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Abstract

The evaluation of yield-related traits is an essential step in rice breeding, genetic research and functional genomics
research. A new, automatic, and labor-free facility to automatically thresh rice panicles, evaluate rice yield traits, and
subsequently pack filled spikelets is presented in this paper. Tests showed that the facility was capable of
evaluating yield-related traits with a mean absolute percentage error of less than 5% and an efficiency of 1440
plants per continuous 24 h workday.
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Background
Rice is the staple food for a large number of countries

and regions in the world, particularly in Asia [1].

Because the world’s population is increasing, obtaining

higher yields has been the primary breeding target of

rice cultivation [2]. As a complex agronomic trait, rice

yield is determined by the product of the grain weight,

the number of grains per panicle and the number of

panicles per plant. The number of total spikelets per

panicle and the seed setting rate are two traits that mul-

tiplicatively determine the number of grains per panicle,

and the grain weight is largely determined by the grain

size, including the grain length, the grain width, and the

grain thickness [3].

The evaluation of yield traits, including the number of

total spikelets (including filled and unfilled spikelets),

the number of grains (also known as the number of

filled spikelets), the seed setting rate (the number of

filled spikelets divided by the number of total spikelets),

the 1000-grain weight, the grain length, and the grain

width, is an essential step in rice breeding, genetic

research and functional genomics research [4-6]. Cur-

rently, rice yield trait evaluation is mainly performed by

experienced workers. When investigations of large num-

bers of plants are needed, the manual measurement

process is very subjective, inefficient, tedious, and error-

prone. Most importantly, manual measurements are

greatly affected by worker fatigue, which is a major pro-

blem in conducting mass measurements and renders the

evaluation results questionable. In addition to trait

extraction and evaluation, data logging and seed man-

agement are two instrumental steps in rice research.

Traditionally, the processing of data, seed packaging,

and seed coding are preformed manually and are thus

error-prone and unreliable. A mistake in data manage-

ment and seed management would lead to incorrect

decisions and treatment of the seeds and is thus intoler-

able in rice research. For this reason, at least three

workers are normally needed to check and verify the

data to avoid the mistakes.

Modern plant breeding technologies are able to pro-

duce hundreds to thousands of new varieties, creating

the need for rapid evaluation of plant materials to pro-

vide pertinent information prior to entering the next

cycle of selection [7]. The low efficiency of manual trait

evaluation makes it unsuitable for meeting the increas-

ing demand for higher evaluation speeds. Automated

assessment and measurement of plant phenotypes is

therefore indispensable [8]. Several efforts have been

made to automate plant phenotyping, such as automated

analysis of plant leaves [9], roots [10,11], hypocotyls

[12], tillers [13], and shoot biomasses [14] and whole

adult plants [15,16]. Plant phenotyping facilities have

also been established in large research centers and uni-

versities in Australia [17,18], Germany [19], the UK [20],
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and France [21]. However, to the best of our knowledge,

very little information is available on rice yield trait eva-

luation. Previously, our group developed a method to

identify and count filled/unfilled spikelets [22]. We inte-

grated visible-light imaging and X-ray imaging to simul-

taneously calculate the total spikelet number and the

filled spikelet number. Nevertheless, the accuracy and

efficiency of the method was limited by the performance

of the X-ray system. Moreover, because of the utilization

of an X-ray system, the prototype was expensive and

posed a radiation hazard; thus, it was not suitable for

widespread use. Research on single-trait evaluation,

mainly grain dimension measurement, has also been

reported [23,24]. However, these studies have the disad-

vantage of measuring only a single trait.

This work aimed to develop an integrated and labor-

free engineering solution for automatic panicle thresh-

ing, rice yield-related trait evaluation (including the

number of total spikelets (NTS), the number of filled

spikelets (NFS), the 1000-grain weight (TGW), the grain

length (GL), and the grain width (GW)), and seed pack-

ing. The task involved the development of an automated

threshing machine for the threshing of spikelets and the

separation of spikelets and other unwanted materials;

the design of mechanisms for separating the filled spike-

lets from the unfilled spikelets; the design of a machine

vision system for imaging rice spikelets; the develop-

ment of real-time algorithms for trait evaluation; the

construction of a data logging and management system

for data tracking; and the design of control and commu-

nication procedures to supervise the whole system,

including a user-friendly interface.

