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Abstract

In this paper, we propose an extension of hesitant fuzzy sets, i.e., proportional hesitant fuzzy sets (PHFSs),
with the purpose of accommodating proportional hesitant fuzzy environments. The components of
PHFSs, which are referred to as proportional hesitant fuzzy elements (PHFEs), contain two aspects of
information provided by a decision-making team: the possible membership degrees in the hesitant fuzzy
elements and their associated proportions. Based on the PHFSs, we provide a novel approach to address-
ing fuzzy multi-attribute group decision making (MAGDM) problems. Different from the traditional
approach, this paper first converts fuzzy MAGDM (expressed by classical fuzzy numbers) into propor-
tional hesitant fuzzy multi-attribute decision making (represented by PHFEs), and then solves the latter
through the proposal of a proportional hesitant fuzzy TOPSIS approach. In this process, preferences of the
decision-making team are calculated as the proportions of the associated membership degrees. Finally,
a numerical example and a comparison are provided to illustrate the reliability and effectiveness of the
proposed approach.

Keywords: Fuzzy sets, hesitant fuzzy sets, proportional hesitant fuzzy sets, multi-attribute group decision
making.

1. Introduction

The hesitant fuzzy problems are common in daily

life, which have been initially interpreted by Torra1

as: “When defining the membership of an element,

the difficulty of establishing the membership degree

is not because we have a margin of error (as in A-

IFS2), or some possibility distribution (as in type

2 fuzzy sets3) on the possible values, but because

we have a set of possible values”. To cope with

these uncertainties produced by human being’s hes-

itations, Torra and Narukawa1,5 expanded Zadeh’s

fuzzy sets (FSs)6 to another form of fuzzy multi-

sets7,8: hesitant fuzzy sets (HFSs). It is worth noting
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that the HFSs can be applied to describe and handle

the following two decision-making cases:

Case 1. Decision is made by one hesitant deci-

sion maker, who thinks the membership degree of

an object belonging to a concept may have a set

of possible values. For example, people’s taste for

dessert may change with mood. Good mood may

taste more, whereas bad mood may taste less. There-

fore, these different tastes constitute a HFS.

Case 2. Decision is made by a team, which con-

tains no less than two decision makers. In this case,

the team is automatically divided into more than one

group according to the evaluation values of all deci-

sion makers: Different groups have distinct opinions

on the membership degree, and each group cannot

convince each other. For instance, different people

may have diverse tastes for dessert, which similarly

compose a HFS.

In the aforementioned two cases, the member-

ship degree of an element to a set consists of several

possible values in the real unit interval [0,1]. Case

1 derives from the dimension of “time”, whereas

“space” dimension is the main factor to promote

the second case. Since the introduction of HFSs by

Torra and Narukawa1,5, the state-of-the-art regard-

ing HFSs mainly focuses on the following three as-

pects: aggregation operators, information measures

and extensions.

The existing literature on aggregation operators

is extensive. Following the intuitionistic fuzzy sets2,

Xia and Xu9 defined the hesitant fuzzy weighted av-

eraging operator, hesitant fuzzy weighted geometric

operator, and many others. Similarly, a large num-

ber of other hesitant fuzzy aggregation operators

were defined based on some basic aggregation op-

erators, such as the hesitant fuzzy quasi-arithmetic

aggregation operator11, hesitant fuzzy power geo-

metric operators10, induced hesitant fuzzy aggrega-

tion operators11 and hesitant fuzzy geometric Bon-

ferroni means12. Especially, in order to alleviate

the computational complexity, several improved ag-

gregation principles were also proposed regarding

HFSs13,14,15.

The studies of hesitant fuzzy information mea-

sures are highly diversified, for instance, the dis-

tance and similarity measures on HFSs16,17, corre-

lation coefficients over HFSs18,19 and entropy and

cross entropy measures of HFSs20,21. Particularly,

Farhadinia21 explored the relationship among them

and pointed that the distance, similarity and entropy

measures are interchangeable under certain condi-

tions. Furthermore, many extensions on HFSs (for

example, the hesitant fuzzy linguistic terms sets22,23,

interval-valued hesitant fuzzy sets21,24, higher order

hesitant fuzzy sets17 and dual hesitant fuzzy sets25)

have also been proposed with the purpose of mod-

eling the hesitant fuzzy problem from various per-

spectives. Due to the fact that “the hesitant fuzzy set

provides a more accurate representation of peoples

hesitancy in stating their preferences over objects

than the fuzzy set or its classical extensions”10, it

has been widely and successfully applied to differ-

ent practical areas, such as clustering analysis18,26,

decision making19,22, and many others.

However, HFSs, including their extensions as

mentioned above, are not applicable to addressing

the case that a team could not reach agreement on

a fuzzy decision (see Case 2), and the proportions

of the associated membership degrees are measur-

able. For example, supposing a decision-making

team consisted of ten members is invited to evalu-

ate the membership degree of element x ∈ X to set

E, the evaluation result is as follows: one member

(Group A1) thinks the membership degree is 0.9; one

member (Group A2) thinks the membership degree is

0.7; two members (Group A3) think the membership

degree is 0.5; two members (Group A4) think the

membership degree is 0.3; and the rest four members

(Group A5) think the membership degree is 0.1. Ad-

ditionally, each group cannot convince each other.

In this example, different groups hold diverse opin-

ions on the degree of element x∈X to set E and their

associated proportions are measurable. Utilizing the

hesitant fuzzy element (HFE)9, this hesitant fuzzy

problem can be expressed as {0.9,0.7,0.5,0.3,0.1}.

However, the repeated rating values, such as four

members think the membership degree is 0.1 in this

example, are removed4. As mentioned by Peng et

al.27, this removal is usually unreasonable, because

values that appear just once may be more hesitant

than a value repeated. Moreover, ignoring these re-

peated values may also loss part of preference infor-
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mation provided by the decision-making team.

