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The Internet of Things connects billions of intelligent devices that can interact with one another without human intervention, and
during communication, a large amount of data is exchanged between the devices. As a result, it is critical to secure digital data
using an encryption technique that provides a suitable degree of security. Numerous existing encryption techniques do not
offer sufficient security. Therefore, it is critical to figure out which encryption technique is most appropriate for a particular
kind of data. When it comes to manually deciding which encryption technique to use, the process might take a long time. In
this research, we present a novel technique for selecting Encryption Algorithms (EAs) based on a particular application using
pattern recognition and machine learning techniques. To accomplish this goal, we also prepare a dataset. Several machine
learning techniques, such as Support Vector Machines (SVMs), Linear Regression (LR), K-Nearest Neighbour (KNN), Naïve
Bayes (NB), Decision Trees (DT), and Random Forests (RF), are evaluated. Based on the evaluation, the SVM has been chosen
as the best option for the intended technique because its classification accuracy is 98.7%. The experimental results, including
accuracy, precision, recall, and F1-score, are used to gauge the performance of the suggested technique. The proposed
technique is also compared with the existing techniques to demonstrate its effectiveness.

1. Introduction

Nowadays, the Internet of Things IoTs is extensively used in
a variety of industries and applications, including
manufacturing, agriculture, e-health, home automation,
and smart cities. According to Erickson, by 2022, the world
will have around 28 billion linked smart devices. Addition-
ally, about 15 billion devices make use of Machine-to-
Machine (M2M) connectivity [1]. Additionally, according
to a Cisco research, the internet will be connected to about
500 billion devices by 2030 [2]. In this way, it is easy to see
why the IoT has attracted the interest of developers, and
researchers have given the revolutionary changes it has

brought to human existence. The IoT facilitates the sharing
of multimedia data across a broad number of applications,
including smart transportation, smart health, smart build-
ings, and industry [3]. As billions of network devices interact
and share potentially sensitive data, the most essential con-
cern in the IoT is data security and privacy [4–6]. Figure 1
shows the data transmission between the several linked
devices.

Different types of Encryption Algorithms (EAs) are
developed over the past few decades to secure digital images
during transmission between multiple connected devices for
IoT applications. One advantage of EAs is their efficiency in
terms of computation time. However, insufficient
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encryption, as evidenced by patterns visible even after
encryption, indicates a flaw in the EA [7, 8]. For proper con-
cealment and a sufficient level of encryption of textual data,
conventional Data Encryption Standard (DES) and
Advanced Encryption Standard (AES) are well-known tech-
niques [9, 10]. There are multiple rounds of encryption
involved, making these classic image encryption techniques
unsuitable for real-time applications. In the case of image
encryption, traditional EAs are not suitable for real-time
applications because they contain several encryption rounds.
To overcome such issues, several cryptosystems have been
proposed in recent years [11–13]. To break the correlation
between the image pixels, permutation and substitution are
the most widely used techniques to secure digital images
[14, 15]. In [16], Shannon proposed a theory that any EA
that contains confusion (referring to permutation) and diffu-
sion (referring to substitution or any other process that can
change the pixel value) may be considered a strong
cryptosystem.

Generally, two things must be offered by the EA: (a)
strong security (b) and computational efficiency. There
will always be a trade-off between security and complexity
in terms of time. At times, a strong security algorithm
may take longer to execute due to the number of mathe-
matical operations it contains [17]. Time-efficient encryp-
tion techniques are always required for real-time
applications. Various forms of pixel transformations may
be employed in image encryption, including permutation,
substitution, the Discrete Wavelet Transform (DWT)
[18], the Discrete Cosine Transform (DCT) [19], and the
Discrete Fourier Transform (DFT) [20]. All of these
approaches have been extensively utilised over the last sev-
eral decades and proposed a variety of algorithms, some of
which are resistant to various types of security attacks,
including ciphertext-only attacks, brute force attacks, and
plaintext-only attacks. A cryptosystem that is vulnerable
to security attacks may have two fundamental problems:
(a) it is unable to adequately encrypt the plaintext image
due to the identical patterns included within it. Similar

patterns also correlate to a high degree of correlation
between image pixels; (b) it is computationally inefficient,
making it unsuitable for low-profile applications such as
data transmission from a drone to a base station, which
needs high-speed encryption. On the other side, to pro-
pose a time-efficient technique, one may reduce the math-
ematical operations used in encryption schemes,
compromising security and allowing the original image’s
patterns to be visible in the encrypted image. The plaintext
images with the smooth patterns are shown in
Figures 2(a)–2(h). This indicates that there is a significant
degree of correlation between the pixels, whereas
Figures 2(i)–2(p) depict the corresponding ciphertext
images that have been encrypted using various existing
encryption schemes [21–24].

The patterns in Figures 2(i)–2(l) may be visualized, indi-
cating that such images are encrypted using weak encryption
techniques. While Figures 2(m)–2(p) are encrypted using
secure encryption techniques, the plaintext image’s patterns
have been properly encrypted and are not visible, and the
processing time required to encrypt the plaintext image is
quite high.

For instance, if the image pixels have a low correlation,
it is unnecessary to employ the majority of the resources
available to encrypt the data included in the image. Gener-
ally, an encryption technique that employs a large number
of mathematical operations is considered inefficient but
extremely secure [28, 30]. Similarly, reducing the number
of mathematical operations in an EA makes it more
time-efficient, but it may compromise its security level
[31]. In the proposed technique, EAs are categorized on
the basis of computational complexity. For instance, EAs
with processing times of [0.001, 1.00], [1.001, 2.000], and
[2.001, ∞] are referred to as low-processing-time encryp-
tion (ELPT), moderate-processing-time encryption
(EMPT), and high-processing-time encryption (EHPT),
respectively.

Several metrics such as entropy, correlation, contrast,
and energy [32] are evaluated in the suggested study to
assess the patterns in the image, whether they are smooth
or rough. After evaluating the patterns in the image, the
appropriate encryption technique for that specific data may
be chosen. The security parameter values may also be deter-
mined manually, but it may take a lot of time. As a result, a
machine learning-based method is designed to examine the
patterns in the plaintext image and suggest a suitable
encryption technique, whether the image should be
encrypted using a strong EA or concealed using a faster
EA. The suggested approach is applicable to images in both
colour and grayscale. When a colour image is used, it must
be decomposed into three grayscale components, such as
red, green, and blue.

