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a b s t r a c t

The problem of assigning centrality values to nodes and edges in graphs has been widely investigated
during last years. Recently, a novel measure of node centrality has been proposed, called j-path centrality
index, which is based on the propagation of messages inside a network along paths consisting of at most
j edges. On the other hand, the importance of computing the centrality of edges has been put into evi-
dence since 1970s by Anthonisse and, subsequently by Girvan and Newman. In this work we propose the
generalization of the concept of j-path centrality by defining the j-path edge centrality, a measure of
centrality introduced to compute the importance of edges. We provide an efficient algorithm, running
in O(jm), being m the number of edges in the graph. Thus, our technique is feasible for large scale net-
work analysis. Finally, the performance of our algorithm is analyzed, discussing the results obtained
against large online social network datasets.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

In the context of the social knowledge management, Social Net-
work Analysis (SNA) is attracting an increasing attention by the
scientific community, in particular during the latest years. One of
the main motivations is the unprecedented success of phenomena
such as online social networks and online communities. In this
panorama, not only from a scientific perspective but also for com-
mercial or strategic motivations, the identification of the principal
actors inside a network is very important.

Such an identification requires to define an importance measure

(also referred to as centrality) to weight nodes and/or edges.
The simplest approaches to computing centrality consider only

the local topological properties of a node/edge in the social network
graph: for instance, the most intuitive node centrality measure is
represented by the degree of a node, i.e., the number of social con-
tacts of a user. Unfortunately, local measures of centrality, whose
esteem is computationally feasible even on large networks, do
not produce very faithful results [1].

Due to these reasons, many authors suggested to consider the
whole social network topology to compute centrality values. A
new family of centrality measures was born, called global measures.
Some examples of global centrality measures are closeness [2] and
betweenness centrality (for nodes [3], and edges [4,5]).

Betweenness centrality is one of the most popular measures
and its computation is the core component of a range of algorithms

and applications. Betweenness centrality relies on the idea that, in
social networks, information flows along shortest paths: as a conse-
quence, a node/edge has a high betweenness centrality if a large
number of shortest paths crosses it.

Some authors, however, raised some concerns on the effective-
ness of betweenness centrality. First of all, the problem of comput-
ing the exact value of betweenness centrality for each node/edge of
a given graph is computationally demanding – or even unfeasible –
as the size of the analyzed network grows. Therefore, the need of
finding fast, even if approximate, techniques to compute between-
ness centrality arises and it is currently a relevant research topic in
Social Network Analysis.

A further issue is that the assumption that information in social
networks propagates only along shortest paths could not be true
[6]. By contrast, information propagation models have been pro-
vided in which information, encoded as messages generated in a
source node and directed toward a target node in the network,
may flow along arbitrary paths. In the spirit of such a model, some
authors Newman [7], Noh and Rieger [8] suggested to perform ran-
dom walks on the social network to compute centrality values.

A prominent approach following this research line is the work
proposed in [9]. In that work, the authors introduced a novel node
centrality measure known as j-path centrality. In detail, the
authors suggested to use self-avoiding randomwalks [10] of length
j (being j a suitable integer) to compute centrality values. They
provided an approximate algorithm, running in O(j3n2�2alogn)
being n the number of nodes and a 2 � 1

2 ;
1
2

� �

.
In this paper we extend that work [9] by introducing a measure

of edge centrality. This measure is called j-path edge centrality. In
our approach, the procedure of computing edge centrality is
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viewed as an information propagation problem. In detail, if we as-
sume that multiple messages are generated and propagated within
a social network, an edge is considered as ‘‘central’’ if it is fre-
quently exploited to diffuse information.

Relying on this idea, we simulate message propagations
through random walks on the social network graphs. In our simu-
lation, in addition, we assume that random walks are simple and of
bounded length up to a constant and user-defined value j. The for-
mer assumption is because a randomwalk should be forced to pass
no more than once through an edge; the latter, because, as in [11],
we assume that the more distant two nodes are, the less they influ-
ence each other.

The computation of edge centrality has many practical applica-
tions in a wide range of contexts and, in particular, in the area of
knowledge-based (KB) systems. For instance in KB systems in
which data can be conveniently managed through graphs, the pro-
cedure of weighting edges plays a key role in identifying communi-

ties, i.e., groups of nodes densely connected to each other and
weakly coupled with nodes residing outside the community itself
[12,13]. This is useful to better organize available knowledge:
think, for instance, to an e-commerce platform and observe that
we could partition customer communities into smaller groups
and we could selectively forward messages (like commercial
advertisements) only to groups whose members are actually inter-
ested to them. In addition, in the context of Semantic Web, edge
centralities are useful to quantify the strength of the relationships
linking two objects and, therefore, it can be useful to discover new
knowledge [14]. Finally, in the context of social networks, edge
centralities are helpful to model the intensity of the social tie be-
tween two individuals [15]: in such a case, we could extract pat-
terns of interactions among users in virtual communities and
analyze them to understand how a user is able to influence another
one. The main contributions of this paper are the following:

� We propose an approach based on random walks consisting of
up-to j edges to compute edge centrality. In detail, we observe
that many approaches in the literature have been proposed to
compute node centrality but, comparatively, there are few stud-
ies on edge centrality computation (among them we cite the
edge betweenness centrality introduced in the Girvan–Newman
algorithm [5]). In addition, Newman [7], Noh and Rieger [8],
Brandes and Fleischer [16] successfully applied random walks
to compute node centrality in networks. We suggest to extend
these ideas in the direction of edge centrality, and, therefore,
this work is the first attempt to compute edge centrality by
means of random walks.
� We design an algorithm to efficiently compute edge centrality.
The worst case time complexity of our algorithm is O(jm),
being m the number of edges in the social network graph and
j a constant (and typically small) factor. Therefore, the running
time of our algorithm scales in linear fashion against the number
of edges of a social network. This is an interesting improvement
of the state-of-the-art: in fact, exact algorithms for computing
centrality run in O(n3) and, with some ingenious optimizations
they can run in O(nm) [17,5]. Unfortunately, real-life social net-
works consist of up to millions nodes/edges [18], and, therefore
these approaches may not scale well. By contrast, our algorithm
works fairly well also on large real-life social networks even in
presence of limited computing resources.
� We provide results of the performed experimentation, showing
that our approach is able to generate reproducible results even
if it relies on random walks. Several experiments have been car-
ried out in order to emphasize that the j-path edge centrality
computation is feasible even on large social networks. Finally,
the properties shown by this measure are discussed, in order
to characterize each of the studied networks.