Motivated by the aforementioned problem that

may be faced in practice, this paper introduces the

proportional hesitant fuzzy sets (PHFSs), which

contain two aspects of information: the possi-

ble membership degrees in the hesitant fuzzy el-

ements and their associated proportions. Uti-

lizing proportional hesitant fuzzy elements (PH-

FEs), the hesitant fuzzy problem mentioned in

the last paragraph can be reasonably denoted as

{(0.9,0.1),(0.7,0.1),(0.5,0.2),(0.3,0.2),(0.1,0.4)},

where (0.1,0.4) represents Group A5 thinks the

membership degree is 0.1 and the proportion of

Group A5 is 0.4. In PHFE, a large proportion in-

dicates the decision-making team has a high pref-

erence for the associated membership degree, while

the meaning for a small one is just converse. HFS

therefore is a special case of PHFS, in which all

membership degrees are regarded as sharing the

same proportion. This novel extension, which meets

the Fundamental Principle of a Generalization intro-

duced by Rodrı́guez et al.4, provides a more accurate

representation of people’s hesitancy in stating their

preferences over objects than HFS or its classical

extensions.

Another motivation of this paper is to propose a

novel approach for fuzzy multi-attribute group de-

cision making (MAGDM), with the purpose of rea-

sonably accommodating the information of human

being’s hesitations. The novel proposal first con-

verts the fuzzy MAGDM into proportional hesitant

fuzzy multi-attribute decision making (MADM) by

calculating the proportions of the associated evalu-

ation values, and then solves the MADM by using

the proportional hesitant fuzzy TOPSIS36,37,38 ap-

proach. The key differences between the traditional

approach and the novel approach proposed in this

paper are as follows:

(1) Both the traditional and novel approaches

first transform MAGDM into MADM. The differ-

ence is that this process in the former depends on

the aggregation operator and evaluation information

of all decision-makers, whereas that in the novel ap-

proach is only related to the evaluation information.

(2) The assessment information in both

MAGDM and MADM is always represented by

classical fuzzy numbers6 (FNs) in the traditional

approach (see Stage 1 in Section 4). For the novel

approach, it is expressed by FNs in MAGDM but

PHFEs in the MADM.

(3) The novel approach can naturally reflect

the preference information of the decision-making

team.

The remaining sections of this paper are set up

as follows: Section 2 briefly reviews several basic

concepts related to this paper. Section 3 presents

the concept of PHFSs, defines their basic operations

and investigates a few of their properties. In Sub-

section 3.1, the distance measure on PHFSs is de-

fined according to HFSs. Subsection 3.2 proposes

an outranking method for the PHFEs. A novel fuzzy

MAGDM approach based on the proportional hesi-

tant fuzzy TOPSIS is proposed in Section 4. Espe-

cially, a numerical example about the performance

evaluation of smart-phone is given to verify the de-

veloped approach and to demonstrate its practicality

and effectiveness. In Section 5, a comparison with

the hesitant fuzzy TOPSIS approach is provided to

highlight the necessity of our conceptual extension

in this paper. Sections 3 and 4 contain the main orig-

inal contributions of this study. Section 6 concludes

this paper.

2. Preliminaries

Torra and Narukawa1,5 originally proposed the con-

cept of HFSs to deal with the situations where hu-

man beings have hesitancy in providing their prefer-

ences over objects in a decision-making process.

Definition 1. 1,5 Let X be a reference set, a hesitant

fuzzy set (HFS) on X is in terms of a function that

when applied to X returns a subset of [0,1].
The HFS can be mathematically expressed as:9,16

E = {< x,hE(x)> |x ∈ X},

where hE(x) is a set of values in [0,1] that denotes

the possible membership degrees of the element x ∈
X to the set E. For convenience, Xia and Xu9 called

h = hE(x) as a hesitant fuzzy element (HFE).

For HFEs, Torra and Narukawa1,5 defined the

following operations:
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Definition 2. 1,5 Let h, h1 and h2 be three HFEs on

the reference set X , then

(1) hc = ∪γ∈h {1− γ};

(2) h1 ∪h2 = ∪γ1∈h1,γ2∈h2
{γ1 ∨ γ2};

(3) h1 ∩h2 = ∪γ1∈h1,γ2∈h2
{γ1 ∧ γ2}.

Definition 3. 9 Let h be a HFE on the reference set

X , the score function of h is defined as follows:

sHFE (h) =
∑γ∈h γ

l (h)
,

where l(h) is the number of values in h.

It is worth noting that score function sHFE(h) is

an arithmetic mean of values in HFE h39, which rep-

resents its average assessment information. Some

other forms of score functions for the HFE were sim-

ilarly defined by Farhadinia40,41.

Definition 4. 9 Let h1 and h2 be two HFEs on the

reference set X ,

(1) if sHFE (h1)> sHFE (h2), then h1 > h2;

(2) if sHFE (h1) = sHFE (h2), then h1 = h2.

Given two HFSs A and B on the reference

set X , in most case, l(hA(xi)) �= l(hB(xi)) for

∀xi ∈ X . Therefore, the shorter one should

be extended with the corresponding optimisti-

cally/pessimistically larger value until both of them

have the same length4,16. According to it, Xu and

Xia16 defined the hesitant normalized Hamming dis-

tance.

Definition 5. 16 Let A and B be two HFSs on the

reference set X = {x1,x2, . . . ,xn}, then the hesitant

normalized Hamming distance is

dHFS (A,B) =
1

n

n

∑
i=1

[

1

lxi

lxi

∑
j=1

∣

∣

∣
h

σ( j)
A (xi)−h

σ( j)
B (xi)

∣

∣

∣

]

,

where lxi
= max{l(hA(xi)), l(hB(xi))}, and h

σ( j)
A (xi)

and h
σ( j)
B (xi) are the jth largest values in hA (xi) and

hB (xi), respectively.

3. Proportional hesitant fuzzy sets

HFSs provide us a useful tool to describe and ad-

dress another form of fuzzy problem derived from

human being’s hesitation. However, as mentioned

in Section 1, they cannot reasonably handle Case 2

with the proportions of the membership degrees are

measurable. To cope with it, in this section, the con-

cept of the proportional hesitant fuzzy sets and some

properties regarding them are introduced on the ba-

sis of HFSs.