Results and Discussion
Development of the SEA facility

The facility consisted of three major elements: a thresh-

ing unit, an inspection unit, and a packing-weighing

unit (Figure 1). The control center used software devel-

oped using LabVIEW 8.6 (National Instruments, USA)

to control the whole system. The operating procedure

includes the following steps: (1) the barcode of the rice

plant being evaluated was obtained with a barcode scan-

ner or by manual input, depending on the user’s selec-

tion. (2) The threshing machine was started as panicles

to be processed by the machine were detected. Spikelets

were transferred to the inspection unit while impurities

were collected at the impurity outlet. (3) The “total-spi-

kelet-vision camera” collected images of the total spike-

lets (total-spikelet image) that came from the threshing

unit (including filled and unfilled spikelets). A wind

separator separated the filled spikelets from the unfilled

spikelets. The ‘filled-spikelet-vision camera’ collected

images of the filled spikelets (filled-spikelet image). The

images were analyzed to determine yield traits. Unfilled

spikelets were collected at the unfilled-spikelet outlet.

(4) After inspection, lifting equipment raised the col-

lected filled spikelets and delivered them to a packing

machine for packaging. (5) A code-jetting machine

printed the barcode of the recently examined rice plant

on the packing bag. (6) An electronic balance weighed

the filled spikelets and sent the data to the computer.

(7) A collecting device collected the packed filled spike-

lets. An additional movie file shows the operation proce-

dure in more detail [see Additional file 1].The developed

prototype, dubbed the Seed-Evaluation Accelerator

(SEA), is shown in Figure 2.

The control flowchart is shown in Figure 3. The times

required for panicle feeding (Tf), threshing (Tt), inspec-

tion (Ti), and packing-weighing (Tp) were designed to be

30, 50, 60, and 40 seconds, respectively. Tidle was the idle

time between subsequent measurements and depended

on the operator. The threshing unit and the inspection

unit worked in parallel with the packing-weighing unit,

and Tp was less than Ti. Thus, the total processing time

per rice plant was determined by Eq. 1:

T = Ti + Tidle (1)

Threshing unit

Panicles were fed into the threshing unit via a panicle

inlet. The threshing of the spikelets was triggered by

pulses received from a photoelectric sensor attached to

the panicle inlet. The machine threshed the spikelets

through roller-compaction processes. A sieve was used

to separate the spikelets from branches and other

unwanted materials. A tilted, vibrating plate under the

sieve disaggregated the spikelets as they reached the end

of the plate. After the spikelets were vibrated into the

spikelet outlet, impurities were blown out through the

impurity outlet by an air blower.

Inspection unit

Figure 4 shows the details of the inspection unit. The

prototype used two line-scan cameras (Spyder 3 GIGE

vision SG-11-02k80-00-R, Teledyne DALSA Company,

Germany) to acquire 5000 × 2048 pixel grayscale images

with a resolution of 0.23 mm/pixel. The cameras were

controlled by the computer workstation (HP z600, Hew-

lett-Packard Development Company, USA) through an

Ethernet card (NI PCIe 8235, National Instruments Cor-

poration, USA) that digitized the images into 8-bit files.

Two line-array LED light sources served as the illumina-

tion system.

Spikelets coming from the threshing unit were trans-

ferred onto the first conveyor (420 mm wide), where the

ellipsoidal spikelets lay flat. When the spikelets were

transferred to the second conveyor, they were imaged by

the so-called “total-spikelet-vision camera” as they

passed through the field of view of the camera. Then,
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the filled spikelets and the unfilled spikelets were sepa-

rated by a wind separator mounted between the second

and third conveyors. Unfilled spikelets were blown out

and collected at an unfilled-spikelet outlet, whereas filled

spikelets fell onto the third conveyor and were imaged

by the “filled-spikelet-vision camera”. To spread out the

spikelets, the second conveyor was designed with a

higher speed than that of the first conveyor, and the

Figure 1 Scheme of the SEA facility. Panicles were threshed by the threshing unit, and spikelets were transferred to the inspection unit. A
wind separator separated filled spikelets from unfilled spikelets. One camera acquired images of the total spikelets (including filled spikelets and
unfilled spikelets) and one acquired images solely of the filled spikelets. The images were subsequently analyzed to obtain yield traits. After
inspection, the filled spikelets were packed and weighed.
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speed of the third conveyor was higher than that of the

second. This design produced a separation of individual

spikelets and consequently facilitated image analysis. A

black conveyor belt was chosen, as it generated good

contrast between the belt and spikelets and thus was

beneficial for image segmentation.

Packing-weighing unit

As shown in Figure 5, after inspection, the filled spike-

lets fell into a grain-collecting tank placed under the

third conveyor. Next, lifting equipment raised the tank

and poured the filled spikelets into a packing machine.

After packing, a code-jetting machine printed the bar-

code of the plant being evaluated onto the packing bag.

Subsequently, an electronic balance weighed the filled

spikelets and sent the grain weight (Wgrain) to the

computer. The TGW was obtained using Eq. 2:

TGW = (Wgrain × 1000)
/

NFS (2)

Communication interface

The communication interface is illustrated in Figure 6.

