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A novel magnetorheological elastomer isolator with negative changing
stiffness for vibration reduction

Abstract

Magneto-rheological elastomers (MREs) have attracted notable credits in the development of smart isolators
and absorbers due to their controllable stiffness and damping properties. For the purpose of mitigating
unwanted structural and/or machinery vibrations, the traditional MRE-based isolators have been generally
proven effective because the MR effect can increase the stiffness when the magnetic field is strengthened. This
study presents a novel MRE isolator that experienced reduced stiffness when the applied current was
increased. This innovative work was accomplished by applying a hybrid magnet (electromagnet and
permanent magnets) onto a multilayered MRE structure. To characterise this negative changing stiffness
concept, a multilayered MRE isolator with a hybrid magnet was first designed, fabricated and then tested to
measure its properties. An obvious reduction of the effective stiffness and natural frequency of the proposed
MRE isolator occurred when the current was continuously adjusted. This device could also work as a
conventional MRE isolator as its effective stiffness and natural frequency also increased when a negative
current was applied. Further testing was carried out on a one-degree-of-freedom system to assess how
effectively this device could isolate vibration. In this experiment, two cases were considered; in each case, the
vibration of the primary system was obviously attenuated under ON-OFF control logic, thus demonstrating
the feasibility of this novel design as an alternative adaptive vibration isolator.
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Abstract 

Magneto-rheological elastomers (MREs) have attracted notable credits in the development of 

smart isolators and absorbers due to their controllable stiffness and damping properties. For 

the purpose of mitigating unwanted structural and/or machinery vibrations, the traditional 

MRE based isolators have generally proven effective because the MR effect can increase the 

stiffness when the magnetic field is strengthened. This study presents a novel MRE isolator 

that its stiffness was reduced when the applied current was increased. This innovative work 

was accomplished by applying a hybrid magnet (electromagnet and permanent magnets) onto 

a multilayered MRE structure. To characterise this negative changing stiffness concept, a 

multilayered MRE isolator with a hybrid magnet was first designed, fabricated, and then 

tested to measure its properties.  An obvious reduction of the effective stiffness and natural 

frequency of the proposed MRE isolator occurred when the current was continuously 

adjusted. On the other hand, this device could also work as a conventional MRE isolator as its 

effective stiffness and natural frequency also increased when a negative current was applied. 

Further testing was carried out on a 1-degree-of-freedom system to assess how effectively 

this device isolated vibration.  In this experiment, two cases were considered, and in each 

case vibration of the primary system was obviously attenuated under ON-OFF control logic, 

thus demonstrating the feasibility of this novel design as an alternative adaptive vibration 

isolator.  

 

Keywords: MRE isolator, variable stiffness, permanent magnet, control logic, vibration 

isolation  

  



1. Introduction 

As a solution to addressing undesirable vibration, MRE based devices have become a 

promising choice because the shear modulus of MRE can be controlled rapidly, continuously, 

and reversibly by an external magnetic field [1-2].  These MRE devices possess a high 

adaptability because their stiffness can be controlled by external magnetic fields in real time, 

which, therefore, can suppress vibration by absorption or isolation. In recent years a great 

deal of exploration on the potential of MRE based absorbers has been done, and the 

achievements made so far [3-8] have advanced the development and implementation of MRE 

absorbers quite considerably. Unlike MRE absorbers, using MRE as a variable stiffness 

element in the development of an adaptive isolator is a relatively new and rarely explored 

area of research, although studies on isolation systems are ongoing. MRE based isolators tend 

to attenuate the vibrations of an isolated structure by changing its lateral stiffness in real time, 

and when a multi-layered MRE is considered, the isolator will satisfy the required vertical 

load capacity while maintaining horizontal flexibility. For this reason, an adaptive MRE 

isolator has become a clear advantage over the passive isolation system because the passive 

isolation cannot adjust its characteristics with respect to the change of the external excitations 

once it is designed and installed [9-10]. Upon the smart nature, the overarching goal of 

employing the MRE isolator in an isolation system is to shift the natural frequency of the 

primary structure as far away as possible from the excitation frequency in time. Therefore, 

the MRE isolator is superior to the hybrid isolation system (such as viscous liquid damper 

and friction damper) [11-13] and the smart base isolation system (such as piezoelectric 

friction damper and magnetorheological (MR damper) [14-15] in that hybrid isolation system 

and smart base isolation system isolate the disturbance by introducing additional damping 

into the system which may cause danger or thorny issues [16].  