Definition 6. Let X be a reference set, the propor-

tional hesitant fuzzy set (PHFS) E on X is repre-

sented by the following mathematical notation:

E = {〈x, phE (x)〉 |x ∈ X }= {〈x,(hE (x) , pE (x))〉 |x ∈ X } ,

where

(a) hE (x) = {γ1,γ2, · · · ,γn} is a set of values in

[0,1], which represents n kinds of possible member-

ship degrees of the element x to set E; and

(b) pE (x) = {τ1,τ2, · · · ,τn} is a set of values

in [0,1], where τi (i = 1,2, · · · ,n) denotes the pro-

portion of membership degree γi (i = 1,2, · · · ,n) and

∑
n
i=1 τi = 1.

For convenience, we call ph = phE (x) as a pro-

portional hesitant fuzzy element (PHFE).

The PHFS is a three-dimensional fuzzy set,

which can clearly and carefully show us the hesi-

tant assessment information provided by decision-

making team on both the multiple membership de-

grees and their associated proportions. HFS there-

fore is a special case of PHFS, in which all member-

ship degrees share the same proportion.

Proportional information, to our knowledge, has

been originally considered into the fuzzy (linguis-

tic term28,29) sets by Wang and Hao30, who rep-

resented the linguistic information by proportional

2-tuples. As a natural generalization of the Wang

and Hao model, Zhang et al.31 proposed the distri-

bution assessment in a linguistic term set, in which

symbolic proportions are assigned to all linguis-

tic terms. Zhang et al. illustrated their model

with an example that a football coach used the

terms in S = {s−2 = very poor,s−1 = poor,s0 =
average,s1 = good,s2 = very good} to evaluate a

player’s level. For the ten games he was involved
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in, three times were judged as s−1, two times were

judged as s1, and the other five times were judged

as s2. Then, the evaluations of the coach can be

described as the linguistic distribution assessment

{(s−2,0),(s−1,0.3),(s0,0),(s1,0.2),(s2,0.5)}. Wu

and Xu32 focused on a special situation, where

the possible linguistic terms provided by the de-

cision maker are assigned with the same propor-

tion. Inspired by pioneer works, more and more at-

tention has been paid to the linguistic distribution

assessment33,34,35. Although the PHFSs are simi-

larly defined to handle the proportional uncertainty

problem, they are quite different from these studies†.

(1) The research objects in these studies are

the linguistic information, whereas it is the hesitant

fuzzy information for the PHFSs.

(2) According to Zhang et al.’s example, these

studies can be used to cope with the proportional

hesitant information deriving from the “time” di-

mension as shown in Case 1 of Section 1. The

PHFSs are developed to model the proportional hes-

itant uncertainty resulting from the “space” dimen-

sion (see Case 2 in Section 1)‡.

Note that ph1 ∗ ph2 = {(γ1,τ1),(γ1,τ2),(γ2,τ3),
(γ2,τ3),(γ3,τ4)} should be expressed as ph1 ∗ ph2 =
{(γ1,τ1+τ2),(γ2,2τ3),(γ3,τ4)} according to set the-

ory, where “∗” is an operation between PHFEs.

Definition 7. Let X be a reference set, for any x∈X ,

call

(1) phE (x) = {(0,1)} as the empty proportional

hesitant fuzzy set, denoted by /0;

(2) phE (x) = {(1,1)} as the full proportional hesi-

tant fuzzy set, denoted by Ω.

Definition 8. Given a PHFS represented by its

PHFE ph, the complement of ph is

phc = ∪(γ,τ)∈ph {(1− γ,τ)} .

The complement of the PHFE is defined in an

intuitive manner. According to the intuitionistic

fuzzy sets,2 if the membership degree of an object

belonging to a concept is γ , then 1 − γ represents

the non-membership and indeterminacy degrees of

that object belonging to the same concept.42 Con-

sequently, Definition 8 can be interpreted as these

decision makers who think the membership degree

of an object belonging to a concept is γ may also

hold the view that the non-membership and indeter-

minacy degrees of that object belonging to the same

concept are 1− γ .

Theorem 1. The complement is involutive, i.e.,

(phc)c = ph.

Proof. Trivial as 1− (1− γ) = γ for any (γ,τ) ∈
ph. Consequently, (phc)c = ph.

Let ph1 and ph2 be two PHFEs on the reference

set X , and suppose the membership degree of the

x ∈ X to the set “1” and that to the set “2” are mutu-

ally independent. The following union and intersec-

tion operations on PHFEs are defined from the angle

of probability.

Definition 9. Let ph1 and ph2 be two PHFEs on the

reference set X , then

(1) ph1∪ ph2 =∪(γ1,τ1)∈ph1,(γ2,τ2)∈ph2
{(γ1 ∨ γ2,τ1τ2)};

(2) ph1∩ ph2 =∪(γ1,τ1)∈ph1,(γ2,τ2)∈ph2
{(γ1 ∧ γ2,τ1τ2)}.

Based on PHFSs, some relationships can be fur-

ther established for these operations.

Theorem 2. Let A, B and C be three PHFSs on the

reference set X, then

(1) A∪ /0 = A, A∩Ω = A, A∩ /0 = /0, A∪Ω = Ω;

(2) A∪B = B∪A, A∩B = B∩A;

(3) (A∪B) ∪C = A ∪ (B∪C), (A∩B) ∩C = A ∩
(B∩C);

† This paper in part is inspired by the rapid development of semantics for evaluation information as we have briefly introduced here.
‡ In fact, PHFSs can as well be utilized to characterize the proportional hesitant information derived from the “time” dimension, which

can be generated from a dynamic evaluation process conducted by a single decision maker. The information representation construction

in this paper, however, focuses on the manifestation of group evaluations, therefore, we place restrictions on our discussion to the man-

agement of proportional hesitant group decision making resulting from the “space” dimension. Application of PHFSs in the modelling

of individual evaluations is not discussed at the current stage to keep the paper stay focused, and we would like to leave it for future

investigation, mainly because this issue does not jeopardize methodological integrity or pose any theoretical barriers for comprehension.
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(4) (A∪B)c = Ac ∩Bc, (A∩B)c = Ac ∪Bc.

Proof. Following Definition 7, (1) is easy to verify.