1.1. Contributions. The major contributions of this work are
as follows:

(i) A machine learning model is proposed for pattern
recognition-based selection of an appropriate
encryption technique
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Figure 1: Data transmission between several connected devices.
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Figure 2: Continued.
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(k) Plaintext image (l) Plaintext image

(m) Encryption using the scheme proposed in [23] (n) Encryption using the scheme proposed in [24]

(o) Encryption using the scheme proposed in [28] (p) Encryption using the scheme proposed in [29]

Figure 2: Plaintext images and their corresponding ciphertext images encrypted with the existing schemes [21, 23–29].
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Figure 4: Information in the plaintext images (a–d) is more than the information in the plaintext images (e–h).

Table 1: Values of security parameters corresponding to Figures 4(a)–4(h).

Images Entropy Energy Correlation ID Histð Þ2 Contrast Homogeneity

Figure 4(a) 7.2416 0.7986 0.6798 250365 299.6898 8.9896 0.3367

Figure 4(b) 7.7998 0.6798 0.5710 256970 298.6410 8.6696 0.4697

Figure 4(c) 7.1720 0.6798 0.3367 256971 299.6401 8.9764 0.6798

Figure 4(d) 7.6477 0.5678 0.3665 256300 300.9963 8.6879 0.5556

Figure 4(e) 7.8099 0.0698 0.0167 240120 294.6544 9.8778 0.1352

Figure 4(f) 7.7007 0.0522 0.0331 231687 294.3330 9.9865 0.1001

Figure 4(g) 7.7556 0.0698 0.0130 246120 294.6660 9.7789 0.1336

Figure 4(h) 7.5996 0.0699 0.1978 246987 293.0299 9.7868 0.0157
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(ii) The security parameters are used to identify the pat-
terns in the plaintext image and set the appropriate
intervals for each security parameter to achieve the
desired task

(iii) Various machine learning algorithms are evaluated
on the proposed work to find the best one

(iv) To improve the overall accuracy of the proposed
model, K-fold analysis is performed to develop sev-
eral models for the proposed work. The developed
models are called K-models

(v) Voting mechanisms such as hard and soft voting are
used to choose the final model from the several K
-models

(vi) To gauge the performance of the proposed work,
several tests and analyses such as accuracy, preci-
sion, F1-score, and recall are incorporated

The rest of the paper is as follows: Section 2 is dedicated
to a review of the available schemes in the spatial and fre-
quency domains. Section 3 contains preliminaries to the
proposed research, including an explanation of SVM and
DT. Section 4 discusses the proposed model for selecting
an appropriate EA. Section 5 contains an assessment and
comparison of the proposed work to previously published
work. Finally, Section 6 finishes the proposed work.

2. Related Work

For secure communication, data encryption is necessary
before transmission. To overcome the security issues, data
can be encrypted either in the spatial domain or in the fre-
quency domain. In the spatial domain, one can directly
manipulate the pixel values. While in frequency domain
encryption, first, pixels convert into their frequency domain
and then further process. For instance, if a DWT is applied
to the image pixels, it will convert into four different fre-
quency subbands. Once the pixels are converted into their
frequency subbands, the mathematical operations can be
applied to them for further encryption. EAs can be used
according to the applications and patterns existing in the
plaintext image. The patterns having high correlation always
required strong security EAs, whereas, in drone applications,
a fast encryption speed is also required with strong security.
Therefore, it is necessary to observe and analyze the patterns
present in the image to select the right EA. There are several
EAs that have been proposed in the last few decades which
are based on either spatial domain or frequency domain.

2.1. Image Encryption in Spatial Domain. Spatial domain
encryption has advanced significantly since incorporating
chaos theory to secure digital images [18]. In the past few
decades, chaos has been widely used in image encryption
due to its several tremendous properties, such as sensitivity
to initial conditions, nonperiodicity, and ability to generate
pseudorandom numbers.

In [21], Anees et al. proposed an image encryption
scheme comprised of two major components. One is a cha-

otic map, and the second is multiple substitution boxes (S-
boxes). Both the components are used to break the high cor-
relation between the image pixels. Moreover, several draw-
backs of using a single S-box are addressed. To overcome
the vulnerabilities that exist in using a single S-box, multiple
S-boxes are used. The S-boxes are selected based on the ran-
dom sequence generated using the chaotic logistic map.
Using statistical analysis, it is proved that the multiple S-
box scheme can perform better than the single S-box
encryption scheme. However, the patterns of the plaintext
image can be visualized. In [33], Ahmad and Hwang made
a few improvements to the scheme proposed in [21] by add-
ing noise in the plaintext image prior to the conversion of
the noisy image into blocks. To manipulate each block of
pixels, a Xor operation is performed that gives the final
encrypted image.

In the encryption schemes, nonlinear components such
as S-boxes also play a vital role in securing digital images.
Therefore, it is crucial to use an S-box that exhibits strong
cryptographic properties. In [34], Shafique et al. proposed
a new methodology to construct an S-box based on a cubic
logistic map, which has been given the name C-logo S-box.
The purpose of proposing the S-box is to strengthen the
overall EA so that the pixels of the plaintext image can be
properly concealed. Several tests and analyses, such as Strict
Avalanche Criterion (SAC), Bit Independent Criterion
(BIC), and nonlinearity, are carried out to show the strength
of the proposed S-box. A comparison reveals that the C-logo
S-box performs significantly better than the other S-boxes
that are present in the literature [35, 36].

In [37], Li and Yang introduced an image encryption
technique based on chaos and discrete Fractional Wavelet
Transforms (FWT). Confusion and diffusion operations
are implemented independently, which results in a slight
increase in the processing time required for encryption.
Additionally, numerous cryptographic components, such as

Table 2: Defined intervals for entropy.

07:999 07:900½ �⟶ encryptionwith less processing time ELPTð Þ
07:293 06:449½ �⟶ encryptionwithmoderate processing time EMPTð Þ
06:423 06:001½ �⟶ encryptionwith high processing time EHPTð Þ

Table 3: Defined intervals for contrast.

10:5000 9:5000½ �⟶ ELPTð Þ
09:2500 8:7500½ �⟶ EMPTð Þ
08:5000 7:5000½ �⟶ EHPTð Þ

Table 4: Defined intervals for energy.

0:01005 0:01505½ �⟶ ELPT
0:01510 0:02010½ �⟶ EMPT
0:02015 0:03495½ �⟶ EHPT
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Figure 5: Continued.
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FWT, chaos, and quantum theory, are employed to increase
the security of digital images. While using many encryption
components sequentially may result in higher security, the
processing time required for encryption may increase. Lin
et al. [38] proposed a novel method for secure communica-
tion based on chaos theory in which mathematical opera-
tions to convert the plaintext picture to the ciphertext
image are performed sequentially rather than concurrently.