Due to its high efficiency and facility, the development of an MRE based isolator has become 

a pressing need, which is why a great deal of effort has been expended on investigating  and 

developing  a highly adjustable MRE isolator [17-18]. Hwang et al [19] conducted a 

conceptual study on using MRE on a base isolation system for building structures. Usman et 

al [20] numerically evaluated the dynamic performance of a smart isolation system using 

MRE and validated the feasibility of isolating unwanted vibration using a structure with five 

degrees of freedom.  The results showed that an MRE isolation system outperformed a 

conventional system by reducing the response of a structure under various seismic excitations. 

Behrooz et al [21] presented the performance of a variable stiffness and damping isolator 

(VSDI) utilising MRE in a scaled building system. The experimental results showed how 

VSDIs reduced the acceleration and relative displacement of building floors. A vibration 

isolation system which used four MRE elements as a tunable spring was reported in [22], and 

in this study, the proposed MRE isolator successfully suppressed the response of the payload. 

Li et al presented a successful development and experimental evaluation of a smart base 

isolation utilising MRE in [23].The main contribution of this study is that the MRE isolator 

used a laminated structure for the traditional base isolator, where multiple layers of thin MRE 

sheets were bonded onto thin steel plates, which enabled the isolator to maintain high vertical 

stiffness while simultaneously minimising lateral stiffness.  The results of this experiment 



showed that the force of the MRE isolator increased up to 45% and the stiffness increased up 

to 38%; thus demonstrating the potential of the proposed MRE isolator for smart base 

isolation applications. In order to achieve a larger range of increased stiffness under an 

applied magnetic field, a further effort has been conducted by Li and his group [24-25], 

which also tried to find the optimal configuration for a magnetic circuit designed to provide a 

strong and uniform magnetic field in MRE. A new and highly adjustable MRE isolator was 

fabricated which increased the force by up to 1579% and the stiffness by up to 1730%. To 

facilitate further development of the structural control using such an adaptive MRE based 

isolator, modelling work has been done to simulate its behaviour [26]. 

Undoubtedly, the development of an MRE isolator has made considerable progress. More 

importantly, the feasibility and efficiency of an MRE isolator as a potential candidate for a 

vibration isolation system has been proven. However, its advantages are not confined to the 

achievements reported. The potential of MRE isolators can be explored even further.  With a 

traditional MRE isolator the focus is on the MR effect such that the force and lateral stiffness 

can only be increased by the magnetic field; whereas in this study, a new MRE isolator which 

can achieve ‘negative stiffness’ has been designed, fabricated, and evaluated. The 

functionality of ‘negative stiffness’ was realised by incorporating a hybrid magnetic system 

(electromagnetic coil and permanent magnets) into the manufacturing process. The 

significance of including a hybrid magnetic system rests with the new functionality that 

allows the force and the lateral stiffness of the MRE isolator to be increased and decreased. If 

a traditional MRE isolator with only an electromagnetic coil is required to achieve ‘negative 

stiffness’, the electromagnetic coil must always be on in order to provide a nominal magnetic 

field to the MRE elements and then the stiffness of the isolator can be increased or decreased 

by increasing or decreasing the current level, which is costly and dangerous due to the power 

consumed and the heat produced by the coil. This new design includes permanent magnets 

that avoid these drawbacks while still providing a safe and energy efficient solution to 

increasing and decreasing the lateral stiffness of an MRE isolator.  

After the introduction, a detailed description of the hybrid magnetic system is provided, and 

then a new MRE isolator with a hybrid magnetic system is fabricated. In order to characterise 

the proposed MRE isolator, a series of dynamic tests were carried out in Section 3, including 

the transmissibility and phase responses which showed that the natural frequency of the MRE 

isolator can be increased and decreased, and also proved that the lateral stiffness of an MRE 

isolator can be both above and below a nominal value. In Section 4, vibration isolation 

experiments were conducted to verify whether the proposed MRE isolator could reduce 

unwanted vibrations. The conclusions were made in Section 5. 