(2) Since

phA ∪ phB = ∪
(γA,τA)∈phA,(γB,τB)∈phB

{(γA ∨ γB,τAτB)}

= ∪
(γB,τB)∈phB,(γA,τA)∈phA

{(γB ∨ γA,τBτA)}

= phB ∪ phA,

then, A∪B = B∪A. Similarly, A∩B = B∩A.

(3) Since

(phA ∪ phB)∪ phC

= ∪
(γA,τA)∈phA,(γB,τB)∈phB

{(γA ∨ γB,τAτB)}∪ phC

= ∪
(γA,τA)∈phA,(γB,τB)∈phB,(γC,τC)∈phC

{((γA ∨ γB)∨ γC,

(τAτB)τC)}

= ∪
(γA,τA)∈phA,(γB,τB)∈phB,(γC,τC)∈phC

{(γA ∨ (γB ∨ γC) ,

τA (τBτC))}

= phA ∪ ∪
(γB,τB)∈phB,(γC,τC)∈phC

{(γB ∨ γC,τBτC)}n

= phA ∪ (phB ∪ phC) ,

then, (A∪B)∪C = A∪ (B∪C). Similarly, (A∩B)∩
C = A∩ (B∩C).

(4) Since

(phA ∪ phB)
c

= ∪
(γA,τA)∈phA,(γB,τB)∈phB

{(1− γA ∨ γB,τAτB)}

= ∪
(γA,τA)∈phA,(γB,τB)∈phB

{((1− γA)∧ (1− γB) ,τAτB)}

= (phA)
c ∩ (phB)

c,

then, (A∪B)c = Ac ∩Bc. Similarly, (A∩B)c = Ac ∪
Bc.

4. Distance measure for PHFSs

Distance measures are fundamentally important in

various fields such as pattern recognition, market

prediction, and decision making. According to the

distance measure for HFSs16, the axioms of the dis-

tance measure for PHFSs are defined as follows.

Definition 10. Let A and B be two PHFSs on the

reference set X , then the distance measure between

them is defined as d(A,B), which should meet the

following properties:

(1) Boundary: 0 � d(A,B)� 1;

(2) Reflexivity: d(A,B) = 0 if and only if A = B;

(3) Symmetry: d(A,B) = d(B,A).

Similar to HFSs, if l(ph) represents the number

of elements in PHFE ph, it is difficult to calculate the

distance measure between PHFSs A and B, because

l(phA(x)) is usually not equal to l(phB(x)) for any

x ∈ X . Supposing lx = max{l(phA(x)), l(phB(x))},

as with related literature16, this problem can be han-

dled by the following two steps:

(1) Ordering: arrange the elements in phA(x) and

phB(x) in decreasing order according to the product

values of the membership degrees and their associ-

ated proportions;

(2) Adding: add the PHFE whose l(∗) is smaller

with element (0,0) several times until both of them

have the same number of elements, i.e., lx.

In the real-life group decision-making context,

both the evaluation opinions (membership degrees)

and the preferences (proportions) of the decision-

making team are important to the final decision-

making result. Consequently, an element in the

PHFE with the largest membership degree does not

mean it must be ordered in the first place, but the one

makes the greatest contribution (the largest product

value) should be. It is noteworthy that the member-

ship degree of the element added into each PHFE

can be any value from 0 to 1, because its associ-

ated proportion is always equal to 0 (otherwise, it is

no longer a PHFE since the total proportion is more

than 1).

Example 1. Let phA = {(0.1,0.4) ,(0.3,0.1) ,(0.6,0.2),
(0.7,0.1) ,(0.9,0.2)} and phB = {(0.3,0.1),(0.5,0.7) ,
(0.7,0.2)} be two PHFEs on the reference

set X . It is clear that l(phA) = 5 and

l(phB) = 3. Utilizing the ordering method,

phσ
A = {(0.9,0.2) ,(0.6,0.2) ,(0.7,0.1) ,(0.1,0.4) ,

(0.3,0.1)} and phσ
B = {(0.5,0.7) ,(0.7,0.2) ,(0.3,0.1)}.
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On the other hand, phB should be added with (0,0)
twice because l (phA) − l (phB) = 2 and then it

becomes phσ

B′ = {(0.5,0.7) ,(0.7, 0.2),(0.3,0.1) ,
(0,0) ,(0,0)}.

Distance calculation is a useful tool to measure

the differences between two systems, therefore the

distance measure for PHFSs should include the fol-

lowing two parts: opinion differences (i.e., the dif-

ferences between membership degrees) and prefer-

ence differences (i.e., the differences between pro-

portions). Due to the fact that an increase in ei-

ther part will result in an incremental distance, the

proportional hesitant normalized Hamming distance

then can be defined as follows.

Definition 11. Let A and B be two PHFSs on the ref-

erence set X = {x1,x2, . . . ,xn}, then the proportional

hesitant normalized Hamming distance is

d (A,B) = 1
n

n

∑
i=1

[

1
2lxi

lxi

∑
j=1

∣

∣

∣
γ

σ( j)
A (xi) · τ

σ( j)
A (xi)

−γ
σ( j)
B (xi) · τ

σ( j)
B (xi)

∣

∣

∣
+
∣

∣

∣
τ

σ( j)
A (xi)− τ

σ( j)
B (xi)

∣

∣

∣

]

,

where lxi
= max{l(phA(xi)), l(phB(xi))}, and

γ
σ( j)
A (xi) · τ

σ( j)
A (xi) and γ

σ( j)
B (xi) · τ

σ( j)
B (xi) are the

jth largest product value in PHFEs phA (xi) and

phB (xi), respectively.

The distance measure on PHFEs defined in Def-

inition 11 has a lot of advantages. First, the inter-

nal elements for each PHFE are sequenced on the

basis of their corresponding “contributions”, which

include the membership and proportion information

of the decision-making system. Moreover, because

the element added into the PHFE can be represented

as the form of (a,0),a ∈ [0,1], any addition does not

change the distance measure value between two PH-

FEs.

5. A comparison method for proportional

hesitant fuzzy elements

Similar to the distance measure on PHFSs, the com-

parison method for PHFEs should take the member-

ship and proportion information into account simul-

taneously. We first introduce the following two func-

tions.