(i) Plain image with comparatively low correlation
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(m) Plain image with comparatively low correlation
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Figure 5: Plaintext images and their corresponding scattered diagrams to show the correlation between the image pixel in horizontal,
vertical, and diagonal directions.

Table 5: Defined intervals for correlation.

−0:0012 0:0308½ �⟶ ELPT
0:0001 0:0011½ �⟶ EMPT
0:0000 0:4500½ �⟶ EHPT
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Liu et al. [39] proposed a four-dimensional chaotic map-
based encryption system with two encryption rounds and
one hashing round. Multiple round encryption techniques
often perform much better in terms of security but are not
suited for real-time applications due to their increased com-
puting time requirements. The encryption presented in [40]
encountered computational complexity concerns because of
the method’s one-by-one encryption of the HSV compo-
nents of colour images. Time complexity may be reduced
by encrypting the HSV components in parallel. To make
the chaos-based encryption scheme more robust, Lidong
et al. [41] and Lu et al. [26] used S-box in their proposed
cryptosystems. In [41], image compression is also incorpo-
rated, followed by encryption to reduce the encryption com-
putational time. Moreover, the scrambling process is applied
to the compressed image to break the correlation between
the image pixels. To satisfy the criteria of confusion-
diffusion proposed by Shannon [16], S-box is applied to cre-
ate the diffusion in the scrambled image. A single S-box is
not enough to secure the image against the deferential
attack, specifically, when the image contains smooth pat-
terns. In [26], a new chaotic map called the Logistic-sine Sys-
tem (LSS) is proposed, which has a wider chaotic range. The
LSS is then used with the S-box in the proposed encryption
scheme, which makes it comparatively more robust than the
scheme proposed in [41].

2.2. Image Encryption in Frequency Domain. Apart from
spatial domain encryption, frequency domain cryptosystems
are also frequently used to secure the images from adversar-
ies. Both of these types of encryption are useful to disturb the
patterns of the pixels present in the image. Without a spe-
cific pattern in the image, it is difficult to read the informa-
tion. Therefore, it is necessary to disturb the pixel patterns
so that no one can read the information present in the
image.

In [42], Rehman et al. proposed a cryptosystem in which
both spatial and frequency domain sections are included.
For spatial domain encryption, multiple chaotic maps used
are known as chaotic logistic amp and chaotic sine map.
These chaotic maps are used to generate random sequences
for permutation purposes. Moreover, a chaotic sine map is
also used to generate random images for diffusion purposes
which are achieved using XOR operation performed on the
precipher image with the random image. It is not always
required to use a forward operation of any frequency trans-
form such as DWT; one can also use its reverse operation
Inverse Discrete Wavelet Transform (IDWT) to secure the
digital images [43]. In [18], Shafique et al. proposed a
DWT-based cryptosystem in which chaos and bit-plane
extraction are the major parts. The whole scheme is consist-
ing of three sections; the first and last sections are dependent
on the spatial domain encryption while the middle section is
devoted to the frequency domain section. The proposed is
designed specially for those images that consist of a large
number of the same patterns. As a lot of mathematical oper-
ations are included in the proposed scheme, it is somehow
slower than the other existing schemes [13, 44–46]. There-
fore, the scheme proposed in [18] is not suitable for real-

time applications. The image encryption schemes presented
in this section are based on chaos theory, bit-plane extrac-
tion, frequency transformation, and spatial domain transfor-
mation. Some of them can be used for specific purposes. For
instance, the scheme proposed in [47] is useful to encrypt
the image properly that can resist several security attacks,
but it is not suitable for low-profile or real-time applications.
Therefore, using the encryption scheme proposed in [47] is
not the right choice when anyone wants to encrypt the
image faster. Here, it can be noted that the orthodox selec-
tion of EA is very important for the particular kind of data.
Therefore, a machine learning-based model is proposed to
learn the image pattern for the selection of suitable EA.

3. Preliminaries

In the proposed work, several machine learning algorithms
such as Decision Tree (DT), Support Vector Machine
(SVM), Random Forest, K-Nearest Neighbour, and Logistic
Regression (LR) are evaluated in which SVM and DT exhibit
approximately comparable accuracy and precision. As a
result, the preliminary section includes a discussion of
SVM and DT. Moreover, among DT and SVM, the final
selected ML algorithm is SVM as its accuracy is better than
DT and other comparable ML algorithms.

3.1. Support Vector Machine. SVM implementation requires
training on training data, since it is a supervised learning
algorithm that takes training data as an input and predicts
the label of the output based on training [48]. The training
and testing datasets may or may not vary in size. The whole
dataset’s dimension is determined by the number of features
employed. For instance, if the dataset has fourteen features,
it will be fourteen-dimensional [49]. The general form of
the dimension of the dataset is given below:

Y = X1, X2, X3,⋯, Xn, ð1Þ

where Y is the dependent output label and Xi represents the
number of independent features. The number of features
may vary depending upon the output. A line that is a sup-
port vector is necessary to separate the data with maximum
margins in the two-dimensional dataset. In the case of a
higher-dimensional dataset, on the other hand, a plane is
utilised to divide the data points rather than a line.

The proposed work makes use of an eight-dimensional
dataset. As a result, it is required to determine the optimal
plane for separating the data points in order to properly clas-
sify the unseen sample. The categorization function may be
defined as follows:

σ xð Þ = T · X + K , ð2Þ

Table 6: Defined intervals for homogeneity.

0:4122 0:4418½ �⟶ ELPT
0:4521 0:4821½ �⟶ EMPT
0:5367 0:6125½ �⟶HLPT
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Figure 6: Pixel distribution in original and encrypted images.
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where T and K are the weight vector and the intercept,
respectively. However, T can be calculated as

T =
xn − xm
yn − ym

: ð3Þ

3.2. Decision Tree. DT is also a supervised learning technique
to classify the data into specific classes. The growth of the
tree may depend on the number of attributes used in the
dataset. For determining the computational cost and classifi-
cation performance, the heuristic plays a vital role in tree-
growing [50]. Mostly, decision trees use an impurity-based
heuristic which computes the purity of the resulting subset
once the splitting attribute is applied to split the training
data [51]. To build the tree for the classification purpose, a
root node must be selected, which can be determined by cal-
culating the Information Gain (IG), and the one with the
highest IG will be selected as the splitting feature [52]. IG
can be calculated as

IG X, Yð Þ = Entropy Xð Þ −〠
y

Xy

�� ��
Xj j Entropy Xy

� �
, ð4Þ

where X represents the training events or feature vectors, Y
represents the feature and y represents its value, Xy repre-
sents the subset of X containing occurrences with Y = y,
and entropy (X) may be determined as follows:

Entropy Xð Þ − 〠
Bj j

j=1
TX bj

� �
log TX bj

� �
, ð5Þ

where TXðbjÞ can be evaluated as the probability of the
events belonging to bj in X and jBj is the number of labels
present in the dataset.