2. Design and Fabrication 

2.1  Fabrication of a multilayered MRE structure 

The components used to fabricate an MRE include silicone sealant (Selleys Pty. Ltd), silicone 

oil (Sigma-Aldrich Pty. Ltd), and carbonyl iron particles (C3518, Sigma-Aldrich Pty Ltd). 

The weight ratio of these three materials was 1.5:1.5:7. After the mixture was stirred 

thoroughly it was put into a vacuum chamber to eliminate any air bubbles and then placed 



into a 1mm thick mold to be cured for 5 days without a magnetic field, after which the 

isotropic soft MREs were ready for use. 

The multilayered MRE structure incorporates a traditional laminated rubber bearing [27-28] 

that consists of multiple layers of thin MRE sheets and thin steel plates. The inner steel plates 

give the required vertical load capacity and stiffness, while the MRE sheets offer horizontal 

flexibility which can be varied instantly under an applied magnetic field. This laminated 

bearing element consists of 10 layers of 1mm thick by 35mm diameter MRE sheets and 11 

layers of 1mm thick by 35mm diameter steel sheets.  

2.2 Design of hybrid magnet system 

To use this multilayered MRE structure as an adaptive stiffness element, a controllable 

magnetic system that produces a uniform and powerful magnetic field to energise the low 

magnetic-conductive MRE materials must first be designed. One of the novel designs that 

had to be developed for this study was an adjustable hybrid magnet system with permanent 

magnets and an electromagnetic coil. Although a similar idea can be found in [29] where a 

hybrid magnetic system was incorporated into an adaptive vibration absorber, the hybrid 

magnetic system designed and presented by this study differs significantly in its structure and 

operation compared to [29]. By including permanent magnets, a stable magnetic field could 

be applied to the laminated MRE and steel structure at all times without any power 

consumption. Then the electromagnetic coil is responsible for either strengthening or 

weakening the nominal magnetic field generated by the permanent magnets through adjusting 

the direction and magnitude of the applied current. The stiffness of the MRE materials was 

controlled by the superposition of these two magnetic fields. One clear advantage of this 

design is its ability to increase and decrease the magnitude of the hybrid magnetic field such 

that the stiffness of the MRE structure can be both increased and decreased such that the 

natural frequency of the system can be turned to be both above and below the passive natural 

frequency, which would be a desirable achievement for practical purpose.  

 

Figure 1. Schematic diagram of the hybrid magnetic system. 

Figure 1 shows the assembly of this hybrid magnetic system. To overcome the low magnetic 

permeability of MRE materials, two steel cylinders were placed at both ends of the laminated 

structure to increase magnetic conductivity [24] before the laminated structure was placed 
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between the permanent magnets. The permanent magnets generate a vertical and stable 

magnetic field perpendicular to the laminated structure, so when this compact structure is 

placed inside the electromagnetic coil it becomes the magnetic core of the electromagnetic 

circuit, and because the electromagnetic field inside the solenoid is uniform and vertical, by 

adjusting the current, the hybrid magnetic system can work in different modes, as shown in 

Figure 2. The blue closed loop represents the magnetic circuit generated by the permanent 

magnets, while the yellow loop represents the adjustable magnetic circuit produced by the 

electromagnetic coil. 

In this study, current passing through the coil can generate an electromagnetic field that is 

opposed to the permanent magnetic field and is defined as a positive current. In this case, as 

Figure 2a shows, the overall magnitude of the hybrid magnetic field has been reduced. 

Otherwise, the current that increases the permanent magnetic field is defined as a negative 

current, as shown in Figure 2b. When a positive current is applied the magnetic field 

generated by the permanent magnetic field would be reduced by the electromagnetic field, 

such that the higher the current the more of the magnetic field is reduced, but if the current 

keeps on increasing, the overall magnitude of the hybrid magnetic field would keep 

decreasing until it reached zero, after which the hybrid magnetic field would begin to 

increase in reverse. Correspondingly, the stiffness of the MRE based structure would 

decrease in the first stage and then increase as the current keeps growing, but when a negative 

current was applied, the permanent- and electro- magnetic fields would be in the same 

direction, which means that the superposition of the hybrid magnetic field would be enhanced, 

and the stiffness of the system would increase until it reached saturation where the negative 

current keeps increasing. 

                 
a. Hybrid magnetic field under positive 

current. 

b. Hybrid magnetic field under negative 

current.