Definition 12. Let ph be a PHFE on the reference

set X , the score function of ph is defined as

s(ph) = ∑
(γ,τ)∈ph

γ · τ,

and the deviation function of ph is defined as

t (ph) = ∑
(γ,τ)∈ph

τ · (γ − s(ph))2.

The score and deviation functions of the PHFE

derive from the expectation and variance of random

variables, respectively. Similarly, the score function

represents the average assessment information con-

tained in PHFE ph.

Combing with the distance measure, the compar-

ison method for PHFEs can be defined as follows.

Definition 13. Let ph1 and ph2 be two PHFEs on

the reference set X ,

(1) if s(ph1)> s(ph2), then ph1 > ph2;

(2) if s(ph1) = s(ph2) and t (ph1) < t (ph2), then

ph1 > ph2;

(3) if s(ph1) = s(ph2), t (ph1) = t (ph2),

(a) and d({ph1},Ω) = d({ph2},Ω), then

ph1 = ph2;

(b) and d({ph1},Ω) < d({ph2},Ω), then

ph1 > ph2.

where Ω is the full proportional hesitant fuzzy set

and d(A,B) is the distance measure for PHFSs.

Formula (1) can be interpreted as the larger the

average evaluation information, the larger the asso-

ciated PHFE. If two PHFEs contain the same av-

erage evaluation information, formula (2) indicates

the less the deviation of the evaluation values, the

larger the associated PHFE. Furthermore, because

the full proportional hesitant fuzzy set Ω represents

the largest evaluation information, the closer to it,

the larger the associated PHFE.

6. A novel approach for fuzzy multiple

attribute group decision making

Formally, an MAGDM problem can be concisely

described as s(s � 2) decision makers DMk(k =
1,2, . . . ,s) provide their evaluation values over m

alternatives Ai(i = 1,2, . . . ,m) under n attributes
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C j( j = 1,2, . . . ,n) to find the best option from all of

the feasible alternatives. For convenience, let M =
{1,2, . . . ,m}, N = {1,2, . . . ,n} and S = {1,2, . . . ,s}.

Suppose decision maker DMk use the classical FN to

provide his evaluation value about alternative Ai un-

der attribute C j, which is denoted as µk
i j(i ∈ M; j ∈

N;k ∈ S). Then, s fuzzy evaluation matrices Uk =
[µk

i j]m×n(k ∈ S) can be attained. In the traditional

fuzzy MAGDM approach, the following two basic

stages are usually utilized to solve this problem:

Stage 1: Transform the fuzzy MAGDM into the

fuzzy MADM by using the fuzzy aggregation oper-

ator. Note that the evaluation information is always

represented by the FNs in both the MAGDM and

MADM;

Stage 2: Solve the fuzzy MADM problem.

Up to now, the alternative preferences of the

decision-making team have received a growing

number of attentions in the hesitant fuzzy group

decision making.43,44,45 Due to the fact that differ-

ent decision makers may be heterogeneous with re-

spect to their tastes for diverse attributes and al-

ternatives, the preferences of the decision-making

team for each alternative under different attributes

should similarly be considered. Especially, Dong et

al,46 proposed a resolution framework for the com-

plex and dynamic MAGDM problem, in which deci-

sion makers are supposed to have different interests

and use heterogeneous individual sets of attributes

to evaluate the individual alternatives. Dong et al,47

meaningfully considered the complex and dishon-

est context, where a decision maker can strategi-

cally set the preferences to obtain her/his desired

ranking of alternatives. This paper from a different

perspective takes into account heterogeneous indi-

vidual preferences and converts them into the pro-

portions of the associated membership degrees in

each PHEs. The fuzzy MAGDM problem can be

solved as follows: First, based on fuzzy evaluation

matrices Uk = [µk
i j]m×n(k ∈ S), the overall evalua-

tion matrix U = [phi j]m×n can be attained by calcu-

lating the proportions of the associated membership

degrees (see Example 2), i.e., the preferences of the

decision-making team. Because the evaluation value

µk
i j(i ∈ M; j ∈ N;k ∈ S) is given by the classical FN,

then phi j(i ∈ M; j ∈ N) is a PHFE, which consists of

several possible evaluation values of alternative Ai

under attribute C j and their associated proportions.

After that, we only need to solve the fuzzy MADM

problem under the proportional hesitant fuzzy envi-

ronment.

Example 2. Suppose three HRs use FNs to eval-

uate two candidates under the communication skill

(C1) and the learning skill (C2). The detailed eval-

uation values are µ1
11 = 0.9, µ1

12 = 0.5, µ2
11 = 0.7,

µ2
12 = 0.6, µ3

11 = 0.9, µ3
12 = 0.5 for Candidate 1,

and µ1
21 = 0.8, µ1

22 = 0.6, µ2
21 = 0.7, µ2

22 = 0.5,

µ3
21 = 0.7, µ3

22 = 0.3 for Candidate 2. Then, the

fuzzy MAGDM is

U1 =

[

0.9 0.5
0.8 0.6

]

, U2 =

[

0.7 0.6
0.7 0.5

]

,

U3 =

[

0.9 0.5
0.7 0.3

]

.

For Candidate 1, the evaluation values under the

communication skill are 0.9, 0.7 and 0.9 with respect

to the three HRs. Therefore, the proportion of mem-

bership degree 0.9 is 2/3 and that of membership de-

gree 0.7 is 1/3, then the overall evaluation value can

be represented by PHFE {(0.9,2/3),(0.7,1/3)}.

Similarly, the overall evaluation matrix is

U =
[

{(0.9, 2
3
),(0.7, 1

3
)} {(0.6, 1

3
),(0.5, 2

3
)}

{(0.8, 1
3
),(0.7, 2

3
)} {(0.6, 1

3
),(0.5, 1

3
),(0.3, 1

3
)}

]

,

which can be considered as a proportional hesitant

fuzzy MADM problem.

Table 1 shows the comparisons of the novel and

traditional approaches in the stage of transform-

ing the MAGDM into the MADM. It is worth not-

ing that the fuzzy MAGDM is converted into the

proportional hesitant fuzzy MADM. In the fuzzy

MAGDM, the evaluation values are expressed by the

FNs, whereas they are the PHFEs in the proportional

hesitant fuzzy MADM. The novel approach is there-

fore different from the traditional fuzzy MAGDM

approach, in which the evaluation values are always

represented by the FNs as shown in Stage 1.