The paper is organized as follows: in Section 2 we provide some
background information on the problems related to centrality
measures. Section 3 presents the goal of this paper and our j-path
edge centrality, including the fast algorithm for its computation.
The experimental evaluation of performance of this strategy is dis-
cussed in Section 4 and some possible applications of our approach
are presented in Section 5. Thus, the paper concludes in Section 6.

2. Background about centrality measures and applications

In this section we review the concept of centrality measure and
illustrate some recent approaches to compute it.

2.1. Centrality measure in social networks

One of the first (and the most popular) node centrality mea-
sures is the betweenness centrality [3]. It is defined as follows:

Definition 1 (Betweenness centrality). Given a graph G = hV,Ei, the
betweenness centrality for the node v 2 V is defined as

CBn ðvÞ ¼
X

s–v–t2V

rstðvÞ

rst

ð1Þ

where s and t are nodes in V, rst is the number of shortest paths con-
necting s to t, and rst(v) is the number of shortest paths connecting s

to t passing through the node v.
If there is no path joining s and twe conventionally set rst ðvÞ

rst
¼ 0.

The concept of centrality has been defined also for the edges in a
graph and, from a historical standpoint, the first approach to com-
pute edge centrality has been proposed in 1971 by Anthonisse
[4,19] and was implemented in the GRADAP software package. In
this approach, edge centrality is interpreted as a ‘‘flow centrality’’
measure. To define it, let us consider a graph G = hV,Ei and let
s 2 V, t 2 V be a fixed pair of nodes. Assume that a ‘‘unit of flow’’
is injected in the network by picking s as the source node and as-
sume that this unit flows in G along the shortest paths. The rush in-

dex associated with the pair hs, ti and the edge e 2 E is defined as

dstðeÞ ¼
rstðeÞ

rst

being, as before, rst the number of shortest paths connecting s to t,
and rst(e) the number of shortest paths connecting s to t passing
through the edge e. As in the previous case, we conventionally set
dst(e) = 0 if there is no path joining s and t.

The rush index of an edge e ranges from 0 (if e does not belong to
any shortest path joining s and t) to 1 (if e belongs to all the short-
est paths joining s and t). Therefore, the higher dst, the more rele-
vant the contribution of e in the transfer of a unit of flow from s

to t. The centrality of e can be defined by considering all the pairs
hs, ti of nodes and by computing, for each pair, the rush index dst(e);
the centrality CRe ðeÞ of e is the sum of all these contributions

CRe ðeÞ ¼
X

s2V

X

v2V

dstðeÞ

More recently, in 2002, Girvan and Newman proposed in [5] a def-
inition of edge betweenness centrality which strongly resembles that
provided by Anthonisse.

According to the notation introduced above, the edge between-
ness centrality for the edge e 2 E is defined as

CBe ðeÞ ¼
X

s–t2V

rstðeÞ

rst

ð2Þ

and it differs from that of Anthonisse because the source node s and
the target node t must be different.
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Other, marginally different, definitions of betweenness central-
ity have been proposed by Brandes [20], such as bounded-distance,
distance-scaled, edge and group betweenness, and stress and load
centrality.

Although the appropriateness of the betweenness centrality in
the representation of the ‘‘importance’’ of a node/edge inside the
network is evident, its adoption is not always the unique solution
to a given problem. For example, as already put into evidence by
Stephenson and Zelan [6], the first limit of the concept of between-
ness centrality is related to the fact that influence or information
does not propagate following only shortest paths. With regards
to the influence propagation, it is also evident that the more distant
two nodes are, the less they influence each other, as stated by
Friedkin [11]. Additionally, in real applications (such as those de-
scribed in Section 2.3) it is not usually required to calculate the ex-
act ranking with respect to the betweenness centrality of each
node/edge inside the network. In fact, it results more useful to
identify the top arbitrary percentage of nodes/edges which are
more relevant to the given specific problem (e.g., study of propaga-
tion of information, identification of key actors, etc.).

2.2. Recent approaches for computing betweenness centrality

As to date, several algorithms to compute the betweenness cen-
trality (of nodes) in a graph have been presented. The most effi-
cient has been proposed by Brandes [17], which runs in O(n m)
for unweighted graphs, and in O(n m + n2logn) for weighted graphs,
containing n nodes and m edges.

The computational complexity of these approaches makes them
unfeasible for large network analysis. To this purpose, different
approximate solutions have been proposed. Amongst others, Bran-
des and Pich [21] developed a randomized algorithm (namely, ‘‘RA-
Brandes’’) and, similarly by using adaptive techniques, Bader et al.
[22] proposed another approximate version (called, ‘‘AS-Bader’’). In
[7], Newman devised a random-walk based algorithm to compute
betweenness centrality which shares similarities to our approach,
starting from the concept of message propagation along random
paths. From the same concept, Alahakoon et al. [9] proposed the
j-path centrality measure (for nodes) and developed a O(j3n2�2a

logn) algorithm (namely, ‘‘RA-jpath’’) to compute it.

2.3. Application of centrality measures in social network analysis

Applications of centrality information acquired from social net-
works have been investigated by Staab et al. [23]. The authors de-
fined different methodologies to exploit discovered data, e.g., for
marketing purposes, recommendation and trust analysis.