The resultant total-spikelet image and the filled-spikelet

image, along with the yield trait data, were displayed on

the interface. When the “Input barcode manually?” but-

ton was clicked, a dialog box was shown to allow users

to input the barcode manually.

Automated data and seed management

At the beginning of the yield trait evaluation for each

rice plant, the user chose to either scan the barcode of

the plant using a barcode scanner or input the barcode

manually. This barcode was transferred to the code-jet-

ting machine, which then sprayed the barcode on the

Figure 2 The developed prototype of the SEA facility. The
facility mainly consisted of three units: a threshing unit for
removing spikelets from the panicles, an inspection unit for
assessing and measuring yield traits, and a packing-weighing unit
for packing and weighing filled spikelets.

Figure 3 Control flowchart of the instrument.

Figure 4 Details of the inspection unit. The inspection unit
consisted mainly of a three-stage conveyor, two line-scan cameras,
two LED light sources, a wind separator and an unfilled spikelet
outlet.
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packing bag to facilitate seed management. Yield trait

data of the rice plant were stored in a Microsoft Excel

file along with the barcode of the plant for indexing and

data management.

Performance evaluation of the hardware

Rice panicles from 214 harvested Huageng 295 rice

plants were tested to evaluate the performance of the

prototype. All of the spikelets, including spikelets at the

impurity outlet, the unfilled-spikelet outlet and the

filled-spikelet outlet (packing machine), were collected.

The number of total spikelets and the number of filled

spikelets at the three outlets were counted separately

and recorded. For the NTS, NFS and TGW, each rice

plant was evaluated three times by different personnel,

and the average values were computed as reference data.

Manual observations were defined and computed as

given in Table 1.

The threshing machine worked well during the tests.

The absolute threshing error for total/filled spikelets

was calculated as the total/filled spikelet number at the

impurity outlet. The percentage threshing error for

total/filled spikelets was calculated as the absolute

threshing error divided by the number of total/filled spi-

kelets of the rice plant being evaluated. Figure 7 ill-

ustrates the percentage error of the threshing unit for

total spikelets and filled spikelets. As shown in Figure 7,

the threshing error for total spikelets was higher than

for filled spikelets, indicating that it was more difficult

to thresh unfilled spikelets than filled spikelets. It can be

observed from Figure 7 that some samples had thresh-

ing errors that were significantly higher than the average

error. This was because the feeding speed had an impor-

tant influence on the threshing of the spikelets. Two

panicles entering the threshing machine at the same

time would lead to fewer spikelets being threshed.

These spikelets that remained on the panicles would be

blown out with the panicle branches as impurities and,

consequently, increase the threshing error. The mean

absolute error and mean absolute percentage error of

Figure 6 Software interface of the implemented prototype.

Figure 5 Details of the packing-weighing unit. The packing-
weighing unit consisted of lifting equipment, a packing machine, a
code-jetting machine, an electronic balance and a collecting device.
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the threshing unit were 34 and 3.33%, respectively, for

total spikelets and 19 and 2.27%, respectively, for filled

spikelets.

The multi-stage conveyor proved able to segregate

most of the spikelets. As a result, most kernels in both

the total-spikelet image and the filled-spikelet image

were observed to be isolated kernels. The packing-

weighing unit worked properly during the test, with

average weighing differences of less than 0.01 g between

automatic measurements and manual measurements.

Performance evaluation of the image analysis algorithms

To test the performance of the image analysis algo-

rithms, manually threshed spikelets of 90 Huageng 295

rice plants were fed into the inspection unit and imaged

by the cameras. Manually threshed spikelets were used

to exclude measuring errors caused by threshing. Figure

8 shows the results of manual observation versus image

analysis of manually threshed spikelets. In comparison,

the image-analysis performance with automatically

threshed spikelets coming from the threshing unit was

also investigated (Figure 9). The mean absolute error

and the mean absolute percentage error with manually

threshed spikelets were 22 and 1.36%, respectively, for

the NTS and 7 and 0.54%, respectively, for the NFS. In

comparison, the mean absolute error and the mean

absolute percentage error with automatically threshed

spikelets were 27 and 2.81%, respectively, for the NTS

and 15 and 1.77%, respectively, for the NFS. As

expected, the measuring accuracy for the manually

threshed spikelets was higher than for the automatically

threshed spikelets. This was because the threshing

machine removed the hulls of some spikelets, and the

Figure 7 Performance of the threshing unit. The blue line and
red line represent the percentage threshing errors of the threshing
unit for total spikelets and filled spikelets, respectively.

Figure 8 Performance of the image analysis algorithms with

manually threshed spikelets. Scatter plots of manual
measurements versus automatic measurements with manually
threshed spikelets for the number of total spikelets and the number
of filled spikelets are shown. Ninety Huageng 295 rice plants were
used as samples in the evaluation experiment. Least squares linear
regression produced the following results: (a) number of total
spikelets: line of best fit: y = 1.01x-2.85, correlation coefficient r =
0.9995, (b) number of filled spikelets: line of best fit: y = 0.998x-1.65,
correlation coefficient r = 0.9998.