Figure 2. Different working modes for hybrid magnetic system. 

2.3 Assembly of MRE based isolator 



 

Figure 3. Physical maps for electromagnetic coil and MRE isolator. 

Figure 3 shows the physical maps for the electromagnetic coil and the MRE based isolator. 

The rectangular bottom plate was appropriate for fixing the isolator to the base, through 

which the disturbance excitation is passed to the whole system. The top steel plate was used 

to support the weight. Such a novel isolator has inherited the classical laminated structure and 

incorporated the hybrid magnetic system while being compact enough to be used safely and 

conveniently, and yet it is strong enough to maintain a high vertical stiffness while 

simultaneously providing lateral agility. Furthermore, this hybrid magnetic system makes the 

MRE isolator energy friendly and yet powerful enough to possess a high controllability over 

its characteristics; attributes that will surely contribute greatly to the engineering world.  

3. Characterising the MRE isolator 

3.1  Experimental setup 

To evaluate and characterise the performance of the MRE base isolator prototype, a series of 

experimental tests were conducted under various loading conditions. A detailed experimental 

set up is shown in Figure 4 and a schematic diagram of the experimental set up is shown in 

Figure 5. The isolator was fixed to the bearing through an aluminum sheet. A base was 

fabricated to support the bearing in order to avoid any unwanted vibration in the 

measurement. The isolator was forced to vibrate horizontally by a shaker (VTS, .VC 100-8), 

which was driven by a signal source from a power amplifier (YE5871), and a laser sensor 

(MICRO-EPSILON Company) monitored the horizontal movement of the bottom plate. A 

force sensor (CA-YD-302) was mounted between the top plate of the isolator and the fixed 

rig to measure the lateral force produced by the isolator. During the test, the top plate and the 

force sensor remained motionless in order to eliminate any unwanted inertia force in the 

measurements. A DC power supply (THURLBY-THANDAR, INSTRUMENTS LTD) was 

used to provide DC current to energise the magnetic coil. The amount and direction of the 

output current could be adjusted to change the magnitude of the electromagnetic field. The 

interface connecting the computer and the device (amplifier and signal sensors) was supplied 

by the Data Acquisition (DAQ) board (LabVIEW PCI-6221, National Instruments 

Corporation. U.S.A). The LabVIEW program was designed to be the control unit and the 

display unit where harmonic excitation could be generated and the results displayed and 

recorded. 



 

Figure 4. Experimental Setup for testing the MRE isolator. 

 

Figure 5. Schematic diagram for the experimental setup. 

In the first part of the test various harmonic inputs were used to assess the dynamic properties 

of the MRE based isolator. A wide range of frequencies, amplitudes, and currents were 

selected to demonstrate the ability of the isolator to become both ‘softer’ and ‘harder’, and 

both positive (1A, 2A, 3A, and 4A) and negative currents (-1A, -2A, -3A, and -4A) were 

considered. In each case, the sampling rate for the data acquisition was set to 1000Hz and at 

least 20 cycles were measured to stabilise the isolator. To further clarify this remarkable 

progress, the transmissibility and phase of the isolator under different levels of current were 

also provided. To determine whether this novel design would offer an alternative solution for 

suppressing vibration, a vibration isolation experiment was conducted as the last part of these 

experiments. 

3.2 Results of Dynamic testing  

Figure 6 shows the force-displacement (Figure 6a) and force-velocity (Figure 6b) responses 

when the MRE isolator was run with a sinusoidal signal of five different amplitudes at a 

constant frequency (3 Hz) and current (4 A). This series of responses progressed from linear 

to nonlinear when the loading amplitudes were increased. This can be reasonably explained 

by the resistance from the rubber matrix and the magnetic force between iron particles that 

prevented the chain structure in the MRE materials from extending when a larger amplitude 

was applied. Another obvious finding was the measured force and equivalent damping which 

was indicated by the enclosed area of the force-displacement loop, and an evident increase in 

gain with ascending loading amplitudes. However, the lateral stiffness of the isolator, 
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indicated by the slope of the force-displacement loop, decreased slightly as the amplitude 

increased.  