4. Proposed Model

Numerous encryption techniques have been proposed in
recent years, including chaos and transformation-based
algorithms. Analyzing the statistical results of EAs indicates
that some of them are insecure and do not provide enough
protection [53–56].

In this article, a machine learning model that incorpo-
rates SVM is developed to determine the optimal encryption
technique for the data in the form of images. The proposed
work is shown schematically in Figure 3. The process for
constructing the proposed model is as follows:

(i) Take a large collection of plaintext images (I) having
size M ×N (½Iij�MXN

⟶M and N ∈ℤ) in which a
different amount of information is present. For
instance, a few images from the dataset are shown
in Figure 4 in which a significant amount of informa-
tion lies in Figures 4(a)–4(d) as compared to the
information present in Figures 4(e)–4(h)

4.1. Features Used in the Proposed Work. Security parame-
ters such as entropy, energy, contrast, correlation, homoge-
neity, histogram uniformity, and irregular deviation are
considered features to select which plaintext image contains
the highest, lowest, and moderate amount of information.
On the other hand, peak signal to noise ratio and mean
square error, both of which are security metrics, need at least
two images, such as plaintext and ciphertext, in order to
quantify the difference between the two. In our case, only
plaintext images are considered in the proposed work.

4.1.1. Entropy. Entropy is used to find the randomness in an
image. Furthermore, the entropy value corresponds to the
high randomness [57]. The relation between entropy and
randomness is given below:

Entropy∝ randomness: ð6Þ

The maximum entropy value for every image is deter-
mined by its bit count. For example, the maximum entropy
values for an eight-bit and binary image are 8 and 2, respec-
tively. Entropy may be stated mathematically as

Entropy = 〠
A×B

x=1
p swð Þlog2 p swð Þð Þ, ð7Þ

where pðswÞ is the probability of occurrence of message sw
and A × B represent the number of pixels present in plain-
text image.

The entropy value of an image increases in proportion to
the complexity of the patterns contained inside. As seen in
Figures 4(a)–4(d), the patterns are visible, indicating that
the entropy value for such images is low. Similarly, the
entropy values for the images shown in Figures 4(e)–4(h)
will be rather high, as indicated in Table 1.

To classify the plaintext images to be encrypted either
with fast, moderate, or slow processing EA, three intervals
are defined in Table 2.

4.1.2. Contrast. Contrast analysis of an image allows the
observer to identify the objects in the image [57]. Mathemat-
ically, it can be calculated as

Contrast =〠
c,d

c − dj j2p c, dð Þ, ð8Þ

Table 7: Defined intervals for histogram analysis.

3000 4000½ �⟶ ELPT
4500 6000½ �⟶MLPT
6500 7000½ �⟶HLPT

Table 8: Defined intervals for ID.

248800 247000½ �⟶ EHPT
250700 248900½ �⟶ EMPT
252600 250800½ �⟶ ELPT
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where c and d represent the number of rows and columns of
the image. Pðc, dÞ represents the number of gray levels in the
occurrence matrices. The value of contrast reflects that the
image contains less information. The relationship between
the image pattern and contrast values is given in

Image patterns∝ Less contrast value: ð9Þ

As demonstrated in Table 1, the contrast values for the
images in Figures 4(a)–4(d) are smaller than those in
Figures 4(e)–4(h). This implies that the images
(Figures 4(a)–4(d)) must use a robust encryption scheme
to preserve the image’s patterns. Using additional resources
to encrypt the images (Figures 4(e)–4(h)) is not a viable
option. It may be encrypted using a faster-processing
encryption technique with a moderate level of security.
The following intervals are given in Table 3 for the categori-
zation of images that may be encrypted using either category
of encryption methods.

4.1.3. Energy. Energy values reflect the amount of informa-
tion present in the image. The higher the values of energy,
the greater amount of information is present in the image
[58]. Energy can be calculated using Equation (10), whereas
the relationship between the amount of information and
energy is given in Equation (11).

Energy = 〠
M

T=1
P c, dð Þ, ð10Þ

where M shows the total number of pixels in an image
(Pðc, dÞ):

Information∝ Energy: ð11Þ

Table 1 contains several energy values for various
images, and it can be seen that the energy values for the
images (Figures 4(a)–4(d)) are higher than the images
shown in Figures 4(e)–4(h), implying that the images
(Figures 4(a)–4(d)) require strong security algorithms to
secure the patterns of the plaintext images. Table 4 shows
the intervals for the classification of different EAs.

4.1.4. Correlation. Correlation indicates the similarity of two
or more objects, i.e., correlation between the whole image or
a subset of its pixels. Correlation coefficients increase as the
object’s similarity increases [59]. In digital images, a gradient
pattern has a higher degree of correlation between the pixels
than texture patterns, which indicates that images with more
gradient patterns will have a higher correlation value, neces-
sitating the use of a powerful encryption technique to break
the correlation. In comparison, texture patterns in digital
images have less correlation between pixels, which is very
simple to eliminate even with a moderate or poor security
level encryption techniques. Correlations between image
pixels may be calculated using

Corrqp =
cov q, pð Þffiffiffiffiffiffiffiffiffiffi
T qð Þp ffiffiffiffiffiffiffiffiffiffi

T pð Þp , ð12Þ

Table 9: Feature summary.