Several marketing and commercial studies have been applied to
online social networks (OSNs), in particular to discover efficient
channels to distribute information [24,25] and to study the spread
of influence [26]. Potentially, our study could provide useful infor-
mation to all these applied research directions, identifying those
interesting edges with high j-path edge centrality, which empha-
sizes their importance within the social network. Those nodes
interconnected by high central edges are important because of
the position they ‘‘topologically’’ occupy. Moreover, they could effi-
ciently carry information to their neighborhood.

3. Measuring edge centrality

3.1. Design goals

Before to providing a formal description of our algorithm, we
illustrate the main ideas behind it. We start from a real-life exam-
ple and we use it to derive some ‘‘requirements’’ our algorithm
should satisfy.

Let us consider a network of devices. In this context, without
loss of generality, we can assume that the simplest ‘‘piece’’ of infor-
mation is a message. In addition, each device has an address book

storing the devices with which it can exchange messages. A device
can both receive and transmit messages to other devices appearing
in its address book.

The purpose of our algorithm is to rank links of the network on
the basis of their aptitude of favoring the diffusion of information.
In detail, the higher the rank of a link, the higher its ability of prop-
agating a message. Henceforth, we refer to this problem as link

ranking.
The link ranking problem in our scenario can be viewed as the

problem of computing edge centrality in social networks. We guess
that some of the hypotheses/procedures adopted to compute edge
centrality can be applied to solve the link ranking problem. We
suggest to extend these techniques in a number of ways. In detail,
we guess that the algorithm to compute the link ranking should
satisfy the following requirements:

3.1.1. Requirement 1. Simulation of message propagation by using

random walks

As shown in Section 2, some authors assume that information
flows on a network along the shortest paths. Such an intuition is
formally captured by Eq. (1). However, as observed in [27,7], cen-
trality measures based on shortest paths can provide some coun-
terintuitive results. In detail, Freeman et al. [27], Newman [7]
present some simple examples showing that the application of
Eq. (1) would lead to assign excessively low centrality scores to
some nodes.

To this purpose, Freeman et al. [27] provided a more refined
definition of centrality relying on the concept of flow in a graph.
To define this measure, assume that each edge in the network
can carry one or more messages; we are interested in finding those
edges capable of transferring the largest amount of messages be-
tween a source node s and a target node t. The centrality of a vertex
v can be computed by considering all the pairs hs, ti of nodes and,
for each pair, by computing the amount of flow passing through
v. In the light of such a definition, in the computation of node cen-
trality also non-shortest paths are considered.

However, in [7], Newman shows that centrality measures based
on the concept of flow are not exempt from odd effects. To this
purpose, the author suggests to consider a random walker which
is not forced to move along the shortest paths of a network to com-
pute the centrality of nodes.

The Newman’s strategy has been designed to compute node
centrality, whereas our approach targets at computing edge cen-
trality. Despite this difference, we believe that the idea of using
random walks in place of shortest paths can be successful even
when applied to the link ranking problem.

In our scenario, if a device wants to propagate a message, it is
generally not aware of the whole network topology, and therefore
it is not aware of the shortest paths to route the message. In fact,
each device is only aware of the devices appearing in its address
book. As a consequence, the device selects, according to its own cri-
teria, one (or more) of its contacts and sends them the message in
the hope that they will further continue the propagation. In order
to simulate the message propagation, our first requirement is to
exploit random walks.

3.1.2. Requirement 2. Dynamic update of ranking

Ideally, if we would simulate the propagation of multiple mes-
sages on our network of devices, it could happen that an edge is se-
lected more frequently than others. Edges appearing more
frequently than others show a better aptitude to spread messages
and, therefore, their rank should be higher than others. As a conse-
quence, our mechanism to rank edges should be dynamic: at the
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beginning, all the edges are equally likely to propagate a message
and, therefore, they have the same rank. At each step of the simu-
lation, if an edge is selected, it must be awarded by getting a ‘‘bo-
nus score’’.

3.1.3. Requirement 3. Simple paths

The procedure of simulating message propagation through ran-
dom walks described above could imply that a message can pass
through an edge more than once. In such a case, the rank of edges
which are traversed multiple times would be disproportionately
inflated whereas the rank of edges rarely (or never) visited could
be underestimated. The global effect would be that the ranking
produced by this approach would not be correct. As a consequence,
another requirement is that the paths exploited by our algorithm
must be simple.

3.1.4. Requirement 4. Bounded length paths

As shown in [11], the more distant two nodes are, the less they
influence each other. The usage of paths of bounded length has
been already explored to compute node centrality [28,29]. A first
relevant example is provided in [29]; in that paper the authors ob-
serve that methods to compute node centralities like those based
on eigenvectors can lead to counterintuitive results. In fact, those
methods take the whole network topology into account and, there-
fore, they compute the centrality of a node on a global scale. It may
happen that a node could have a big impact on a small scale (think
of a well-respected researcher working on a niche topic) but a lim-
ited visibility on a large scale. Therefore, the approach of Everett
and Borgatti [29] suggested to compute node centralities in local
networks and they considered ego networks. An ego network is de-
fined as a network consisting of a single node (ego) together with
the nodes it is connected to (the alters) and all the links among
those alters. The diameter of an ego network is 2 and, therefore,
the computation of node centrality in a network requires to com-
pute paths up to a length 2. In [28] the authors extended these con-
cepts by considering paths up to a length k.

We agree with the observations above and figure that two
nodes are considered to be distant if the shortest path connecting
them is longer than j hops, being j the established threshold. Such
a consideration depicts as effective paths only those paths whose
length is up to j. We take this requirement and for our simulation
procedure we considered paths of bounded length.

In the next sections we shall discuss how our algorithm is able
to incorporate the requirements illustrated above.

3.2. j-Path centrality

In this section we introduce the concepts of j-path node cen-
trality and j-path edge centrality.