 

a. Force vs. displacement                                                  b. Force vs. velocity 

Figure 6. Experimental responses of the MRE isolator under sinusoidal inputs with different amplitudes. 

 

a. Force vs. displacement                                                 b.  Force vs. velocity 

Figure 7. Experimental responses of the MRE isolator under sinusoidal inputs with different currents. 

One important highlight of this study was that the hybrid magnetic system enabled the MRE 

isolator to increase and decrease its lateral stiffness, i.e., the force-displacement and force-

velocity performances under different levels of current (different magnetic density) but same 

frequency and amplitude are presented in Figure 7. As stated earlier, an electromagnetic field 

opposite to a permanent magnetic field was generated when a positive current was applied; 

thus the larger the current is, the smaller the superposition of the hybrid magnetic field will 

be. Contrarily, the hybrid magnetic field will be strengthened.  To better describe the special 

properties the isolator can achieve, it was defined as a benchmark when no current was 

applied, as highlighted with a black font in Figure 7. But one point must be emphasized: the 

‘no current’ was not equal to its usual passive status because there was a permanent magnetic 

field working on the system even when no current was applied. Indeed Figure 7 shows that 

the measured force and lateral stiffness tended to be smaller than the benchmark when a 

positive current was applied, while the equivalent damping (the enclosed area of the force-

displacement loop) decreased as the overall magnitude of the hybrid magnetic system was 
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reduced. In those cases where a negative current was applied, the measured force, and the 

lateral stiffness, as well as the equivalent damping, increased as the amount of current grew. 

The effective stiffness and equivalent damping of each loading case was calculated and is 

listed in Table 1. The details of the effective stiffness calculation can be found in [23, 30]. 

Table 1. Effective stiffness of the MRE isolator under various applied currents. 

Current 

(A) 

-4 -3 -2 -1 0 1 2 3 4 

Effective 

Stiffness 

(kN/m) 

5.31 5.08 4.62 4.13 3.55 3.15 2.64 2.28 1.88 

Equivalent 

Damping 

(kN.s/m) 

0.2186 0.2028 0.1844 0.1678 0.1500 0.1334 0.1185 0.09896 0.0800 

 
a. Effective stiffness vs. current.  b.  Equivalent damping vs. current. 

Figure 8. Effective stiffness and equivalent damping under various currents. 

It can be summarised from the effective stiffness listed in Table 1 that minimum effective 

stiffness was achieved when the applied current was 4A and the relative change between the 

minimum and maximum values was 182.4%. Figure 8a shows the relationship between the 

effective stiffness and the current level, where the effective stiffness was almost a linear 

function of the applied current in certain areas. Nevertheless, the effective stiffness was not 

evenly distributed when corresponding to the current, especially when the current was larger. 

A closer observation reveals that the relative increase of effective stiffness was smaller as the 

current diverged from zero negatively, which can reasonably be explained as follows. When 

the current changed to become negative from 0A, the hybrid magnetic field was strengthened 

as the current kept growing, so initially, the lateral stiffness of the isolator also kept on rising 

until it eventually reached its saturation point after it increased to a certain value.  This 

explanation applies to Figure 8a where the current was negative and the curve gradually 

tended to become saturated. For those cases where the current was positive, the superposition 

of the hybrid magnetic field decreased at first and then increased inversely after it reached 

zero; therefore there must be a critical current that generates just enough of an 

electromagnetic field to totally eliminate the permanent magnetic field. Accordingly, the 
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lateral stiffness of the isolator will decrease until it reaches its minimum and then begin to 

grow. Unfortunately, this critical point cannot be observed from Figure 8a due to the 

experimental limitation for a higher current level, but the effective stiffness still decreased 

linearly in terms of an ascending positive current. As with the effective stiffness, the 

equivalent damping presented by Figure 8b shows a linear relationship in terms of the current. 

