helpful for us to get the share child nodes
between two ASTs. We build the AST from a smart contract
by py-solc-x (a python third-party package). With this
package, we can transform the source code of smart con-
tracts into ASTin the form of json. To handle ASTs better, we
change the form of AST to dict (a python data structure that
has a key and value).

3.2. Collecting AST of Basic Malicious Smart Contract.
First, we introduce the concept of basic malicious smart
contract. For example, as stated in Section 2, arithmetic is
known as integer overflow and integer underflow. But in
fact, it contains many situations.

(i) Basic Principles of Arithmetic

We declare that the data structure of x is uint8. We
can infer that 0≤x≤ 255. If x←255 + 1, x will be-
come 0. If x←0 − 1, x will become 255.

(ii) Multiplication Arithmetic

We define that uint256x � amount∗ value, while
value is an immutable value. We can change the
value of the amount to make x bigger than 2256 − 1
or smaller than 0. In this case, we will cause integer
overflow and integer underflow.

(iii) Addition Arithmetic

We define that uint256x � amount + _value. We
also are able to make x exceed its value range in
order to lead to addition arithmetic.

(iv) Subtraction Arithmetic

One of the forms of subtraction arithmetic feature
codes is x � _value − amount. Modifying the value
of amount can beget subtraction arithmetic.

Like Re-entrancy, it also has some attack situations. If
msg.sender.call.value arises, there will be a high probability
of causing re-entrancy. We name smart contracts with these
most basic vulnerabilities basic malicious smart contracts.
We collect basic malicious smart contracts and classify these
malicious smart contracts according to the corresponding
vulnerabilities.

3.3. Getting Shared Child Nodes. After we get the ASTof the
smart contract to be analyzed and the AST of the malicious
smart contract, we need to obtain the shared child nodes
between both of the ASTs. Specific implementation algo-
rithms are described in Algorithms 1 and 2. Algorithm 1 gets
all of the nodes from an ASTand Algorithm 2 gets the shared
child nodes between both of the ASTs. Algorithm 1 makes
ASTand an empty list (a python data structure like Array) as
input. We call this listA. We use recursion to traverse all
nodes. Because the data type of the AST has three kinds: dict,
list, and string, we need to traverse the node according to the
data type corresponding to the node. If the data type of the
node is list, we traverse all elements of the current node. If the
data type of node is dict, we traverse all of the next level nodes
of the current node. If the data type of the node is string, we
will add the node to listA. Algorithm 2 takes ASTA and ASTB
as input and outputs a list called child_node. ASTA is the
ASTof the smart contract to be analyzed. ASTB is the ASTof
the malicious smart contract. First, we get all of the nodes in
ASTA and ASTB by Algorithm 1. We make nodeA as the
collection of all of the nodes in ASTA and make nodeB as the
collection of all of the nodes in ASTB. *en, we traverse all
nodes in nodeA. If there is a node in both nodeA and nodeB,
we add this node to the child_node. Finally, we get the shared
child node between two ASTs in the form of a list.

3.4. Extracting Feature Vectors. We extract feature vectors
from the shared child nodes. First of all, we already have
some malicious smart contracts that are classified according
to vulnerability categories. *en we obtain the shared child
node between the smart contract that we need to judge and
each type of malicious smart contracts. Finally, we will get a
vector consisting of the number of common child nodes. For
example, we have 4 malicious smart contracts with arith-
metic. We build a vector v1 consisting of 4 ASTs.

Security and Communication Networks 5



Collecting the source
code of smart contract

Extracting AST (B)
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code
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feature vectors
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the malicious smart

contract
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nodes between

A and B
Labeling

Classification Training

Figure 9: *e overview of security analysis based on machine learning.

Over_�ow.sol

Kind Name Children Value

Kind Name Children Value Kind Name Children Value

Children_1 Children_2

Figure 10: *e graph of AST.

Input: astA: AST of the smart contract; node_list: an empty list; current_key: the keys of AST;
Output: node_list: all node of AST in the form of list current_key � None
if astA is list type then
forkey ∈ astA.keysdo

Algorithm1(i, node_list, current_key)
end for

else
if astA is dict type then
forkey, value ∈ astA.itemsdo

Algorithm 1(value,node_list, key)
end for

else
node_list.append([current_key, ast])

end if
end if

ALGORITHM 1: Get all node and node’s value from AST.