Example 2 also indicates that obtaining the pro-

portional information does not require the decision-

making team to provide extra evaluation informa-

tion. If the proportional information is ignored, the
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Table 1. Comparisons of the novel and traditional approaches
on transforming the MAGDM into the MADM

Novel approach Traditional apporach

Similarity
Representation of the initial evaluation

information (MAGDM)
FNs FNs

Differences

Representation of the overall evaluation

information (MADM)
PHFEs FNs

Extra information required for transfor-

ming the MAGDM into the MADM
Nothing

Aggregation

operator

Can naturally reflect the preference inf-

ormation of the decision-making team
Yes No

overall evaluation value for Candidate 1 under the

communication skill then is {0.9,0.7}, in which the

preferences of the decision-making team are ignored

as well. Consequently, the novel approach can nat-

urally consider that preferences into the decision-

making process.

Fig. 1. A novel approach for fuzzy MAGDM.

6.1. Proportional hesitant fuzzy TOPSIS

approach for MAGDM

Based on the above analysis, the main steps of the

proportional hesitant fuzzy TOPSIS approach for

the fuzzy MAGDM are as follows (see Figure 1).

Step 1. Decision makers DMk(k ∈ S) provide

evaluation matrices Uk = [µk
i j]m×n(k ∈ S) with the

classical FNs.
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Step 2. Calculate the overall evaluation informa-

tion (see Example 2). The overall evaluation ma-

trix is represented as U = [phi j]m×n, where phi j(i ∈
M, j ∈ N) is a PHFE.

Step 3. Because all elements in the overall eval-

uation matrix U are expressed with PHFEs, there is

no need to normalize them.

Step 4. Determine the positive and nega-

tive ideal solutions. Based on Definitions 12

and 13, the positive ideal solution (PIS) is U+ =
{ph+1 , ph+2 , . . . , ph+n } and the negative ideal solution

(NIS) is U− = {ph−1 , ph−2 , . . . , ph−n }, where

ph+j =

⎧

⎨

⎩

max
1�i�m

phi j, for benefit attribute C j, j ∈ N

min
1�i�m

phi j, for cost attribute C j, j ∈ N

and

ph−j =

⎧

⎨

⎩

min
1�i�m

phi j, for benefit attribute C j, j ∈ N

max
1�i�m

phi j, for cost attribute C j, j ∈ N

Step 5. Measure the distances from positive and

negative ideal solutions. Combining the propor-

tional hesitant normalized Hamming distance, the

separations of each alternative from the PIS are

given as

S+i = d
(

U+,Ui

)

, i ∈ M,

where Ui = {phi1, phi2, . . . , phin}.

Similarly, the separations of each alternative

from the NIS are given as

S−i = d
(

U−,Ui

)

, i ∈ M.

Step 6. Calculate the closeness coefficients to the

ideal solutions. The closeness coefficient of alterna-

tive Ai with respect to the ideal solutions is

Coefi =
S−i

S+i +S−i
, i ∈ M.

Step 7. Rank all alternatives. The larger the

Coefi, the better the alternative Ai, i ∈ M.

The novel fuzzy MAGDM approach proposed

in this paper has the following main advantages.

First, the preferences of the decision-making team

for each alternative under different attributes, mea-

sured by the proportions, are considered into the

decision-making process to improve the reliability

of the assessment result. Utilizing PHFEs, the fuzzy

MAGDM can be converted into the proportional

hesitant fuzzy MADM, which may reduce the com-

plexity of the decision-making system. Finally, the

proposed approach can objectively solve the fuzzy

MAGDM problem with having a clear understand-

ing on whether an alternative is good at or bad in

some attributes.

6.2. Numerical example

Fig. 2. Customer reviews for a smart-phone.

In practice, in order to evaluate the cost-

performance of a product, we should first consider

how much “performance” it has. Figure 2 shows

some keywords and their frequencies of customer

reviews for a smart-phone sold in Best Buy.48 Up

to March 14, 2016, there are 469 reviews and key-

word “screen” appeared 90 times. According to

Figure 2, the main factors that involve in the cus-
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tomer reviews and affect the performance of a smart-

phone can be summarized as follows: C1: system

optimization, C2: appearance and system UI de-

sign, and C3: hardware configuration. Consider a

problem that a decision-making team consisted of

five decision makers DMk(k = 1,2, . . . ,5) is invited

to evaluate the performance of four smart-phones

Ai(i = 1,2, . . . ,4). Using FNs, five evaluation ma-

trices are provided as follows.

U1 =

⎡

⎢

⎢

⎣

0.82 0.67 0.73

0.65 0.44 0.53

0.13 0.42 0.14

0.17 0.15 0.63

⎤

⎥

⎥

⎦

,

U2 =

⎡

⎢

⎢

⎣

0.17 0.22 0.73

0.65 0.44 0.18

0.81 0.36 0.14

0.32 0.32 0.36

⎤

⎥

⎥

⎦

,

U3 =

⎡

⎢

⎢

⎣

0.17 0.26 0.73

0.65 0.44 0.98

0.81 0.36 0.14

0.17 0.15 0.63

⎤

⎥

⎥

⎦

,

U4 =

⎡

⎢

⎢

⎣

0.82 0.53 0.73

0.35 0.54 0.23

0.69 0.36 0.14

0.37 0.32 0.36

⎤

⎥

⎥

⎦

,

U5 =

⎡

⎢

⎢

⎣

0.12 0.65 0.24

0.35 0.44 0.76

0.81 0.36 0.14

0.32 0.46 0.63

⎤

⎥

⎥

⎦

.