Table 1 Definition and calculation of manual observations

Variable Definition Calculation

NTSio Number of total spikelets at the impurity outlet

NTSuo Number of total spikelets at the unfilled-spikelet outlet

NTSfo Number of total spikelets at the filled-spikelet outlet (packing machine)

NFSio Number of filled spikelets at the impurity outlet

NFSuo Number of filled spikelets at the unfilled-spikelet outlet

NFSfo Number of filled spikelets at the filled-spikelet outlet (packing machine)

NTSmanual Manually measured value of the number of total spikelets (NTS of a rice plant) NTSmanual = NTSio + NTSuo + NTSfo

NFSmanual Manually measured value of the number of filled spikelets (NFS of a rice plant) NFSmanual = NFSio + NFSuo + NFSfo

NTSmanual.image Manually measured value of the number of total spikelets that were imaged by the camera NTSmanual.image = NTSuo + NTSfo

NFSmanual.image Manually measured value of the number of filled spikelets that were imaged by the camera NFSmanual.image = NFSuo + NFSfo
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broken hulls would appear in the image as impurities.

The external appearance of some broken hulls was simi-

lar to a spikelet, and consequently, they would be mista-

kenly treated as spikelets. In addition, some brown rice

spikelets (spikelets without hulls) were much smaller

than normal spikelets and thus would be mistakenly

treated as impurities.

As measuring the GL and the GW of a grain is trou-

blesome to perform, the mean GL and GW of only 50

rice plants were measured manually. For each rice plant,

10 filled spikelets were randomly chosen. Five workers

measured the grain length and the grain width of each

spikelet using a Vernier caliper, and the average value

was regarded as the grain length and the grain width of

one spikelet. To eliminate measuring errors caused by

sampling, the facility measured the same 10 spikelets of

each rice plant that were used for the manual measure-

ments. The GL and GW of each rice plant were com-

puted as the mean grain length and grain width values

of the selected 10 spikelets.

Large variances were noted for the GL and GW esti-

mation among different personnel. The lack of a

mathematical definition of GL and GW and worker fati-

gue under continuous measuring conditions were

believed to be two primary reasons for the huge var-

iance among workers. Manual measurements and auto-

matic measurements for GL and GW are illustrated in

Table 2. Generally, automatically measured GL values

were slightly larger than the values from manual mea-

surements. However, GW values that were measured

automatically matched well with those measured manu-

ally. The larger GL value from automatic measurement

than from manual measurements was because there

were errors in the manual location of the maximum

length (GL), and inaccurate location of the length

invariably leads to underestimation of the GL. Unlike

GL measurements, imprecise location of the width may

result in underestimation or overestimation of the GW.

As a result, the average manually measured GW values

matched well with automatically measured values.

Performance evaluation of the whole facility

Scatter plots of manual measurements versus automatic

measurements of the whole facility for the number of

total spikelets, the number of filled spikelets and the

1000-grain weight are shown in Figure 10. As weighing

differences between automatic measurements and man-

ual measurements were minor, the discrepancy in the

TKW between manual and automatic measurements

was chiefly caused by NFS measurement differences.

Table 3 summarizes the mean absolute error (MAE,

defined by Eq. 3) and the mean absolute percentage

error (MAPE, defined by Eq. 4) of the whole facility for

the evaluated yield traits. As shown in the table, the

facility was capable of evaluating yield traits with mean

absolute percentage errors of 4.02%, 3.33%, 1.47%, 1.31%

and 1.08% for number of total spikelets, number of filled

spikelets, grain length, grain width, and 1000-grain

weight, respectively. The MAE and MAPE were com-

puted using Eqns. (3) and (4)

MAE =
1

n

n
∑

i=1

| xi.a − xi.m | (3)

MA P E =
1

n

n
∑

i=1

| xi.a − xi.m |

xi.m
(4)

where n was the number of samples, xi.awas the ith
automatically measured value, and xi.m was the ith
manually measured value.