The notion of j-path node centrality, introduced by Alahakoon
et al. [9], is defined as follows:

Definition 2 (j-path node centrality). For each node v of a graph
G = hV,Ei, the j-path node centrality Cj(v) of v is defined as the
sum, over all possible source nodes s, of the frequency with which
a message originated from s goes through v, assuming that the
message traversals are only along random simple paths of at most
j edges.

It can be formalized, for an arbitrary node v 2 V, as

CjðvÞ ¼
X

s2V

rj
s ðvÞ

rj
s

ð3Þ

where s are all the possible source nodes, rj
s ðvÞ is the number of j-

paths originating from s and passing through v and rj
s is the overall

number of j-paths originating from s.

Observe that Eq. (3) resembles the definition of betweenness

centrality provided in Eq. (1). In fact, the structure of the two equa-
tions coincides if we replace the concept of shortest paths (adopted
in the betweenness centrality) with the concept of j-paths which
is the core of our definition of j-path centrality.

The possibility of extending the concept of ‘‘centrality’’ from
nodes to edges has been already exploited by Girvan and Newman
[5]. In particular, they generalized the formulation of ‘‘between-
ness centrality’’ (referred to nodes), introducing the concept of
‘‘edge betweenness centrality’’.

Similarly, we extend Definition 2 in order to define an edge cen-
trality index, baptized j-path edge centrality.

Definition 3 (j-path edge centrality). For each edge e of a graph
G = hV,Ei, the j-path edge centrality Lj(e) of e is defined as the sum,
over all possible source nodes s, of the frequency with which a
message originated from s traverses e, assuming that the message
traversals are only along random simple paths of at most j edges.

The j-path edge centrality is formalized, for an arbitrary edge e,
as follows

LjðeÞ ¼
X

s2V

rj
s ðeÞ

rj
s

ð4Þ

where s are all the possible source nodes, rj
s ðeÞ is the number of

j-paths originating from s and traversing the edge e and, finally,
rj

s is the number of j-paths originating from s.
In practical cases, the application of Eq. (4) can not be feasible

because it requires to count all the j-paths originating from all
the source nodes s and such a number can be exponential in the
number of nodes of G. To this purpose, we need to design some
algorithms capable of efficiently approximating the value of j-path
edge centrality. These algorithms will be introduced and discussed
in the next subsections.

3.3. The algorithm for computing the j-path edge centrality

In this section we discuss an algorithm, called Edge Random

Walk j-Path Centrality (or, shortly, ERW-Kpath), to efficiently com-
pute edge centrality values.

It consists of two main steps: (i) node and edge weights assign-
ment and, (ii) simulation of message propagations through random
simple paths. In the ERW-KPath algorithm, the probability of
selecting a node or an edge are uniform; we provide also another
version of the ERW-Kpath algorithm (called WERW-Kpath -

Weighted Edge Random Walk j-Path Centrality) in which the
node/edge probabilities are not uniform.

We will show in the Appendix A that the ERW-KPath and the
WERW-Kpath algorithms return, as output, an approximate value
of the edge centrality index as provided in Definition 3 and we will
provide a quantitative assessment of such an approximation.

In the following we shall discuss the ERW-KPath algorithm by
illustrating each of the two steps composing it. After that, we will
introduce the WERW-KPath algorithm as a generalization of the
ERW-KPath algorithm.

3.3.1. Step 1: node and edge weights assignment

In the first stage of our algorithm, we assign a weight to both
nodes and edges of the graph G = hV,Ei representing our social net-
work. Weights on nodes are used to select the source nodes from
which each message propagation simulation starts. Weights on
edges represent initial values of edge centrality and, to comply
with Requirement 2, they will be updated during the execution
of our algorithm.

To compute weight on nodes, we introduce the normalized de-

gree d(vn) of a node vn 2 V as follows:

P. De Meo et al. / Knowledge-Based Systems 30 (2012) 136–150 139
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Definition 4 (Normalized degree). Given an undirected graph
G = hV,Ei and a node vn 2 V, its normalized degree d(vn) is

dðvnÞ ¼
jIðvnÞj

jV j
ð5Þ

where I(vn) represents the set of edges incident on vn.
The normalized degree d(vn) correlates the degree of vn and the

number of total nodes on the network. Intuitively, it represents
how much a node contributes to the overall connectivity of the
graph. Its value belongs to the interval [0,1] and the higher d(vn),
the better vn is connected in the graph.

Regarding edge weights, we introduce the following definition:

Definition 5 (Initial edge weight). Given an undirected graph
G = hV,Ei and an edge em 2 E, its initial edge weight x0(em) is

x0ðemÞ ¼
1
jEj

ð6Þ

Intuitively, the meaning of Eq. (6) is as follows: we initially
manage a ‘‘budget’’ consisting of jEj points; these points are equally
divided among all the possible edges; the amount of points re-
ceived by an edge represents its initial rank.

In Fig. 1 we report an example of graph G along with the distri-
bution of weights on nodes and edges.

3.3.2. Step 2: Simulation of message propagations through random

simple j-paths
In the second step we simulate multiple random walks on the

graph G; this is consistent with Requirement 1.
To this purpose, our algorithm iterates the following sub-steps a

number of times equal to a value q, being q a fixed value. We will
later provide a practical rule for tuning q. At each iteration, our
algorithm performs the following operations:

1. A node vn 2 V is selected according to one of the following two
possible strategies:
(a) uniformly at random, with a probability

PðvnÞ ¼
1
jV j

ð7Þ

(b) with a probability proportional to its normalized degree
d(vn), given by

PðvnÞ ¼
dðvnÞ

P

vk2V
dðvkÞ

ð8Þ

2. All the edges in G are marked as not traversed.
3. The procedure MessagePropagation is invoked. It generates a

simple random walk whose length is not greater than j, satis-
fying Requirement 3.