Features Mathematical equations
Relationship with strong security

(S:S) Variable explanation

Energy En = 〠
M

T=1
P c, dð Þ Energy∝

1
S:S P a, bð Þ is an original image

Histogram Histð Þ2 = 〠
255

k=0

gi − t
t

t =M ×N/256
gi: number of gray levels

Entropy Ent = 〠
A×B

x=1
p swð Þlog2 p swð Þð Þ Ent∝ S:S p swð Þ: probability occurrence

A × B: no. of pixels

Contrast Cont =〠
c,d

c − dj j2p c, dð Þ Con∝ S:S p c, dð Þ is gray-level cooccurrence
matrix

Homogeneity Hom =〠
x

〠
y

I x, yð Þ
1 + x + yj j Hom∝

1
S:S —

Correlation

Corrqp = cov q, pð Þ/ ffiffiffiffiffiffiffiffiffiffi
T qð Þp ffiffiffiffiffiffiffiffiffiffi

T pð Þp
Cov q, pð Þ = 1/M∑M

r=1 qr −G qð Þð Þ pr − G pð Þð Þ
T qð Þ = 1/M∑M

r=1 qr −G qð Þð Þ2
T pð Þ = 1/M∑M

r=1 pr −G pð Þð Þ2
G qð Þ = 1/M∑M

r=1qr
G pð Þ = 1/M∑M

r=1pr

Correlation∝
1
S:S Corrqp: pixel correlation

Irregular
deviation

ID = 〠
255

j=0
Xi − Xhj j ID ∝

1
S:S Xi, Xh: histogram deviations
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Table 10: Some portion of the dataset.

F.V no. Images Entropy Energy Contrast Correlation Homogeneity ID Hist2 EA

1 Plaintext-1 8 0.01 10.75 -0.5 0.392 247000 292.697 ELPT

2 Plaintext-2 7.9999 0.01005 10.745 -0.495 0.3921 247100 292.687 ELPT

3 Plaintext-3 7.9998 0.0101 10.74 -0.49 0.3922 247200 0 292.996 ELPT

4 Plaintext-4 7.9997 0.01015 10.735 -0.485 0.3923 247300 292.666 ELPT

5 Plaintext-5 7.9996 0.0102 10.73 -0.48 0.3924 247400 292.697 ELPT

6 Plaintext-6 7.9995 0.01025 10.725 -0.475 0.3925 247500 292.698 ELPT

7 Plaintext-7 7.9994 0.0103 10.72 -0.47 0.3926 247600 292.341 ELPT

8 Plaintext-38 7.9993 0.01035 10.715 -0.465 0.3927 247700 292.101 ELPT

9 Plaintext-9 7.9992 0.0104 10.71 -0.46 0.3928 247800 292.198 ELPT

10 Plaintext-10 7.9991 0.01045 10.705 -0.455 0.3929 247900 292.699 ELPT

11 Plaintext-11 7.999 0.0105 10.7 -0.45 0.393 248000 292.987 ELPT

12 Plaintext-12 7.9989 0.01055 10.695 -0.445 0.3931 248100 292.310 ELPT

13 Plaintext-13 7.9988 0.0106 10.69 -0.44 0.3932 248200 292.112 ELPT

14 Plaintext-14 7.9987 0.01065 10.685 -0.435 0.3933 248300 292.874 ELPT

15 Plaintext-15 7.9986 0.0107 10.68 -0.43 0.3934 248400 292.311 ELPT

16 Plaintext-16 7.9985 0.01075 10.675 -0.425 0.3935 248500 292.336 ELPT

17 Plaintext-17 7.9984 0.0108 10.67 -0.42 0.3936 248600 292.156 ELPT

18 Plaintext-18 7.9983 0.01085 10.665 -0.415 0.3937 248700 292.667 ELPT

19 Plaintext-19 7.9982 0.0109 10.66 -0.41 0.3938 248800 292.122 ELPT

20 Plaintext-20 7.9981 0.01095 10.655 -0.405 0.3939 248800 292.966 ELPT

21 Plaintext-21 7.293 0.01505 10.245 0.0001 0.4021 248900 294.334 EMPT

22 Plaintext-22 7.292 0.0151 10.24 0.00011 0.4022 249000 294.669 EMPT

23 Plaintext-23 7.291 0.01515 10.235 0.00012 0.4023 249100 294.110 EMPT

24 Plaintext-24 7.290 0.0152 10.23 0.00013 0.4024 249200 294.987 EMPT

25 Plaintext-25 7.289 0.01525 10.225 0.00014 0.4025 249300 294.001 EMPT

26 Plaintext-26 7.288 0.0153 10.22 0.00015 0.4026 249400 294.312 EMPT

27 Plaintext-27 7.287 0.01535 10.215 0.00016 0.4027 249500 294.900 EMPT

28 Plaintext-28 7.286 0.0154 10.21 0.00017 0.4028 249600 294.001 EMPT

29 Plaintext-28 7.285 0.01545 10.205 0.00018 0.4029 249700 294.361 EMPT

30 Plaintext-29 7.284 0.0155 10.2 0.00019 0.403 249800 294.936 EMPT

31 Plaintext-30 7.283 0.01555 10.195 0.0002 0.4031 249900 294.887 EMPT

32 Plaintext-31 7.282 0.0156 10.19 0.00021 0.4032 250000 294.474 EMPT

33 Plaintext-32 7.281 0.01565 10.185 0.00022 0.4033 250100 294.101 EMPT

34 Plaintext-33 7.280 0.0157 10.18 0.00023 0.4034 250200 294.031 EMPT

35 Plaintext-34 7.279 0.01575 10.175 0.00024 0.4035 250300 294.351 EMPT

36 Plaintext-35 7.278 0.0158 10.17 0.00025 0.4036 250400 294.333 EMPT

37 Plaintext-36 7.277 0.01585 10.165 0.00026 0.4037 250500 294.110 EMPT

38 Plaintext-37 7.276 0.0159 10.16 0.00027 0.4038 250600 294.669 EMPT

39 Plaintext-38 7.275 0.01595 10.155 0.00028 0.4039 250600 294.110 EMPT

40 Plaintext-40 7.274 0.016 10.15 0.00029 0.404 250700 294.311 EMPT

41 Plaintext-31 6.389 0.0201 9.74 0.0012 0.4122 250800 296.003 EHPT

42 Plaintext-42 6.388 0.02015 9.735 0.0013 0.4123 250900 297.963 EHPT

43 Plaintext-43 6.387 0.0202 9.73 0.0014 0.4124 251000 295.221 EHPT

44 Plaintext-44 6.386 0.02025 9.725 0.0015 0.4125 251100 298.733 EHPT

45 Plaintext-45 6.385 0.0203 9.72 0.0016 0.4126 251200 296.331 EHPT

46 Plaintext-46 6.384 0.02035 9.715 0.0017 0.4127 251200 297.301 EHPT

47 Plaintext-47 6.383 0.0204 9.71 0.0018 0.4128 251300 297.332 EHPT

48 Plaintext-48 6.382 0.02045 9.705 0.0019 0.4129 251400 297.301 EHPT
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Cov q, pð Þ = 1
M