As observed from the results, the measuring error of

the NTS was larger than that of the NFS. This was

because broken hulls caused by threshing were also

imaged by the “total-spikelet-vision camera”. Addition-

ally, larger errors can result from broken hulls, which

Figure 9 Performance of the image analysis algorithms with

automatically threshed spikelets. Scatter plots of manual
measurements versus automatic measurements with automatically
threshed spikelets using the threshing unit for the number of total
spikelets and the number of filled spikelets are shown. In total, 214
Huageng 295 rice plants were used as samples in the evaluation
experiment. Least squares linear regression produced the following
results: (a) number of total spikelets: line of best fit: y = 0.99x+6.07,
correlation coefficient r = 0.993, (b) number of filled spikelets: line of
best fit: y = 0.99x+4.47, correlation coefficient r = 0.997.
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Table 2 Grain length and grain width measured manually versus automatically (sample size = 50)

No. Grain length (mm) Grain width (mm)

Automatic
measurement

Manual
measurement

Absolute
error

Relative
error

Automatic
measurement

Manual
measurement

Absolute
error

Relative
error

1 7.34 7.31 0.03 0.46% 3.43 3.37 0.06 1.82%

2 7.32 7.35 0.03 0.36% 3.31 3.41 0.10 2.85%

3 7.23 7.10 0.13 1.88% 3.33 3.21 0.12 3.85%

4 7.43 7.31 0.12 1.65% 3.43 3.27 0.16 4.91%

5 7.19 7.14 0.05 0.66% 3.19 3.23 0.04 1.25%

6 7.45 7.19 0.27 3.69% 3.29 3.23 0.06 1.91%

7 7.31 7.26 0.06 0.76% 3.19 3.24 0.05 1.54%

8 7.12 7.09 0.03 0.38% 3.22 3.32 0.10 2.94%

9 7.38 7.29 0.08 1.14% 3.32 3.29 0.03 0.84%

10 7.39 7.31 0.08 1.14% 3.30 3.33 0.03 0.81%

11 7.41 7.20 0.21 2.97% 3.24 3.28 0.04 1.23%

12 7.40 7.21 0.19 2.62% 3.29 3.22 0.07 2.15%

13 7.25 7.13 0.12 1.61% 3.29 3.33 0.04 1.11%

14 7.16 7.13 0.03 0.46% 3.29 3.23 0.07 2.07%

15 7.39 7.23 0.15 2.14% 3.26 3.32 0.06 1.86%

16 7.51 7.31 0.20 2.76% 3.28 3.33 0.05 1.39%

17 7.19 7.13 0.06 0.91% 3.26 3.28 0.02 0.52%

18 7.46 7.29 0.16 2.25% 3.37 3.40 0.03 0.79%

19 7.27 7.28 0.01 0.14% 3.30 3.30 0.00 0.02%

20 7.29 7.20 0.09 1.28% 3.32 3.36 0.04 1.33%

21 7.32 7.23 0.09 1.29% 3.24 3.33 0.09 2.57%

22 7.33 7.25 0.07 0.98% 3.29 3.36 0.07 2.15%

23 7.52 7.37 0.15 2.09% 3.24 3.39 0.15 4.48%

24 7.38 7.32 0.06 0.85% 3.28 3.37 0.08 2.48%

25 7.33 7.33 0.00 0.01% 3.32 3.43 0.11 3.07%

26 7.36 7.22 0.14 1.94% 3.29 3.31 0.02 0.65%

27 7.36 7.19 0.17 2.39% 3.33 3.29 0.04 1.09%

28 7.28 7.29 0.01 0.14% 3.31 3.29 0.02 0.67%

29 7.24 7.18 0.06 0.81% 3.27 3.29 0.02 0.60%

30 7.42 7.28 0.15 2.00% 3.48 3.41 0.07 2.05%

31 7.33 7.27 0.06 0.82% 3.24 3.33 0.09 2.71%

32 7.29 7.11 0.19 2.61% 3.36 3.27 0.10 2.94%

33 7.47 7.35 0.12 1.68% 3.31 3.31 0.00 0.03%

34 7.26 7.24 0.02 0.21% 3.41 3.41 0.00 0.00%

35 7.59 7.42 0.17 2.22% 3.42 3.39 0.03 0.92%

36 7.31 7.18 0.13 1.80% 3.26 3.21 0.05 1.41%

37 7.36 7.20 0.16 2.16% 3.35 3.33 0.02 0.47%

38 7.50 7.26 0.23 3.22% 3.34 3.30 0.05 1.42%

39 7.36 7.28 0.08 1.09% 3.36 3.35 0.01 0.28%

40 7.12 7.13 0.02 0.26% 3.14 3.17 0.03 0.80%

41 7.34 7.15 0.19 2.67% 3.32 3.31 0.01 0.24%

42 7.21 7.26 0.05 0.69% 3.24 3.31 0.08 2.29%

43 7.39 7.20 0.19 2.64% 3.36 3.38 0.02 0.46%

44 7.37 7.24 0.13 1.75% 3.35 3.37 0.02 0.48%

45 7.38 7.32 0.06 0.78% 3.32 3.38 0.06 1.74%

46 7.24 7.20 0.03 0.46% 3.37 3.35 0.02 0.59%

47 7.42 7.26 0.16 2.23% 3.30 3.34 0.05 1.41%

48 7.59 7.39 0.21 2.79% 3.35 3.36 0.01 0.21%

49 7.38 7.32 0.05 0.73% 3.37 3.39 0.02 0.63%

50 7.28 7.23 0.05 0.68% 3.30 3.30 0.00 0.10%

Mean
value

7.34 7.24 0.11 1.47% 3.31 3.32 0.04 1.31%
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are very similar in appearance to complete spikelets

and, consequently, may be treated as spikelets by the

vision system but are ignored in manual observation.