Let us describe the procedure MessagePropagation. This proce-
dure carries out a loop as long as both the following conditions hold
true:

� The length of the path currently generated is no greater than j.
This is managed through a length counter N.
� Assuming that the walk has reached the node vn, there must
exist at least an incident edge on vn which has not been already
traversed. To do so, we attach a flag T(em) to each edge em 2 E,
such that

TðemÞ ¼
1 if em has already been traversed

0 otherwise

�

We observe that the following condition must be true

jIðvnÞj >
X

ek2IðvnÞ

TðekÞ ð9Þ

being I(vn) the set of edges incident onto vn.

The former condition complies with Requirement 4 (i.e., it al-
lows us to consider only paths up to length j). The latter condition,
instead, avoids that the message passes more than once through an
edge, thus satisfying Requirement 3.

If the conditions above are satisfied, the MessagePropagation

procedure selects an edge em by applying two strategies:

(a) uniformly at random, with a probability

PðemÞ ¼
1

jIðvnÞj �
P

ek2IðvnÞ
TðekÞ

ð10Þ

among all the edges em 2 {I(vn)jT(em) = 0} incident on vn (i.e., exclud-
ing already traversed edges);

(b) with a probability proportional to the edge weight xl(em),
given by

PðemÞ ¼
xlðemÞ

P

em2ÎðvnÞ
xlðemÞ

ð11Þ

being ÎðvnÞ ¼ fek 2 IðvnÞjTðekÞ ¼ 0g and xl(em) =xl�1(em) + b � T(em)
if 1 6 l 6 jq.

Let em be the selected edge and let vn+1 be the node reached
from vn by means of em. The MessagePropagation procedure awards
a bonus b to em, sets T(em) = 1 and increases the counter N by 1. The
message propagation activity continues from vn+1.

At the end, each edge e 2 E is assigned a centrality index Lj(e)
equal to its final weight xjq(e).

The values of b and q, in principle, can be fixed in an arbitrary
fashion but we provide a simple practical rule to tune them. Due
to Theorem 6.2 reported in the Appendix A, it emerges that in
ERW-KPath it is convenient to set q ’ jEj. In particular, if we set
q = jEj�1 and b ¼ 1

jEj
we get a nice result: the edge centrality in-

dexes always range in 1
jEj
;1

h i

and, ideally, the centrality index of
a given edge will be equal to 1 if (and only if) it is always selected
in any message propagation simulation. In fact, each edge initially
receives a default score equal to 1

jEj
and if that edge is selected in a

subsequent trial, it will increase its score by a factor b ¼ 1
jEj
. Intui-

tively, if an edge is selected in all the trials, its final score will be
equal to 1

jEj
þ q � 1

jEj
¼ 1
jEj
þ jEj�1

jEj
¼ 1.

The time complexity of this algorithm is O(jq). If we fix
q = jEj � 1, we achieve a good trade-off between accuracy and
computational costs. In fact, in such a case, the worst case time
complexity of the ERW-KPath algorithm is O(jjEj) and, since in real
social networks jEj is of the same order of magnitude of jVj, the
time complexity of our approach is near linear against the numberFig. 1. Example of assignment of normalized degrees and initial edge weights.
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of nodes. This makes our approach computationally feasible also
for large real-life social networks.

The version of the algorithm shown in Algorithms 1 and 2
adopts uniform probability distribution functions in order to
choose nodes and edges purely at random and, as said before, it
is called ERW-KPath.

A weighted version of the same algorithm, called WERW-KPath,
would differ only in line 5 (Algorithm 1) and 2 (Algorithm 2),
adopting weighted functions specified in Eqs. (8) and (11). During
our experimentation we always adopted the WERW-Kpath algo-
rithm, for the motivations explained in Section 3.5.

Algorithm 1: ERW-Kpath(Graph G = hV,Ei, int j, int q, float b)

1: Assign each node vn 2 V its normalized degree
2: Assign each edge em 2 E the uniform probability function

as weight
3: for i = 1 to q do

4: N 0 a counter to check the length of the j-path
5: vn a node chosen uniformly at random in V

6: MessagePropagation(vn,N,j,b)
7: end for

Algorithm2: MessagePropagation(Node vn, int N, int j, float b)

1: while N < j and ½jIðvÞj >
P

e2IðvÞTðeÞ� do

2: em em 2 {I(v)jT(em) = 0}, chosen uniformly at random
3: Let vn+1 be the node reached by vn through em
4: x(em) x(em) + b

5: T(em) 1
6: vn vn+1

7: N N + 1
8: end while

3.4. Novelties introduced by our approach

In this section we discuss the main novelties introduced by our
ERW-Kpath and WERW-Kpath algorithms.

First of all, we observe that our approach is flexible in the sense
that it can be easily modified to incorporate new models capable
of describing the spread of a message in a network. For instance,
we can define multiple strategies to select the source node from
which each message propagation simulation starts. In particular,
in this paperwe considered two chances, namely: (i) the probability
of selecting a node s as the source is uniform across all the nodes in
the network (and this is at the basis of the ERW-Kpath algorithm) or
(ii) the probability of selecting a node s as the source is proportional
to the degree of s (and this is at the basis of the WERW-Kpath). It
would be easy to select a different probability distribution, if neces-
sary. In an analogous fashion, in the ERW-Kpath and WERW-Kpath
algorithms we defined two strategies to select the node receiving a
message; of course, other, and more complex, strategies could be
implemented in order to replace those described in this paper.

In addition, observe that the ERW-Kpath and WERW-Kpath
algorithms provide a unicast propagation model in which any sen-
der node is in charge of selecting exactly one receiving node. We
could easily modify our algorithms in such a way as to support a
multicast propagation model in which a node could issue a message
to multiple receivers.