Input: astA: AST of the smart contract to be analyzed astB:AST of malicious smart contract
Output: child_node: the list of the shared child node Algorithm 1(astA, nodeA)Algorithm 1(astB, nodeB)child_node is an empty list
fornode ∈ nodeAdo
ifnode ∈ nodeBthen

child_node.append(node)
end if

end for

ALGORITHM 2: Get common child nodes.
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v1 � AST1,AST2,AST3,AST4( ). (1)

*en we will obtain a vector composed of the number of
common subnodes between the analyzed smart contract and
this vector. Suppose that the number of common subnodes
is a, b, c, d, we get a feature vectors v2.

v2 �(a, b, c, d). (2)

3.5. Labeling. For training our model with feature vectors,
we will label our feature vectors. We use some analysis tools,
including Slither [19] and Ethainter [20], to judge which
vulnerability the smart contract in the data set possesses.
*en we label the corresponding vulnerability for these
feature vectors. If some smart contracts have no vulnera-
bility, we will label them no vulnerability.

3.6. Training and Classification. We use some machine
learning classifying algorithms, such as KNN and SGD, to
train our model.

(i) KNN

KNN is one of the simplest methods in data mining
classification technology. Firstly, we set a value
named k. We already have a matrix M with m rows
and n columns

M �

a11 · · · a1n

⋮ ⋱ ⋮
am1 · · · amn

 . (3)

*en, we extract a feature vector b from our shared
subnodes between smart contracts to detect mali-
cious smart contracts.

b � b1, b2, . . . , bn( ). (4)

We will calculate the distance between these vectors
b and each row of the matrix.

di �

�����������
∑n
j�0

aij − bj( )2
√√

. (5)

*en we will obtain a distance vector d

d � d1, d2, . . . , dm( ). (6)

Next, we sort d and get the smallest first k elements
in this vector. *e label that appears the most in
these k elements will be the label of the analyzed
smart contract.

(ii) SGD

Gradient Descent is the process of minimizing a
function by following the gradient of the loss
function. Suppose that we have a matrix X with m
rows and n columns and a vector y withm elements.

X �

x11 · · · x1n

⋮ ⋱ ⋮
xm1 · · · xmn

 ,
y � y1, y2, . . . , ym( ).

(7)

All elements in y can only be equal to 1 or -1. We
want to train a function f(X) � XwT + bT where b is
a row vector with m elements and w is a row vector
with n elements.

w � w1, w2, . . . , wn( ),
b � b1, b2, . . . , bm( ). (8)

Loss function is used to modify the value of the w
and b, which is defined as follows:

L �

������������������������
∑m
i�1

∑n
j�1

wj · xij( ) + bi − yi 2

√√
. (9)

We update w and b by making the L become smaller
and smaller. Finally, we find the most suitable
function f(X) � XwT + bT for our training model.

4. Experiment

4.1. CollectingData Set. *e first step of our experiment is to
collect enough data. We use three data sets including
Smartbugs [22], SolidiFi-benchmark, and Smartbugs-wilds.

(i) Smartbugs

Smartbugs is a dataset consisting of labeled smart
contracts according to their vulnerabilities. *e
concept information about Smartbugs is shown in
Table 2. Smart contracts in Smartbugs have the most
basic vulnerability. So they are made to create basic
malicious smart contract data sets.

(ii) SolidiFi—benchmark

SolidiFi—benchmark also has labeled smart con-
tracts with different kinds of vulnerabilities, which is
similar to Smartbugs. But SolidiFi—benchmark has
more smart contracts than SmartBugs. *e smart
contracts in this dataset have been deployed in the
real Ethereum network.

(3) Smartbugs—wilds

Smartbugs—wilds have a lot of smart contracts of
real Ethereum environment. *ere are 13241 smart
contracts in this dataset in total. But these smart
contracts are not labeled. *erefore, we can not
directly know whether the smart contract in this
dataset is vulnerable and we would use some analysis
tools such as Slither and Ethainter to label these
smart contracts. If these tools divided the smart
contract into the same kinds of vulnerability or
normal, the smart contract would be labeled. Oth-
erwise, we abandon this smart contract.

Security and Communication Networks 7



First, we collect basic malicious smart contracts from
Smartbugs. After collecting basic malicious smart contracts,
we collect a lot of smart contracts as the final experimental
dataset to build and evaluate our method for smart contract
vulnerability from Smartbugs-wilds and SolidiFI—bench-
mark. Table 3 shows us the information of the final ex-
perimental dataset.