〠
M

r=1
qr − G qð Þð Þ pr − G pð Þð Þ, ð13Þ

T qð Þ = 1
M

〠
M

r=1
qr − G qð Þð Þ2, ð14Þ

T pð Þ = 1
M

〠
M

r=1
pr − G pð Þð Þ2, ð15Þ

G qð Þ = 1
M

〠
M

r=1
qr , ð16Þ

G pð Þ = 1
M

〠
M

r=1
pr , ð17Þ

where q and p denote neighbouring pixel values, respec-
tively, and Corrqp denotes pixel correlation. Correlation
coefficients are in the range of ½−1 1�. Corrqp ⟶ −1 and
Corrqp ⟶ +1 denoted the correlation between neighbour-
ing pixels’ lowest and maximum values, respectively. The
2500 pixel pairs are taken from the plaintext image in three
distinct directions: horizontal, vertical, and diagonal.
Figures 5(b)–5(d) and 5(f)–5(h) illustrate the horizontal,
vertical, and diagonal correlations of image pixels, respec-
tively. As can be observed, the pixels are closer together,

indicating a significant correlation. In comparison, the dis-
tribution of pixels in Figures 5(j)–5(l) and 5(n)–5(p) is rela-
tively random, indicating a weaker correlation. Thus, images
with a low correlation may be easily secured using a simple,
mathematically structured encryption approach. Digital
image encryption is classified according to the intervals
specified in Table 5.

4.1.5. Homogeneity. The Grey-level Co-occurrence Matrix
(GLCM) illustrates the brightness of pixels. Those images
that contain high information have higher homogeneity
values. This means that encrypting images with high homo-
geneity values is difficult and requires a strong encryption
scheme. Homogeneity can be calculated as

〠
x

〠
y

I x, yð Þ
1 + x + yj j , ð18Þ

where Iðx, yÞ is plaintext image and x, y shows the pixel
position. Table 6 contains the intervals used to classify
encryption schemes. If the plaintext image’s homogeneity
values fall within the range ½0:4122 0:4418�, it may be
encrypted using a strategy that requires less mathematical
operations and requires less processing time.

4.1.6. Histogram Analysis. Histogram analysis is often used
in image encryption to determine the security of ciphertext

Table 10: Continued.

F.V no. Images Entropy Energy Contrast Correlation Homogeneity ID Hist2 EA

49 Plaintext-49 6.381 0.0205 9.7 0.002 0.413 251500 296.36 EHPT

50 Plaintext-50 6.380 0.02055 9.695 0.0021 0.4131 251600 298.36 EHPT

51 Plaintext-51 6.379 0.0206 9.69 0.0022 0.4132 251700 297.651 EHPT

52 Plaintext-52 6.378 0.02065 9.685 0.0023 0.4133 251800 297.660 EHPT

53 Plaintext-53 6.377 0.0207 9.68 0.0024 0.4134 251900 297.633 EHPT

54 Plaintext-54 6.376 0.02075 9.675 0.0025 0.4135 252000 297.336 EHPT

55 Plaintext-55 6.375 0.0208 9.67 0.0026 0.4136 252100 297.631 EHPT

56 Plaintext-56 6.374 0.02085 9.665 0.0027 0.4137 252200 297.310 EHPT

57 Plaintext-57 6.373 0.0209 9.66 0.0028 0.4138 252300 296.120 EHPT

58 Plaintext-58 6.372 0.02095 9.655 0.0029 0.4139 252400 296.999 EHPT

59 Plaintext-59 6.371 0.021 9.65 0.003 0.414 252500 297.613 EHPT

60 Plaintext-60 6.370 0.02105 9.645 0.0031 0.4141 252600 297.643 EHPT

Table 11: EA classification based on the information present in the plaintext images.

Plain images Contrast Entropy Energy Correlation Homogeneity ID Histð Þ2 EA

Plain image1 9.9971 7.97608 0.0183 0.00059 0.4092 24763 294.664 EMPT

Plain image2 8.9651 7.9283 0.02334 0.0061 0.4192 24770 294.210 EMPT

Plain image3 8.4131 7.8633 0.02452 0.0066 0.4027 248706 296.331 ELPT

Plain image4 10.3574 7.9937 0.0159 -0.1351 0.3932 24993 292.665 EHPT

Plain image5 11.3585 7.9982 0.0151 -0.0951 0.3984 247830 291.336 EHPT

Plain image6 10.9875 7.99313 0.1682 -0.0651 0.3994 246378 292.346 EHPT

Plain image7 9.6381 7.9832 0.0175 0.00063 0.4071 249763 291.032 EHPT

Plain image8 10.8934 6 7.9931 0.0145 -0.044 0.3931 248610 291.336 EHPT
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images. To offer effective encryption, the encrypting images’
pixel distribution must be constant, which means that the
histogram must be flat, which corresponds to the image
pixels being properly concealed. Plaintext images contain
more information than encrypted images, indicating a less
uniform pixel distribution. The histograms of multiple
plaintext images are provided in Figure 6, along with the
pixel distribution.

The relationship between the information present in the
plaintext image and uniformity of the histogram is given as

Plaintext information∝
1

Histogram uniformity
: ð19Þ

According to Equation (19), less uniformity in the histo-
gram indicates that the corresponding image has a greater
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(d) Confusion matrix for when DT is incorporated
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(f) Confusion matrix for when LR is incorporated

Figure 7: Confusion matrices for CNN, transfer learning, and fine tuning based on the proposed model.

Table 12: Performance measuring parameters and their statistical values.

Parameters Mathematical equations

Accuracy (Accy)
ΓP + ΓN1 + ΓN2

ΓP + ΓN1 + ΓN2+⊑N1+⊑N2+⊑P1+⊑N3++⊑P2+⊑N4
2250 + 1190 + 1495

2250 + 20 + 15 + 5 + 1190 + 13 + 8 + 4 + 1495 × 100 = 98:7%

Specificity (Specy)/precision (Precy)
ΓP

ΓP+⊑N1+⊑N2+⊑N3+⊑N4
2250

2250 + 20 + 15 + 13 + 4 = 0:97

Sensitivity (Seny)/recall
ΓN1 + ΓN2

ΓN1 + ΓN2+⊑P1+⊑P2
1190 + 1495

1190 + 1495 + 5 + 8 = 0:99

F1-score 2 ×
Seny × Specy
Seny + Specy

" #
= 0:97
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quantity of information. This implies that images with flat
histograms are simple to encrypt and can be made secure
by using an encryption strategy with less mathematical oper-
ations and processing time. Equation (20) may be used to
compute the statistical value of the histogram analysis:

Histð Þ2 = 〠
255

k=0

gi − t
t

, ð20Þ

where gi represents the number of gray levels and t =M ×
N/256. According to the existing work [60], ðHistÞ2 must
be less than 293.24783 to achieve the uniformity in the his-
togram. Hist2 > 293:24783 represents the variation in the
peaks of the pixels. Based on the Hist2 values, plaintext
images are categorized into three intervals as shown in
Table 7 for encryption purposes.