These broken hulls were blown out into the impurity

outlet by the wind separator and thus would not influ-

ence the NFS measurement. Anther reason for the lar-

ger measuring error of the NTS was that the threshing

error of the total spikelets was larger than that of the

filled spikelets.

The threshing error directly decreases the number

of spikelets that pass through the inspection unit and,

consequently, influences the measuring accuracy of

the NTS and the NFS. The relation between the

threshing error and the measuring error of the NTS

and the NFS were investigated. Figure 11 shows the

variation of the percentage measuring error of the

facility for the NTS and the NFS as a percentage

threshing error changes. As shown in Figure 11, the

measuring error for both the NTS and the NFS pre-

sented an upward trend as the threshing error

increased. Compared with the measuring error for the

NFS, the measuring error for the NTS had a weaker

relationship with the threshing error. This was

because broken hulls had a considerable effect on the

NTS measuring error.

Figure 10 Performance of the entire facility. Scatter plots of
manual measurements versus automatic measurements with the
facility for (a) the number of total spikelets, (b) the number of filled
spikelets, and (c) the 1000-grain weight are shown. In total, 214
Huageng 295 rice plants were used as samples in the evaluation
experiment. Least squares linear regression produced the following
results: (a) number of total spikelets: line of best fit: y = 0.96x+10.24,
correlation coefficient r = 0.992, (b) number of filled spikelets: line of
best fit: y = 0.96x+6.14, correlation coefficient r = 0.996, (c) 1000-
grain weight: line of best fit: y = 0.94x+1.56, correlation coefficient r
= 0.91.

Table 3 Mean absolute error (MAE) and mean absolute

percentage error (MAPE) for the evaluated traits

(asample size = 214, bsample size = 50)

Trait Definition MAE MAPE

NTSa Number of total spikelets of a rice plant 41 4.02%

NFSa Number of filled spikelets of a rice plant 29 3.33%

GLb Average grain length of a rice plant 0.11 mm 1.47%

GWb Average grain width of a rice plant 0.04 mm 1.31%

TGWa 1000-grain weight of a rice plant 0.26 g 1.08%

Figure 11 Relationship between the percentage measuring

error of the facility and the percentage threshing error. (a)
number of total spikelets and (b) number of filled spikelets.
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Measuring the efficiency of the whole facility

Assuming Tidle was 0 s, the total processing time per

rice plant was approximately 60 s (calculated as Eq. 1);

i.e., the implemented prototype was able to perform

yield trait evaluations for approximately 1440 rice plants

per 24 h continuous workday. Generally, an experienced

worker can evaluate approximately 20 plants per day

(working 8 hours per day). As the prototype needs no

human operation except for panicle feeding, it is feasible

to run the facility continuously for 24 hours for mass

measurements. From this point of view, the facility was

capable of evaluating rice yield traits with an efficiency

more than 70 times greater than that of manual opera-

tion at its maximum throughput.

The efficiency of the whole facility was determined by

the inspection unit and the time elapsed, which was lim-

ited by the threshing time. More effective threshing

methods will be developed in the future to improve the

efficiency of the whole facility. The software was

designed to allow the images to be processed concur-

rently as the cameras were acquiring images. Image pro-

cessing requires less time than image acquisition. The

shorter time needed for image processing also opened

up the possibility of applying more sophisticated algo-

rithms for more sophisticated solutions. For instance,

statistical classifiers such as the distance classifier, discri-

minant analysis and artificial neural networks could be

adapted in the future to discriminate broken hulls from

spikelets.

Automation and integration of threshing, multi-trait

measurement and seed packing

With the only manual operation being panicle feeding,

the SEA facility automated the entire process of thresh-

ing, fast multi-trait measurement and seed packing. The

yield traits were automatically observed and stored with

a unique code after system inspection. Meanwhile, the

seeds were automatically packed with the relevant code.

The automation and integration of the entire process

will substantially improve the yield trait evaluation pro-

cess for rice researchers. With the data tracking ability,

it was convenient for the user to manage and analyze

data. Data tracking also allowed the user to combine

yield traits with other traits such as the tiller number,

the leaf area, the plant height, thus allowing an inte-

grated understanding. Moreover, data tracking is benefi-

cial for seed management. Compared with manual data

logging and seed management, the data tracking of the

facility made data management and seed management

more robust and reliable.