4.2. Implemention. We obtain the ASTs from smart con-
tracts in data sets by two python third-package that are py-
solc-x and solidity-parse. First, we obtain the ASTs from
basic malicious smart contract dataset and the final ex-
perimental smart contract dataset. *en we transfer these
ASTs into another form like dict (a python data structure) in
order to traversal all of the nodes of the ASTeasier. Next, we
get the shared child nodes between basic malicious smart
contracts’ ASTs and final experiment smart contracts’ ASTs.
Afterward, we make use of these shared child nodes to
extract some feature vectors. In the meantime, we label these
vectors on the basis of corresponding labeled smart contracts
in the final experimental dataset and get our last data sets.
Finally, we use our machine learning algorithm to build our
model and evaluate the effectiveness of our model.

4.3. Evaluation. First, we split the data set consisting of the
feature vectors. *e train set and test set are split at a ratio of
70% and 30%. *ere are 286 train samples and 122 test
samples. We evaluated the effectiveness of different features
and models by accuracy, precision, and recall. A confusion
matrix is shown in Table 4. We use this confusion matrix to
describe the concept of accuracy, precision, and recall.

(1) Accuracy

Accuracy reflects the ability of the classifier to judge
the whole data set:

accuracy �
TP + TN

TP + FP + TN + FN
. (10)

(2) Precision

Precision refers to the accuracy between the pre-
dicted value and the real value:

precision �
TP

TP + FP
. (11)

(3) Recall

Recall indicates the ratio of the positive cases of the
predicted pair to the true-positive cases:

recall �
TP

TP + FN
. (12)

We build twomodels for our experiment using KNN and
SGD. In order to better show our experimental results, we set
up some comparative experiments to compare the effec-
tiveness of our models with some famous security tools such

as SmartCheck and Oyente by accuracy, recall, and
precision.

4.4. Result. *e experimental result is shown in Table 5. As
we can see, the KNN model had the best experimental result
in detecting vulnerabilities, which had more than 90% ac-
curacy, recall, and precision for all smart contract vulner-
abilities in the experiment. *e experimental result of the
SGDmodel was not very stable, which had the high accuracy
for Re-entrancy, Arithmetic and Access Control, but had the
general accuracy for other vulnerabilities. Compared to
Oyente and SmartCheck, machine learning models achieved
better experimental results, although we think there are
some reasons for the situation that Oyente and SmartCheck
can not have a good experimental result.

4.4.1.7e Comparison of OurModel to Oyente. Oyente is the
earliest tool for detecting smart contract vulnerabilities. So
Oyente can not detect some vulnerabilities raised in the last
two or three years including some vulnerabilities belonging
to Access Control, Bad Randomness, Denial of Service, Short
Address and Front Running. In other words, Oyente can
only detect 7 types of vulnerabilities. *erefore this tool has
low experiment scores in the above five kinds of vulnera-
bilities. In addition, Oyente uses a dynamic analysis method
to detect vulnerabilities. So this tool needs an Ethereum
environment and solc compiler to execute detecting smart

Table 2: Date set of malicious smart contracts.

Vulnerability category *e number of smart contracts

Arithmetic 15
Access control 19
Re-entrancy 20
Bad randomness 8
Denial of service 6
Unchecked low level 5
Short address 1
Front running 4

Table 3: Data set of the smart contracts for our experiment.

Vulnerability *e number of smarts in data set

Arithmetic 50
Re-entrancy 60
Access control 48
Bad randomness 50
Denial of service 50
Unchecked low level 50
Short address 50
Front running 50

Table 4: Confused matrix.

Forecast

Yes No

Actual
Yes True positive (TP) False negative (FN)
No False positive (FP) True negative (TN)
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contracts, which leads to the fact that Oyente is highly
dependent on solc compiler versions and Ethereum envi-
ronment. During our experiment, some smart contracts
could not be analyzed because their syntax is incompatible
with the solc compiler and Ethereum environment. If smart
contracts do not match the version of solc compiler and are
not executed in the Ethereum environment, Oyente will not
execute these smart contracts normally.

4.4.2. 7e Comparison of Our Model to SmartCheck.
SmartCheck is a static analysis tool for smart contract
vulnerabilities. As a result, it does not need to execute smart
contracts in the real Ethereum environment. In addition,
SmartCheck can analyze more vulnerabilities than Oyente
because this tool sets a lot of patterns to match corre-
sponding vulnerabilities. But some patterns are not precise
enough, which leads to the low accuracy of this tool to
analyze smart contracts.