To solve this problem, we conduct the MAGDM

approach proposed in Subsection 4.1 as follows:

Step 1. Based on the evaluation matrices Uk(k =
1,2, . . . ,5), the overall evaluation matrix is U =
[phi j]4×3, where

ph11 = {(0.82,0.40),(0.17,0.40),(0.12,0.20)},
ph12 = {(0.67,0.20),(0.65,0.20),(0.53,0.20),

(0.26,0.20),(0.22,0.20)} ,
ph13 = {(0.73,0.80),(0.24,0.20)},
ph21 = {(0.65,0.60),(0.35,0.40)},
ph22 = {(0.54,0.20),(0.44,0.80)},
ph23 = {(0.98,0.20),(0.76,0.20),(0.53,0.20),

(0.23,0.20),(0.18,0.20)} ,
ph31 = {(0.81,0.60),(0.69,0.20),(0.13,0.20)},
ph32 = {(0.42,0.20),(0.36,0.80)},
ph33 = {(0.14,1.00)},

ph41 = {(0.37,0.20),(0.32,0.40),(0.17,0.40)},
ph42 = {(0.46,0.20),(0.32,0.40),(0.15,0.40)},
ph43 = {(0.63,0.60),(0.36,0.40)}.
Step 2. Following Definition 12, the values of the

score and deviation functions for the elements in the

overall evaluation matrix U are shown in Table 2.

Step 3. Because all attributes are benefit at-

tributes, based on Definition 13, the positive ideal

solution is

U+ = {ph31, ph12, ph13},

and the negative ideal solution is

U− = {ph41, ph42, ph33}.

Step 4. Based on Definition 11, the separations of

each alternative from the PIS are S+1 = 0.0350, S+2 =
0.1465, S+3 = 0.1277, S+4 = 0.1394, and the sepa-

rations of each alternative from the NIS are S−1 =
0.1433, S−2 = 0.1941, S−3 = 0.1051, S−4 = 0.0985.

Step 5. The closeness coefficients of each alter-

native with respect to the ideal solutions are Coef1 =
0.8037, Coef2 = 0.5698, Coef3 = 0.4514, Coef4 =
0.4141.

Step 6. The ranking order of all smart-phones on

the performance is A1 ≻ A2 ≻ A3 ≻ A4.

Therefore, Smart-phone A1 possesses the best

performance. This is because A1 not only contains a

relatively perfect appearance and system UI design,

but also has the best hardware configuration (see Ta-

ble 1). Although the producer of A3 is not good at

the appearance and system UI design, he does the

best job in the system optimization with the worst

hardware configuration. Consequently, the manu-

facturer of A1 may consider cooperating with the

producer of A3 on the system optimization.

Under the system optimization (C1), ph41 =
{(0.37,0.20),(0.32,0.40),(0.17,0.40)} indicates

that all decision makers think the evaluation value

for Smart-phone A4 is no more than 0.37, and

ph31 = {(0.81,0.60),(0.69,0.20),(0.13,0.20)} rep-

resents that 60% decision makers think that for

Smart-phone A3 is 0.81. Therefore, A3 is better

than A4 under attribute C1. Because the producer

of A3 does the best job in this attribute, PHFE ph31

then is the positive ideal value under the system op-

timization. Similarly, PHFEs ph12 and ph13 are the

positive ideal values with respect to attributes C2
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Table 2. Values of score and deviation functions for elements in
matrix U

C1 C2 C3

Score Deviation Rank Score Deviation Rank Score Deviation Rank

A1 0.420 0.107 3 0.466 0.037 1 0.632 0.038 1

A2 0.530 0.022 2 0.460 0.002 2 0.536 0.094 2

A3 0.650 0.070 1 0.372 0.001 3 0.140 0.000 4

A4 0.270 0.007 4 0.280 0.014 4 0.522 0.017 3

and C3, which is the key factor that contributes to A1

having the shortest distance from the PIS.

According to the concept of TOPSIS, the higher

rank indicates that an alternative is closer to PIS and

farther from NIS simultaneously. Smart-phone A2

appears better than A3 and A4 because of the far-

thest distance from the NIS (i.e., S−2 = max
i=1,2,3,4

{S−i }),

however, the farthest distance from the PIS (i.e.,

S+2 = max
i=1,2,3,4

{S+i }) brings it a lower rank than

Smart-phone A1. Besides, doing the worst job in the

system optimization and appearance and system UI

design leads Smart-phone A4 to the last rank.

7. Comparison

The proposed PHFSs incorporates the proportional

information into HFSs, this section is devoted to

clarifying the necessity of our conceptual extension

in this paper by providing a comparison between the

proportional hesitant fuzzy TOPSIS approach and

the hesitant fuzzy TOPSIS approach.

7.1. Hesitant fuzzy TOPSIS approach for

MAGDM

Ignoring the proportional information, the main

steps of the hesitant fuzzy TOPSIS approach for the

MAGDM are:

Step 1′. Decision makers DMk(k ∈ S) provide

evaluation matrices Uk = [µk
i j]m×n(k ∈ S) with the

classical FNs.

Step 2′. Calculate the overall evaluation informa-

tion. The overall evaluation matrix is represented as

U ′ = [hi j]m×n, where hi j(i ∈ M, j ∈ N) is a HFE.

The fuzzy MAGDM is therefore converted into

the hesitant fuzzy MADM, which can be solved by

utilizing the hesitant fuzzy TOPSIS approach pro-

posed by Xu and Zhang37, however, we use the hes-

itant normalized Hamming distance to measure the

distance between HFEs.

Similar to the proportional hesitant fuzzy TOP-

SIS approach proposed in Subsection 4.1, the hesi-

tant fuzzy TOPSIS approach can objectively solve

the fuzzy MAGDM problem with having a clear

understanding on whether an alternative is good at

or bad in some attributes. Transforming the fuzzy

MAGDM into the hesitant fuzzy MADM may also

reduce the complexity of the decision-making sys-

tem. However, the proportional information (or the

preferences of the decision-making team) is not con-

sidered into the decision process.

7.2. Dealing with numerical example in

Subsection 4.2 through hesitant fuzzy

TOPSIS approach

Based on hesitant fuzzy TOPSIS approach, the nu-

merical example in Subsection 4.2 can be similarly

solved as follows:

Step 1′. According to the evaluation matrices

Uk(k = 1,2, . . . ,5), the overall evaluation matrix is

U ′ = [hi j]4×3, where

h11 = {0.82,0.17,0.12},
h12 = {0.67,0.65,0.53,0.26,0.22},
h13 = {0.73,0.24},
h21 = {0.65,0.35},
h22 = {0.54,0.44},
h23 = {0.98,0.76,0.53,0.23,0.18},
h31 = {0.81,0.69,0.13},
h32 = {0.42,0.36},
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h33 = {0.14},
h41 = {0.37,0.32,0.17},
h42 = {0.46,0.32,0.15},
h43 = {0.63,0.36}.
Step 2′. Following Definition 3, the score func-

tion values for the elements in the overall evaluation

matrix U ′ are shown in Table 3.