The calculated equivalent damping can be increased or decreased along with the positive or 

negative current, which matches well with the observations from Figure 7. 

3.3 Transmissibility and Phase responses 

  
a. Transmissibility vs. frequency.  b. Phase vs. frequency

Figure 9. Transmissibility and phase of the MRE isolator under different magnetic field intensity. 

Table 2. Natural frequency of the MRE isolator under various applied currents. 

Current 

(A) 

-4 -3 -2 -1 0 1 2 3 4 

Natural 

Frequency 

(Hz) 

9.85 9.60 8.89 8.04 7.14 6.23 5.43 4.75 4.20 

In this test two accelerometers (CA-YD-106) were installed to measure the lateral 

acceleration of the top and bottom plates of the isolator respectively. In each case, a 

sinusoidal excitation with a frequency range sweeping from 1Hz to 20 Hz was used to drive 

the isolator under various current levels. Figure 9 presents the transmissibility and phase 

performances of the device under different loading conditions and Table 2 captures the 

natural frequency in each single case. Here the natural frequency shifted from 9.85Hz to 

4.2Hz as the currents changed from -4A to 4A. The relative change in the natural frequency 

for these two edge cases was about 135%, demonstrating that the natural frequency of this 

isolation system can be increased and decreased from a nominal value. As the natural 

frequency of one system is expressed by: 

                                                       𝑓0 =
12𝜋�𝑘𝑒𝑒𝑒𝑚                                                                     (1) 

where 𝑓0 , 𝑘𝑒𝑒𝑒 , and 𝑚  present the natural frequency, effective stiffness, and mass of the 

system, respectively. The relationship between the natural frequency and the current should 
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show similarities between the effective stiffness and the current. As expected, Figure 10 

shows that the trajectory of the natural frequency-current curve progress was identical to that 

shown in Figure 8. On one hand the natural frequency changed almost linearly in terms of 

applied current in some limited areas, but when the current increased or decreased to a larger 

level negatively or positively, the natural frequency of the isolator kept climbing until it was 

saturated or it dropped to a minimum before it began to increase again.  

 

Figure 10. Natural frequency as a function of the current. 

4. Vibration  isolation experiment 

A vibration isolation experiment was conducted to assess the effectiveness of the MRE 

isolator as an isolation device. As Figure 11 shows, the mass attached to the top plate of the 

isolator served as the primary system. To determine the feasibility of the device as a vibration 

isolation system, two testing cases were included in this part. In the first case sinusoidal 

signals with a constant frequency were used as the means of excitation such that further 

testing subjected the system to a swept sinusoidal signal. In this testing system, the interface 

used was a Hilink (ZELTOM) board, as shown in Figure 11. The HILINK platform offers a 

seamless interface between physical plants and Matlab/Simulink to implement hardware-in-

the-loop real-time control systems. It is fully integrated into Matlab/Simulink and has a broad 

range of inputs and outputs. Through the HILINK board, the displacement signal was input to 

the computer after being captured by the displacement sensor. After the captured signal was 

processed by the Simulink block, the block generated a current signal to the HILINK output 

channel, through which the output signal was sent to the amplifier.  
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Figure 11. Schematic diagram of the vibration isolation experiment. 

 

Figure 12. The single-degree-of-freedom system. 

The mathematic model of the vibration isolation system can be represented by a single-

degree-of–freedom system, as shown in Figure 12. 𝑚𝑝 is the mass of the primary system;  𝑐𝑠(𝐼) and  𝑘𝑠(𝐼) represent the controllable damping coefficient and lateral stiffness of the 

MRE isolator, respectively; 𝑥𝑝 and 𝑥𝑖𝑖 are the displacements of the primary system and the 

driving signal, respectively. The dynamic equation for the system is governed by: 

                            𝑚𝑝𝑥𝑝̈ + 𝑐𝑠(𝐼)�𝑥𝑝̇ − 𝑥𝚤𝑖̇� + 𝑘𝑠(𝐼)�𝑥𝑝 − 𝑥𝑖𝑖� = 0                                        (2) 