Conclusions
This paper described an engineering prototype for the

automatic evaluation of rice yield traits, including the

number of total spikelets, the number of filled spikelets,

the grain length, the grain width, and the 1000-grain

weight. The prototype comprised three major units: the

threshing unit, the inspection unit, and the packing-

weighing unit. The mean absolute percentage error was

less than 5% for all of the evaluated yield traits, and the

efficiency was approximately 1440 plants per 24-hours

continuous workday. The facility will be helpful for

improving the accuracy and efficiency of rice yield trait

evaluation and will serve as a powerful tool in rice plant

phenotyping, which will eventually benefit rice breeding,

genetic research, functional genomics research and

other rice research. With some modifications, the appli-

cation could be extended and generalized to other

crops, such as wheat, corn and barley. Other compound

yield traits such as the seed setting rate and the length-

width ratio can also be deduced from the extracted

traits. In summary, using agricultural photonics, the

high-throughput facility, dubbed the Seed-Evaluation

Accelerator, gives plant scientists a novel tool to unlock

the phenotypic information coded in rice genome [25].

Methods
Image acquisition

The control software was designed for evaluating yield

traits of one rice plant at a time. The continuous acqui-

sition of the images was controlled by the pulses

received from a photoelectric sensor attached to the

panicle inlet of the threshing unit. Images were acquired

and stored using the NI-IMAQ Virtual Instruments (VI)

Library for LabVIEW (National Instruments Corpora-

tion, USA). For each plant, 14 images were acquired by

the “total-spikelet-vision camera” (called the total-spike-

let image) and 20 images were acquired by the “filled-

spikelet-vision camera” (called the filled-spikelet image).

This design was applicable to most rice varieties with

less than 20 panicles per plant. Figure 12 shows typical

total-spikelet and filled-spikelet images acquired by the

two cameras. Note that the images shown in Figure 12

have been cropped for better visualization, as the origi-

nal images are too large (5000 × 2048 pixels).

Image analysis

The image-analysis software was programmed using NI

Vision for LabVIEW 8.6 (National Instruments Corpora-

tion, USA). The software was designed to allow the two

cameras (the “total-spikelet-vision camera” and the

“filled-spikelet-vision camera”) to work at the same

time, and the images were analyzed in the computer

simultaneously while the cameras were acquiring new

images, thus optimizing the measurement efficiency.

Figure 13 outlines the flowchart of the algorithm for

determining the spikelet number in an image (a total-

spikelet image or a filled-spikelet image). Image
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segmentation was performed to determine the back-

ground and objects of interest. For better processing

speed, a pixel-oriented segmentation algorithm was

applied in this study. A pixel was considered to belong

to a background point if its grayscale fell below a pre-

defined, fixed threshold. In a subsequent step, a median

filter (3 × 3 neighborhood) was used to remove isolated

pixels. As some small pieces of branches may appear on

the conveyor, objects with a length-width ratio greater

than three times that of the spikelets were treated as

branches and removed. Branches with a length-width

ratio less than three times that of the spikelets were

subsequently removed using the “IMAQ detect line”

operation. Small regions with an area less than half of

the average area of spikelets were regarded as impurities

and removed from the image. Spikelets may be touching

during on-line processing. The shape of an isolated spi-

kelet is roughly elliptical, so the “IMAQ detect Ellipse”

operation was used to identify the isolated spikelet in

the image (NI Vision Concepts Manual, National Instru-

ments Corporation, USA). After identification, the origi-

nal image was divided into two images, one image with

only the isolated spikelet (isolated image) and the other

with only the touching spikelets (touching image). From

an efficiency perspective, we opted for a simple area-

determination method to determine the spikelet number

in the touching image Ntouching, which was computed by

Eq. 5 and Eq. 6:

Nj = round (Aj

/

A) (5)

Ntouching =

T
∑

j=1

Nj (6)

where Nj was the actual spikelet number for a given

touching region j in the touching image, the function

round(x) rounded x to the nearest integer, Aj was the

area of the touching region j, Ā was the average spikelet

area calculated from the isolated image, and T was the

number of touching regions.

The spikelet number (N) in the original image was

determined by summing up the spikelet numbers in the

Figure 12 Typical grayscale images for (a) a total-spikelet

image and (b) a filled- spikelet image.

Figure 13 Determination of spikelet number in an image.
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isolated image (Nisolated) and in the touching image

(Ntouching). The NTS of the evaluated plant was calcu-

lated as the sum of the spikelet numbers in all 14 total-

spikelet images. Similarly, the NFS of the evaluated

plant was calculated as the sum of the spikelet numbers

in all 20 filled-spikelet images.