A further novelty is that we use multiple random walks to
simulate the propagation of messages and assume that the fre-
quency of selecting an edge e in these walks is a measure of its
centrality. An approach similar to our was presented in [30] but
it assumes that messages propagate along shortest paths. In de-

tail, given a pair of nodes i and j, the approach of [30] introduces
a parameter, called network efficiency eij as the inverse of the
length of the shortest path(s) connecting i and j. After that, it pro-
vides a new parameter, called information centrality; the informa-
tion centrality ICe of an edge e is defined as the relative drop in
the network efficiency generated by the removal of e from the
network. Our approach provides some novelties in comparison
with that of [30]: in fact, in our approach a network is viewed
as a decentralized system in which there is no user having a com-
plete knowledge of the network topology. Due to this incomplete
knowledge, users are not able to identify shortest path and, there-
fore, they use a probabilistic model to spread messages. This
yields also relevant computational consequences: the identifica-
tion of all the pairs of shortest paths in a network is computation-
ally expensive and it could be unfeasible on networks containing
millions of nodes. By contrast, our approach scales almost linearly
with the number of edges and, therefore, it can easily run also
over large networks.

Finally, despite our approach relies on the concept of message
propagation which requires an orientation on edges, it can work
also on undirected networks. In fact, the ERW-Kpath (resp.,
WERW-Kpath) algorithm selects at the beginning a source node
s that decides the node v to which a message has to be for-
warded. Therefore, at run-time, the ERW-Kpath (resp., WERW-
Kpath) algorithm induces an orientation on the edge linking s

and v which coincides with the direction of the message sent
by s; such a process does not require to operate on directed net-
works, even if it could intrinsically work well with such a type of
networks.

3.5. Comparison of the ERW-Kpath and WERW-Kpath algorithms

In this section we provide a comparison between ERW-Kpath
and WERW-Kpath. First of all, we would like to observe that,
according to Theorem 6.2, both the two algorithms are capable of
correctly approximating the j-path centrality values provided in
Definition 3.

Despite the two algorithms are formally correct, however, we
observe that the WERW-Kpath algorithm should be preferred to
ERW-Kpath. In fact, in the ERW-Kpath algorithm, we assume that
each node can select, at random, any edge (among those that have
not yet been selected) to propagate a message. Such an assumption
could be, however, too strong in real-life social networks. To better
clarify this concept, consider online social networks like Facebook
or Twitter. In both of these networks a single user may have a large
number of contacts with whom she/he can exchange information
(e.g., a wall post on Facebook or a tweet on Twitter). However,
sociological studies reveal that there is an upper limit to the num-
ber of people with whom a user could maintain stable social rela-
tionships and this number is known as Dunbar number [31]. For
instance, in Facebook, the average number of friends of a user is
120. On the other hand, it has been reported that male users ac-
tively communicate with only 10 of them, whereas female users
with 16.1 This implies that there are preferential edges along which
information flows in social networks.

The ERW-Kpath algorithm is simple and easy to implement but it
could fail to identify preferential edges alongwhichmessages prop-
agate. By contrast, in theWERW-Kpath algorithm, the probability of
selecting an edge is proportional to the weight already acquired by
that edge. This weight, therefore, has to be intended as the fre-
quency with which two nodes exchanged messages in the past.

Such a property has also a relevant implication and makes fea-
sible some applications which could not be implemented by the

1 http://www.economist.com/node/13176775?story_id=13176775.
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ERW-Kpath algorithm. In fact, our approach, to some extent can be
exploited to recommend/predict links in a social network. The
problem of recommending/predicting links plays a key role in
Computer Science and Sociology and it is often known in the liter-
ature as the link prediction problem [32]. In the link prediction
problem, the network topology is analyzed to find pairs of non-
connected nodes which could get a profit by creating a social link.
Various measures can be exploited to assess whether a link should
be recommended between a pair of nodes u and v; for instance, the
simplest measure is to compute the Jaccard coefficient J(u,v) on the
neighbors of u and v. The larger the number of neighboring nodes
shared by u and v, the larger J(u,v); in such a case it is convenient to
add an edge in the network linking u and v. Further (and more
complex measures) take the whole network topology into account
to recommend links. For instance, the Katz coefficient [32] considers
the whole ensemble of paths running between u and v to decide
whether a link between them should be recommended.

The WERW-Kpath algorithm can be exploited to address the
link prediction problem. In detail, by means of WERW-Kpath, we
can handle not only topological information but we can also quan-
tify the strength of the relationship joining two nodes. So, we know
that two nodes u and v are connected and, in addition, we know
also how frequently they exchange information. This allows us to
extend the measure introduced above: for instance, if we would
like to use the Jaccard coefficient, we can consider only those edges
(called strong edges) coming out from u (resp., v) such that the
weight of these edge is greater than a given threshold. This is
equivalent to filter out all the edges which are rarely employed
to spread information. As a consequence, the Jaccard coefficient
could be computed only on strong edges.

Due to these reasons, in the following experiments we focused
only on the WERW-Kpath algorithm.

4. Experimentation

Our experimentation has been conducted on different online
social networks whose datasets are available. Adopted datasets
have been summarized in Table 1.

Dataset 1 depicts the voting system of Wikipedia for the elec-
tions of January 2008. Datasets 2 and 3 represent the Arxiv2 ar-
chives of papers in the field of, respectively, High Energy Physics
(Phenomenology) and Condensed Matter Physics, as of April 2003.
Dataset 4 represents a network of scientific citations among papers
belonging to the Arxiv High Energy Physics (Theory) field. Dataset
5 describes a small sample of the Facebook network, representing
its friendship graph. Finally, Dataset 6 depicts a fragment of the You-
Tube social graph as of 2007.

4.1. Robustness

A quality required for a good random-walk based algorithm is
the robustness of results. In fact, it is important that obtained results
are consistent among different iterations of the algorithm, if initial
conditions are the same. In order to verify that our WERW-Kpath
produces reliable results, we performed a quantitative and a quali-

tative analysis as follows.
In the quantitative analysis we are interested in checking

whether the algorithm produces the same results in different runs.
In the qualitative analysis, instead, we studied whether different
values of j deeply impact on the ranking of edges.