4.4.3. Analysis of Our Model. From the result of our ex-
periment, we can know that our model based on machine
learning classification algorithms has a good result com-
pared to other analysis tools. But we found some problems in
our experiment. First, with the exception of Re-entrancy,
Arithmetic, Access Control, and Front Running, the ex-
periment result of other vulnerabilities has declined. KNN
model and SGDmodel both have this situation. We find that
the number of these basic malicious smart contracts cor-
responding to these vulnerabilities is so small. *e fact may
have a certain impact on our experiment. Compared to the
KNNmodel, the SGDmodel looks so unstable and performs
not well. Because the SGDmodel needs so many parameters,
and the model may not perform well if we set some un-
suitable parameters for our model. Different from other
tools, we just detect smart contract vulnerabilities based on
their own characteristics of structure and grammar. So we do
not need to execute smart contracts or complex patterns to
analyze smart contracts. *erefore, our method based on
machine learning and shared child nodes have a better
experimental result.

5. Related Work

5.1. Static Code Analysis. Static code analysis uses smart
contracts’ semantic attributes such as EVM bytecode and
assembly code to detect their bugs. Mythril [21] is a static
analyzer that detects vulnerabilities through symbolic exe-
cution with EVM bytecode. SmartCheck [18] uses pattern
matching to analyze smart contracts in the form of XPath.
*ese tools just verify some vulnerabilities that are

predefined. In addition, this analysis method needs to fix up
the matching rules manually based on their analysis effi-
ciency. So static code analysis has a high false-positive rate.

5.2.DynamicAnalysisMethod. *emost famous technology
that makes use of the dynamic analysis method is formal
verification. *is method translates the source code or
bytecode of the smart contract into some functions and
checks the security of all functions by running the smart
contract in a real blockchain system. Saxena et al. [23]
adopted formal semantics of EVM to verify smart contracts.
Compared to static code analysis, the dynamic analysis
method executes smart contracts in the real blockchain
system, which makes the dynamic analysis method more
accurate but more time-consuming.

5.3. Traditional Machine Learning Model. *e traditional
machine learning model also deals with the semantic
characteristic of smart contracts such as bytecode and AST,
which is similar to static code analysis. But this model must
set feature attributes manually and choose the most suitable
feature attributes to build a training model. Compared to
static code analysis, this method has a higher true-positive
ratio. Compared to the dynamic analysis method, this so-
lution is quicker to analyze smart contracts. But the tradi-
tional machine learning based analysis method is required to
adjust their feature attributes manually through accuracy,
recall, and precision; the process of finding out the most
suitable one costs much time. Furthermore, this model is
difficult to extend for analyzing some new vulnerabilities
because the model will change with different feature attri-
butes, which means that the model will reselect features and
retrain the analysis model.

5.4. Our Machine Learning Model. Our model keeps some
advantages over the traditional machine learning model. First
of all, we achieve more accuracy, recall, and precision than
some static analysis tools. In addition, we can analyze smart
contracts with faster speed than some dynamic analysis tools.
Also, our model updates some advantages based on the
traditional machine learningmodel. By the shared child nodes
of ASTs, our model can train the analysis model automatically
rather than adjusting the feature attributes manually, and it is
also easier to extend the model for detecting new vulnera-
bilities. As long as we have the corresponding vulnerability
smart contract data sets, we can expand our model to find the
vulnerability. Detailed comparisons between our model and
other solutions are shown in Table 6.
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6. Conclusion

In this work, we introduce a model that uses machine
learning to analyze smart contracts’ vulnerabilities. First, we
extract feature vectors from ASTs. Next, we get shared child
nodes from the two ASTs. Finally, we use feature vectors to
train our machine learning model and build a model which
can detect the existed kinds of the smart contracts’ vul-
nerabilities in Ethereum written in Solidity with 90% more
for the accuracy, recall, and precision. In terms of the ac-
curacy of detecting smart contracts, our model is better than
some tools such as Oyente and SmartCheck. In addition, our
model just needs ASTs of the analyzed smart contracts to
find vulnerabilities without setting complicated patterns or
executing them in Ethereum, and so it is simple for pro-
fessionals to make use of this model.

However, our model needs to be improved in the following
aspects. First, we just detect which kinds of vulnerability the
smart contract possesses, but we do not detect concrete
problems and we also cannot locate the line of code where the
vulnerability occurs in the smart contract. Second, this model
just detects smart contracts in Ethereum written in Solidity. In
the next step, we want to detect other blockchain systems such
as EOS and Fabric. *ird, the number of our basic malicious
smart contracts is not enough, which will have an effect on the
accuracy of the method. Last but not least, we do not make a
tool using our model to detect smart contracts.
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