The length and width of each isolated spikelet in the

filled-spikelet images were calculated. The GL is defined

as the maximum Euclidean distance between two

boundary points of a filled spikelet, and the GW is

defined as the maximum length of straight lines perpen-

dicular to the line of the GL.

Figure 14 shows the structure of the image-processing

program in LabVIEW for total-spikelet images and

filled-spikelet images. Illustrations showing block dia-

grams of the VIs developed in this research are attached

in Additional files 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, and 17.

Additional material

Additional file 1: Operating procedure of the facility. A video
showing the detailed operating procedure of the SEA facility.

Additional file 2: Source code file 1.
ImProcessPerPlant_TotalSpikeletImage.vi was used for processing total-
spikelet images of one plant (14 images in the developed facility). The
number of total spikelets of the evaluated plant was calculated as the
sum of the spikelet numbers in all 14 total-spikelet images. Note that in

the facility, ImProcessPerPlant_TotalSpikeletImage.vi functions were
included in a ‘queue’ structure to allow images to be analyzed in the
computer simultaneously while the cameras were acquiring new images,
thus optimizing the measuring efficiency.

Additional file 3: Source code file 2. ImageAnalysis_TotalSpikeletImage.
vi was developed for processing a single total-spikelet image.

Additional file 4: Source code file 3. ImagePreProcess.vi executed
image segmentation and impurity removal.

Additional file 5: Source code file 4. In continuous image acquisition,
some grains may exist both in the bottom border of the previous image
and in the top border of the subsequent image. Merge.vi. merged the
object at the bottom border of the previous image with the other part
of the object in the subsequent image.

Additional file 6: Source code file 5. Split.vi extracted objects at the
bottom border in the current image.

Additional file 7: Source code file 6. ImageProcess.vi removed small
particles and calculated spikelet number in an image.

Additional file 8: Source code file 7. ImpurityRemove.vi removed
objects with a length-width ratio greater than three times that of the
spikelets.

Additional file 9: Source code file 8. StemRemove.vi removed
branches with length-width ratios less than three times that of the
spikelet using the “IMAQ detect line” operation.

Additional file 10: Source code file 9. MeanAreaCalculation.vi
calculated the average area of the spikelets.

Additional file 11: Source code file 10. RemoveSmallParticle.vi
removed small regions with an area less than the defined area threshold.

Additional file 12: Source code file 11. GrainClassification.vi divided
the original image into two images: one image with only isolated
spikelets (isolated image) and the other with only touching spikelets
(touching image).

Figure 14 Structure of image processing program in LabVIEW for (a) total-spikelet images and (b) filled-spikelet images. 1: Source code
file 1 (ImProcessPerPlant_TotalSpikeletImage.vi), 2: Source code file 2 (ImageAnalysis_TotalSpikeletImage.vi), 3: Source code file 3
(ImagePreProcess.vi), 4: Source code file 4 (Merge.vi), 5: Source code file 5(Split.vi), 6: Source code file 6 (ImageProcess.vi), 7: Source code file 7
(ImpurityRemove.vi), 8: Source code file 8 (StemRemove.vi), 9: Source code file 9 (MeanAreaCalculation.vi), 10: Source code file 10
(RemoveSmallParticle.vi), 11: Source code file 11 (GrainClassification.vi), 12: Source code file 12 (TotalGrainNumberCalculation.vi), 13: Source code
file 13 (TouchingGrainNumberCalculation.vi), 14: Source code file 14 (ImProcessPerPlant_FilledSpikeletImage.vi), 15: Source code file 15
(ImageAnalysis_FilledSpikeletImage.vi), 16: Source code file 16 (GetLengthWidthRatio.vi). Illustrations showing source code files 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, and 16 are attached in Additional files 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, and 17, respectively.
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Additional file 13: Source code file 12. TotalGrainNumberCalculation.vi
determined the spikelet number in the original image by summing up
the spikelet number in the isolated image and the spikelet number in
the touching image.

Additional file 14: Source code file 13.
TouchingGrainNumberCalculation.vi calculated the spikelet number in
the touching image.

Additional file 15: Source code file 14.
ImProcessPerPlant_FilledSpikeletImage.vi was used for processing filled-
spikelet images of one plant (20 images in the developed facility). The
number of filled spikelets of the evaluated plant was calculated as the
sum of the spikelet numbers in all 20 filled-spikelet images. Note that in
on-line measurements, ImProcessPerPlant_FilledSpikeletImage.vi functions
were included in a ‘queue’ structure to allow images to be analyzed in
the computer simultaneously while the cameras were acquiring new
images.

Additional file 16: Source code file 15.
ImageAnalysis_FilledSpikeletImage.vi was developed for processing a
single filled-spikelet image.

Additional file 17: Source code file 16. GetLengthWidthRatio.vi
calculated the length, width, and length-width ratio for each isolated
grain.
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