4.1.1. Quantitative analysis of results

Our first experimentation is in order to verify that, over differ-
ent iterations with the same configuration, results are consistent.
It is possible to highlight this aspect, running several times the
WERW-Kpath algorithm on the same dataset, with the same
configuration.

Regarding q, in the experimentation we adopt q = jEj � 1, which
is consistent with Theorem 6.2. According to the previous choice,
the bonus awarded is fixed to b ¼ 1

jEj
. As for the maximum length

of the j-paths, we chose a value of j = 20.
Our quantitative analysis highlights that the distributions of

values are almost completely overlapping, over different runs on
each dataset among those considered in Table 1.

In Fig. 2 we graphically report the distribution of edge centrality
values for the ‘‘Wiki-Vote’’ dataset. Results are from four different
runs of the algorithm on the same dataset with the same configu-
ration. Data are plotted using a semi-logarithmic scale in order to
highlight the ‘‘high’’ part of the distribution, where edges with high
j-path edge centrality lie.

Similar results are confirmed performing the same test over
each considered dataset but they are not reported due to space
limitations. The robustness property is necessary but not sufficient
to ensure the correctness of our algorithm.

In fact, the quantitative evaluation we performed ensures that
centrality values produced by WERW-Kpath are consistent over
different runs of the algorithm, but does not ensure that, for exam-
ple, a same edge e 2 E after the Run 1 has a centrality value which is
the same (or, at least, very similar) that after Run 2. In other words,
those values of centrality that overlap in different distributions
may be not referred to the same edges.

To the purpose of investigating this aspect we analyze results
from a qualitative perspective, as follows.

4.1.2. Qualitative analysis of results

Our random-walk-based approach ensures minimum fluctua-
tions of centrality values assigned to each edge along different
runs, if the configuration of each run is the same.

To verify this aspect, we calculate the similarity of the distribu-
tions obtained by running WERW-Kpath four times on each data-
set, using the same configuration, comparing results by adopting
different measures. For this experiment, we considered different
settings for the length of the exploited j-paths, i.e., j = 5, 10, 20,
in order to investigate also its impact.

The first measure considered is a variant of the Jaccard coeffi-

cient, classically defined as

JðX;YÞ ¼
jX \ Yj

jX [ Yj
ð12Þ

where X and Y represent, in our case, a pair of compared distribu-
tions of j-path edge centrality values.

In order to define the Jaccard coefficient in our context we need
to take into account the following considerations. Let us consider
two runs of our algorithms, say X and Y and let us first consider
an edge e; let us denote with xX(e) (resp., xY(e)) the centrality in-
dex of e in the run X (resp., Y); intuitively, the performance of our
algorithm is ‘‘good’’ if xX(e) is close to xY(e); however, a direct
comparison of the two values could make no sense because, for in-
stance, the edge e could have the highest weight in both the two
runs but xX(e) may significantly differ from xY(e). Therefore, we

need to consider the normalized values xX ðeÞ

maxe2XxðeÞ
and xY ðeÞ

maxe2YxðeÞ
and

we assume that the algorithm yields good results if these values
are ‘‘close’’. To make this definition more rigorous we can define

KðeÞ ¼ xX ðeÞ

maxe2XxðeÞ
� xY ðeÞ

maxe2YxðeÞ

�

�

�

�

�

� and we say that the algorithm pro-

duces good results if K(e) is smaller than a threshold e.
2 Arxiv (http://arxiv.org/) is an online archive for scientific preprints in the fields of

Mathematics, Physics and Computer Science, amongst others.
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Now, in order to fix the value of e, let us consider the values
achieved by K(e) for each e 2 E. We can provide an upper bound K

on K(e) by considering two extremal cases: (i) xX(e) = maxe2Xx(e)
and xY(e) = mine2Yx(e) or, vice versa, (ii) xX(e) = mine2Xx(e) and
xY(e) = maxe2Yx(e). For the sake of simplicity, assume that case (i)
occurs; of course, the following considerations hold true also in case

(ii). In such a case we obtain K ¼ 1� mine2YxðeÞ
maxe2YxðeÞ

�

�

�

�

�

�. As discussed in the

following (see Figs. 4 and 5), edge centralities are distributed accord-
ing to a power law and, therefore, the value of mine2Yx(e) is some or-
ders of magnitude smaller than maxe2Yx(e). Therefore, the ratio of
mine2Yx(e) to maxe2Yx(e) tends to 0 and K tends 1.

According to these considerations, we computed how many
times the following condition holds true KðeÞ 6 sK, being
0 < s 6 1a tolerance threshold. Since K ’ 1, this amounts to count-
ing how many times K(e) 6 s. Therefore, we can define the modi-

fied Jaccard coefficient as follows

JsðX;YÞ ¼
jfe : j xX ðeÞ

maxe2XxðeÞ
� xY ðeÞ

maxe2YxðeÞ
j 6 sgj

jX [ Y j
ð13Þ

In our tests we considered the following values of tolerance s = 0.01,
0.05, 0.10 to identify 1%, 5% and 10% of maximum accepted varia-
tion of the edge centrality value assigned to a given edge along dif-
ferent runs with same configurations.

A mean degree of similarity avg Js
n
k

� �

2

6

6

4

3

7

7

5

is taken to average the

4
2

� �

¼ 6 possible combinations of pairs of distributions obtained

by analyzing the four runs over the datasets discussed above.

The second measure we consider is the Pearson correlation. It is
adopted to evaluate the correlation of the two obtained distribu-
tions. It is defined as

qX;Y ¼
covðX;YÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðXÞ � varðYÞ
p ð14Þ

whose results are normalized in the interval [�1,+1], with the fol-
lowing interpretations:

� qX,Y > 0: distributions are directly correlated, in particular:
– qX,Y > 0.7: strongly correlated;
– 0.3 < qX,Y < 0.7: moderately correlated;
– 0 < qX,Y < 0.3: weakly correlated;
� qX,Y = 0: not correlated;
� qX,Y < 0: inversely correlated.