4.1.7. Irregular Deviation. The uniformity of the histogram
also relates to the irregular deviation (ID) in the image pixels.
ID may be used to determine image quality. The more infor-
mation is present in the plaintext images, the higher the ID
value. It may be defined as the degree to which the histogram
deviation distribution and the uniform distribution are sim-
ilar. ID can be calculated as

ID = 〠
255

j=0
Xi − Xhj j, ð21Þ

where Xi and Xh are the histogram deviations at the ith and h
positions, respectively, and the mean value. The less consis-
tent the histograms, the lower the ID value. The ID interval is
specified in Table 8 to classify encryption techniques for
plaintext images. The summary of the features used in the
proposed work is given in Table 9.

(i) A dataset is created using the security parameters as a
feature and the intervals defined in Section 4.1. The
collection is vast and includes the bulk of textual
image categories that we see in everyday life, such
as medical images and war images. As a consequence,
this dataset is often referred to as the source domain
for the proposed model training, validation, and con-
struction. Table 10 includes a subset of the detailed
data. The dataset is split into the training and test sets
at a ratio of 0.8 : 0.2, as specified in

if

Test dataset Test =N − samples

Training dataset Total no:of samplesð Þ − N − samplesð Þ

8>><
>>:

ð22Þ

(ii) After extracting statistical features from plaintext
images, save feature values in an array to create

unique vector streams (V.S), also referred to as fea-
ture vectors. Vector streams may be expressed as fol-
lows in terms of their features as given:

Dataset =

V:S1 = f :v1, f :v2, f :v1,⋯, f7
V:S2 = f :v1, f :v2, f :v1,⋯, f7
V:S3 = f :v1, f :v2, f :v1,⋯, f7
V:S4 = f :v1, f :v2, f :v1,⋯, f7

⋮

V:Sn = f :v1, f :v2, f :v1,⋯, f7

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
: ð23Þ

The feature values for each feature are f :v1, f :v2, f :v3,⋯,
f :v7. The provided dataset (22) is separated into two sections
for the purpose of training the proposed model (training and
testing). Each part is further separated into categories, such
as X-train and Y-train for training purposes and X-test
and Y-test for testing purposes. Train various machine
learning algorithms on the training dataset to identify plain-
text images based on the information contained in them.
The purpose of comparing various machine learning algo-
rithms is to determine which method outperforms the others

Table 13: K-fold analysis for accuracy.

Classifiers SVM NB LR K-NN DT

K = 5 M1ð Þ 98.5 91.6 93.9 93.8 93.8

K = 10 M2ð Þ 98.6 90.5 92.2 94.2 92.3

K = 20 M3ð Þ 98.8 92.3 92.7 93.9 92.9

K = 25 M4ð Þ 98.7 91.6 93.3 93.4 93.8

K = 50 M5ð Þ 98.4 92.8 93.1 94.7 93.6

K = 5 K = 20 K = 25 K = 50K = 10

Machine learning models

ELPT EHPT ELPT EMPT ELPT

ELPT

Votes for ELPT: 03
Votes for EMPT: 01
Votes for EHPT: 01

Figure 8: Hard voting-based classification
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on the provided dataset. A few instances of categorization
for numerous plaintext images are shown in Table 11.

5. Results and Discussion

Two distinct tools such as MATLAB 2014a and a Jupyter
notebook (for Python, version 3.7) are used to construct
the proposed model. Several characteristics including accu-
racy, precision, recall, and F-score are examined while eval-
uating the proposed model, and their values may be simply
computed using the confusion matrix. This is a two-
dimensional array that contains True Positive (TP), True
Negative (TN), False Positive (FP), and False Negatives
(FN). Figure 7 shows the generalised confusion matrix and
the confusion matrices for the proposed work when DT,
K-NN, RF, NB, and SVM are used.

The terms TP, TN , FP, and FN are defined below
according to the proposed model.

(i) True positives (TP)

The proposed technique predicts that a strong EA
(EHPT) is required to encrypt such a plaintext image that
contains a bulk of information.

(ii) True negatives (TN)

The proposed technique predicts that such an EA is
required that offers moderate security (EMPT) to encrypt a

plaintext image that contains moderate amount of informa-
tion, or the proposed technique predicts that such an EA is
required that offers weak security (ELPT) to encrypt a plain-
text image which contains less amount of information.

(iii) False positives (FP)

The proposed technique predicts that a strong EA
(EHPT) is required to encrypt such a plaintext image that
contains moderate or less amount of information.

(iv) False negatives (FN)

The proposed technique predicts that such an EA is
required that offers moderate security (EMPT) to encrypt a
plaintext image that contains a bulk of information, or the
proposed technique predicts that such an EA is required that
offers weak security (ELPT) to encrypt a plaintext image that
contains a moderate amount of information.

The mathematical equations and corresponding values
calculated using the proposed mode are shown in Table 12.

To enhance the overall accuracy of the proposed model,
K-fold analysis is performed in which five different values of
K (K = 5, K = 10, K = 20, K = 25, andK = 50) are selected to
build five models (M1, M2, M3, M4, and M5). For instance,
if K = 20, a total of twenty iterations will be performed and
take the average accuracy for M1. The mathematical repre-
sentation for calculating the average accuracy for M3
(Avgacc) is shown in Equations (24) and (25), whereas Av

K = 5 K = 20 K = 25 K = 50K = 10

Machine Learning Models

ELPT (60%)

ELPT

Average of ELPT (42%)
Average of EMPT (31%)
Average of EHPT (27%)

EMPT (30%)
EHPT (10%)

ELPT (70%)
EMPT (15%)
EHPT (15%)

ELPT (10%)
EMPT (40%)
EHPT (50%)

ELPT (30%)
EMPT (20%)
EHPT (50%)

ELPT (40%)
EMPT (50%)
EHPT (10%)

Figure 9: Hard voting-based classification
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gacc for other classifiers at different values of K are displayed
in Table 13:

Avgacc M3ð Þ = Acc K1ð Þ + Acc K2ð Þ + Acc K3ð Þ + Acc K4ð Þ + Acc K5ð Þ
5

× 100,

ð24Þ

Accuracy M1ð Þ = 98:8 + 98:7 + 98:9 + 98:9 + 98:8
5

= 98:8%:

ð25Þ
Finally, voting techniques such as soft and hard voting

are applied on the proposed M-models to classify the labels
in a more sophisticated way.