The control algorithm chosen herein, i.e. ON-OFF control, aimed to shift the primary 

frequency as far away as possible from the frequency of the driving signal. The working logic  

of the ON-OFF control is such that the lateral stiffness and damping of the isolator will be 

decreased if the product of the relative displacement and relative velocity of the primary 

system with respect to the driving excitation is below zero. In other words, a positive current 

will be chosen if 𝑥𝑝 − 𝑥𝑖𝑖 and 𝑥𝑝̇ − 𝑥𝚤𝑖̇ are opposite to each other. Otherwise, if the relative 

displacement and relative velocity are in the same direction, lateral stiffness and damping 

should be increased. This control logic is concise and simple and yet efficient enough to 

obtain real time control. The ON-OFF control law is expressed as [31]: 



                                        𝐼 = � 0,                  𝑖𝑓( 𝑥𝑝 − 𝑥𝑖𝑖)(𝑥𝑝̇ − 𝑥𝚤𝑖̇) > 0

 𝐼𝑀𝑀𝑀 ,           𝑖𝑓 � 𝑥𝑝 − 𝑥𝑖𝑖��𝑥𝑝̇ − 𝑥𝚤𝑖̇� < 0
                              (3) 

4.1  Sinusoidal Excitation 

In order to obtain the natural frequency of the isolation system with the attached mass, where 

the input current was zero, the system was first excited by a swept sinusoidal, and the 

transmissibility is shown in Figure 13. The natural frequency captured was 5.55Hz. Since 

vibration around a natural frequency is the most severe, three sets of sinusoidal excitation 

with constant frequency of 5Hz, 5.55Hz, and 7Hz, respectively were used in the first test. To 

show how effective this vibration isolation was, each testing case was conducted as follows: 

no control law was applied to the system until the ON-OFF control was turned on; the control 

law lasted for some time and then it was turned off. This process was done by turning the 

amplifier, which was connected to the HILINK output channel, on or off.  

 

Figure 13. Frequency response of the isolation system. 

Figure 14 describes the acceleration measured under different sinusoidal excitations, and in 

each case, the acceleartion was clearly attenuated during the period when the ON-OFF 

control logic was working, as marked in Figure 14. The relative changes for each testing were 

15%, 23.7%, and 28.6%, respectively, which clearly indicated that the MRE isolator was very 

efficient in isolating vibration. 
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Figure 14. Acceleration responses under different sinusoidal excitations. 

 

4.2 Swept Sinusoidal Excitation 

To further evaluate the as-designed vibration isolation system, the response of the primary 

system under the swept sinusoidal excitation was measured. The working mode without 

control logic was defined as passive off and the one under ON-OFF control was defined as 

ON-OFF. A swept sinusoidal covers a frequency band from 2Hz to 15Hz. Figure 15 shows 

the results for the acceleration of the primary system between passive off and ON-OFF. It 

was noted that vibration in the primary system was significantly suppressed under the ON-

OFF control algorithm, and therefore vibration isolation under the ON-OFF control, as shown  

by the experimental results, was very effecive.  

 

Figure 15. Responses under the swept sinusoidal excitation. 

5. Conclusion 

A new MRE isolator that includes a hybrid magnetic system was designed and fabricated. 

This hybrid magnetic system generates a hybrid magnetic field which is the superposition of 

a permanent magnetic field and an electromagnetic field. The main contribution of this hybrid 
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magnetic system is that it allows the overall magnitude of a magnetic field to be both 

increased and decreased, and accordingly, the lateral stiffness of the isolator can be both 

increased and decreased. To verify the specialty of this isolator, a series of dynamic tests 

were conducted and the results showed that the effective stiffness was reduced when a 

positive current was applied, and it grows under a negative current. The transmissibility and 

phase responses showed that the frequency range of the MRE isolator shifted when the 

applied current varied from -4A to 4A, thus demonstrating that the natural frequency of the 

isolation system can be increased and decreased. The isolator was also tested for its ability to 

avoid unwanted vibrations by subjecting the isolation system to sinusoidal signals with 

constant frequency and swept sinusoidal signals, respectively. Compared to the passive off 

case where no current was applied, the acceleration for both cases was obviously reduced 

under the ON-OFF control logic. The experimental results proved that the proposed MRE 

isolator is a qualified candidate for vibration isolation applications.   
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