Table 3. Values of score function for elements in U ′

C1 C2 C3

Score Rank Score Rank Score Rank

A1 0.370 3 0.466 2 0.485 3

A2 0.500 2 0.490 1 0.536 1

A3 0.543 1 0.390 3 0.140 4

A4 0.287 4 0.310 4 0.495 2

Step 3′. Based on Definition 4, the positive ideal

solution is U ′+ = {h31,h22,h23}, and the negative

ideal solution is U ′− = {h41,h42,h33}.
Step 4′. Suppose the decision makers are all

pessimistic. Following Definition 5, the separations

of each alternative from the PIS are S′1
+ = 0.1907,

S′2
+ = 0.0800, S′3

+ = 0.1653, S′4
+ = 0.2309, and

the separations of each alternative from the NIS are

S′1
− = 0.2606, S′2

− = 0.2409, S′3
− = 0.1267, S′4

− =
0.1183.

Step 5′. The closeness coefficients of each alter-

native with respect to the ideal solutions are Coef ′1 =
0.5774, Coef ′2 = 0.7507, Coef ′3 = 0.4338, Coef ′4 =
0.3388.

Step 6′. The ranking order using the hesitant

fuzzy TOPSIS approach then is A2 ≻ A1 ≻ A3 ≻ A4.

7.3. Discussion

The ranking order of all alternatives obtained by the

hesitant fuzzy TOPSIS approach is A2 ≻ A1 ≻ A3 ≻
A4, whereas it is A1 ≻ A2 ≻ A3 ≻ A4 gained by the

proportional hesitant fuzzy TOPSIS approach pro-

posed in Subsection 4.1. The difference is the rank-

ing order between A1 and A2, i.e., A2 ≻ A1 for the

former while A1 ≻ A2 for the latter. The main reason

is that the proportional hesitant fuzzy TOPSIS ap-

proach considers both the membership degrees and

their associated proportions into the decision pro-

cess, whereas the hesitant fuzzy TOPSIS approach

only focuses on the membership degrees but ignores

the proportional information. Comparing with the

latter, the proportional hesitant fuzzy TOPSIS ap-

proach has the following advantages:

(1) Ignoring the proportions may lead to in-

accurate average evaluation values for the hesi-

tant fuzzy information. For example, ph13 =
{(0.73,0.80),(0.24,0.20)} indicates that most of

the decision makers provide a relatively good evalu-

ation for alternative A1 under attribute C3. Then, the

average evaluation value of it should be more than

0.73×0.8 = 0.584, which is larger than sHFE(h23) =
s(ph23) = 0.536. However, under attribute C3, the

average evaluation value of A1 is less than that of

A2 by utilizing the hesitant fuzzy TOPSIS approach

(see Table 2). Therefore, considering the propor-

tional information in the proportional hesitant fuzzy

TOPSIS approach may improve the rationality of the

positive/negative ideal solution.

(2) In terms of the distance measure, as men-

tioned in Subsection 3.1, the processes (i.e., “or-

dering” and “adding”) without changing the average

evaluation value in each PHFE are beneficial to ob-

tain a relatively accurate distance measure. There-

fore, the proportional hesitant fuzzy TOPSIS ap-

proach may contribute to more accurate separations

of each alternative from the PIS/NIS.

(3) For the proportional information ignored in

the hesitant fuzzy TOPSIS approach, the propor-

tional hesitant fuzzy TOPSIS approach regards it as

the preferences of the decision-making team, which

may increase the reliability of the decision result.

8. Conclusions

In this paper, in view of past studies cannot rea-

sonably model a practical case in which a team

could not reach agreement on a fuzzy decision,

and the proportions of the membership degrees are

measurable, the concept of PHFSs has been pro-

posed. As the component of PHFSs, PHFEs con-

tain two aspects of information: the possible mem-

bership values and their associated proportions. Be-

cause the proportions represent the preferences of

the decision-making team, the PHFSs appear more
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accurate and reasonable than HFSs to model the un-

certainty produced by human being’s doubt. Ac-

cording to Rodrı́guez et al.,4 the main advantages of

PHFSs and their operations are summarized as fol-

lows.

(1) Following the Fundamental Principle of a

Generalization4, the PHFS is not only a mathematic

extension of the HFS, but also a more accurate repre-

sentation of people’s hesitancy in stating their pref-

erences over objects. The novel representation has a

large number of applications in practice.

(2) The repeated values in decision making prob-

lem are usually removed within HFSs, whereas

PHFSs convert them into the proportions, which also

may decrease the degree of the hesitancy.

(3) In terms of the distance measure on PHFSs,

the ordering method on the basis of both the mem-

bership degree and its associated proportion may

contribute to reasonable orders of the elements in

PHFEs. For the adding method, any addition does

not change the distance measure value between two

PHFEs.

Besides, a novel MAGDM approach for the

fuzzy information has also been developed in this

paper. First, the fuzzy MAGDM (expressed by clas-

sical FNs) is converted into the proportional hesi-

tant fuzzy MADM (expressed by PHFEs) by calcu-

lating the proportions of the associated membership

degrees. After that, the alternatives are ranked by

the proportional hesitant fuzzy TOPSIS approach.

This proposal is different from the traditional fuzzy

MAGDM approach, in which the evaluation values

are always represented by the FNs as shown in Stage

1 of Section 4. A numerical example is provided to

illustrate the fuzzy multiple attribute group decision

making process.

As future work, we consider the study of the re-

lated operations and properties on PHFSs accord-

ing to HFSs. Especially, the union and intersec-

tion operations on PHFEs in this paper are defined

from the angle of probability with the assumption

that all PHFEs are mutually independent (see Defi-

nition 9). Therefore, defining such operations with-

out that assumption or on the basis of the t-norms

and t-conorms49 could be a fruitful research of our

work.
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