5.1. Hard Voting. This technique works on the majority of
votes. For instance, there are five models for the proposed
work (M1,M − 2,⋯,M5). Three of them classify the
upcoming event as ELPT, one each is for classes EMPT
and EHPT. Therefore, according to the hard voting tech-
nique, the new event will belong to class ELPT as shown in
Figure 8.

5.2. Soft Voting. The probability-based classification can be
performed using soft voting. In this technique, the probabil-
ity of each class occurring is calculated separately, and then,
the decision will be in favour of the class which has the high-
est probability value, as shown in Figure 9.

The probability of occurring in each class (ELPT, EMPT,
and EHPT) using the generatedM-models is calculated indi-
vidually according to

For class ELPT =
Po ELPTð Þ1 + Po ELPTð Þ2 + Po ELPTð Þ3+⋯+Po ELPTð ÞN

N
,

ð26Þ

For class EMPT =
Po EMPTð Þ1 + Po EMPTð Þ2 + Po EMPTð Þ3+⋯+Po EMPTð ÞN

N
,

ð27Þ

Table 14: Performance comparison with existing models.

Schemes
SVM (sigmoid kernel) SVM (linear kernel) SVM (rbf kernel)

SVM
(polynomial kernel)

NB LR DT RF K-NN

Accuracy (Accy)
Proposed 98.7 95.4 96.3 95.8 90.2 78.3 80.6 95.2 96.9

Reference [62] 91 81 89 90 90 92 91 84 86

Reference [63] 86 93 92 92 91 92 92 91 92

Reference [61] 95 75 77 79 73 74 82 84 86

Reference [64] 85 83 82 89 92 93 91 92 97

Reference [65]
92 86 82 92 92 94 91 92 93

Precision (Precy)
Proposed 0.97 0.98 0.98 0.89 0.99 0.32 0.35 0.99 0.97

Reference [62] 0.84 0.92 0.90 0.85 0.86 0.87 0.89 0.92 0.89

Reference [63] 0.92 0.95 0.93 0.96 0.93 0.93 0.95 0.98 0.99

Reference [61] 0.89 0.88 0.87 0.84 0.92 .97 0.98 0.97 0.98

Reference [64] 0.97 0.95 0.96 0.98 0.96 099 0.98 0.99 0.98

Reference [65]
0.89 0.88 0.87 0.84 0.92 .97 0.98 0.97 0.98

Sensitivity (Seny)
Proposed 0.97 0.98 0.99 0.96 0.80 0.15 0.87 0.92 0.85

Reference [62] 0.89 0.92 0.93 0.95 0.91 0.94 0.95 0.94 0.92

Reference [63] 0.92 0.94 0.91 0.90 0.98 0.94 0.95 0.92 0.91

Reference [61] 0.97 0.91 0.92 0.91 0.92 0.96 0.95 0.92 0.96

Reference [64] 0.91 0.92 0.90 0.89 0.96 0.92 0.93 0.91 0.92

Reference [65]
0.91 0.92 0.94 0.96 0.96 0.92 0.92 0.91 0.91

F1-score

Proposed 0.98 0.99 0.98 0.96 0.89 0.22 0.45 0.94 91

Reference [62] 0.86 0.92 0.81 0.88 0.85 0.97 0.93 0.94 0.92

Reference [63] 0.92 0.92 0.83 0.92 0.93 0.91 0.98 0.96 0.94

Reference [61] 0.91 0.90 0.92 0.93 0.92 0.91 0.95 0.96 0.99

Reference [64] 0.96 0.97 0.92 0.91 0.91 0.96 0.95 0.92 0.91

Reference [65] 0.91 0.90 0.92 0.93 0.92 0.91 0.95 0.96 0.99

18 Wireless Communications and Mobile Computing



For class EHPT =
Po EHPTð Þ1 + Po EHPTð Þ2 + Po EHPTð Þ3+⋯+Po EHPTð ÞN

N
,

ð28Þ
where PoðELPTÞ, PoðEMPTÞ, and PoðEHPTÞ is the proba-
bility of occurring in the events ELPT, EMPT, and EHPT,
respectively. According to the calculated probabilities, Equa-
tions (29), (30), and (31) become

For class ELPT =
60 + 70 + 10 + 30 + 40

5
× 100 = 42%,

ð29Þ

For class EMPT =
30 + 15 + 40 + 20 + 50

5
× 100 = 31%,

ð30Þ

For class EHPT =
10 + 15 + 50 + 50 + 10

5
× 100 = 27%:

ð31Þ
According to Equations (29), (30), and (31), the upcom-

ing event will belong to class ELPT.
The statistical values of the performance metrics for the

proposed and existing work are displayed in Table 14. Sev-
eral machine learning algorithms, including SVM, NB, LR,
DT, RF, and K-NN, are evaluated when comparing the pro-
posed work to current models. Based on the comparative
study, it is evident that, among the machine learning algo-
rithms used in the proposed work, SVM offers the highest
accuracy. Moreover, comparable schemes are significantly
less accurate than the proposed approach. However, the
technique suggested in [61] has a 95% accuracy rate, which
is comparable to the accuracy offered by the proposed work.

6. Conclusions and Future Research Directions

The proposed research presents a pattern recognition-based
machine learning technique for selecting the most appropri-
ate encryption technique for a specific kind of data con-
tained in digital images. Digital images are classified into
three categories based on the amount of data present in
them. Images containing highly correlated data which are
transferred between the IoT devices should be encrypted
through EHPT, while images containing textures should be
encrypted through ELPT. Several machine learning algo-
rithms are evaluated in the proposed study in order to deter-
mine the optimal ML algorithm to achieve the desired task.
SVM outperforms all other machine learning methods in
terms of accuracy, and it classifies the images with an accu-
racy of 98.7%. As a result, it is selected for the proposed
technique. Moreover, a detailed comparison reveals that
the proposed technique performs better than the existing
ones.

In the future, we may use the proposed technique to
secure digital images. Moreover, the dataset utilised in this
research may be improved by incorporating more number
of features.

Data Availability

The dataset generated and analyzed during this research
study are available from the corresponding author on rea-
sonable request.
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