Clearly, the higher qX,Y, the better the WERW-KPath algorithm
works. Observe that the qX,Y coefficient tells us whether the two
distributions X and Y are deterministically related or not. There-
fore, it could happen that the WERW-KPath algorithm, in two dif-
ferent runs generates two edge centrality distributions X and Y

such that Y = aX, being a a real coefficient. In such a case, the qX,Y

coefficient would be 1 but we could not conclude that the algo-
rithm works properly. In fact, the coefficient a could be very low
(or in the opposite case very large) and, therefore, the two distribu-
tions would significantly differ even if they would preserve the
same edge rankings.

To this purpose, we consider a third measure in order to
compute the distance between the two distributions X and Y.
To do so, we adopt the Euclidean distance L2(X,Y) defined as

L2ðX;YÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

ðX i � Y iÞ
2

v

u

u

t ð15Þ

As it emerges from the distributions shown in Fig. 2, almost all the
terms in Eq. (15) annul each other, and therefore, the final value of
L2(X,Y) is dominated by the difference of the j-path centrality val-
ues associated with the few top-ranked edges. To obtain the average
distance between two points in distribution X and Y in a given data-
set, we should simply divide L2(X,Y) by the number of edges in that
dataset.

Intrinsic characteristics of analyzed datasets do not influence
the robustness of results. In fact, even if considering datasets rep-
resenting different social networks (e.g., collaboration networks,
citation networks and online communities), WERW-Kpath pro-
duces highly overlapping results over different runs (see Table 2).

Already adopting a low tolerance, such as s = 0.01 or s = 0.05,
values of j-path edge centrality are highly overlapping. Results im-
prove according to the length of the j-path adopted. By increasing
tolerance and/or length of j-paths, the full overlap became obvi-
ous. The same considerations hold true with respect to the Pearson
correlation coefficient which identifies strong correlations among
all the different distributions.

Finally, as for the Euclidean distance, we observe that returned
values are always small and, in every case the distance is no
larger than [10�2,10�3] and the average distance is around
[10�7,10�10].

Table 1

Datasets adopted in our experimentation.

# Network Number of nodes Number of edges Directed Type Reference

1 Wiki-Vote 7,115 103,689 Yes Elections [33]
2 CA-HepPh 12,008 237,010 No Co-authors [33]
3 CA-CondMat 23,133 186,932 No Co-authors [33]
4 Cit-HepTh 27,770 352,807 Yes Citations [33]
5 Facebook 63,731 1,545,684 Yes Online SN [34]
6 Youtube 1,138,499 4,945,382 No Online SN [34]

Fig. 2. Robustness test on ‘‘Wiki-Vote’’.
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4.2. Performance

All the experiments have been carried out by using a standard
Personal Computer equipped with a Intel i5 Processor with 4 GB
of RAM. The implementation of the WERW-Kpath algorithm
adopted in the following experiments, developed by using Java
1.6, has been released3 and its adoption is strongly encouraged.

As shown in Fig. 3, the execution of WERW-Kpath scales very
well (i.e., almost linearly) according with the setup of the length
of the j-paths and with respect to the number of edges in the given
network.

This means that this approach is feasible also for the analysis of
large networks, making it possible to compute an efficient central-
ity measure for edges in all those cases in which it would be very
difficult or even unfeasible, for the computational cost, to calculate
the exact edge-betweenness [5].

The importance of this aspect is evident if we consider that
there exist several Social Network Analysis tools, that implement
different algorithms to compute centrality indices on network
nodes/edges. Our measure could be integrated in such tools (e.g.,
NodeXL,4 Pajek,5 NWB,6 and so on), in order to allow social network
analysts, to manage (possibly, even larger) social networks in order
to study the centrality of edges.

4.3. Analysis of edge centrality distributions

In this section we study the distribution of edge centrality val-
ues computed by theWERW-Kpath algorithm. In detail, we present
the results of two experiments.

In the first experiment we ran our algorithm four times. In addi-
tion, we varied the value of j = 5, 10, 20. We averaged the j-path
centrality values at each iteration and we plotted the edge central-
ity distribution; on the horizontal axis we reported the identifier of
each edge. The results are reported in Fig. 4 by exploiting a loga-
rithmic scale. The figure has the following interpretation: on the

x-axis it represents each edge of the given network, on the y-axis
its corresponding value of j-path edge centrality.

The usage of a logarithmic scale highlights a power law distri-
bution for the centrality values. In fact, when the behavior in a
log-log scale resembles a straight line, the distribution could be
well approximated by using a power law function f(x) / x�a. As a
result, for the all considered datasets, there are few edges with
high centrality values whereas a large fraction of edges presents
low (or very low) centrality values. Such a result can be explained
by recalling that, at the beginning, our algorithm considers all the
edges on an equal foot and provides them with an initial score
which is the same for all the edges. However, during the algorithm
execution, it happens that few edges (which are actually the most

central edges in a social network) are frequently selected and,
therefore, their centrality index is frequently updated. By contrast,
many edges are seldom selected and, therefore, their centrality in-
dex is rarely increased. This process yields a power law distribution
in edge centrality values.

In the second experiment, we studied how the value of j im-
pacted on edge centrality. In detail, we considered the datasets
separately and repeated the experiments described above. Also
for this experiment we considered three different values for j,
namely j = 5, 10, 20. The corresponding results are plotted in
Fig. 5, where the probability P of finding an edge in the network

Fig. 3. Execution time with respect to network size.

Table 2

Analysis by using similarity coefficient Js
n
k

� � , correlation qX,Y and Euclidean distance L2(X,Y).

Dataset j Js
n
k

� � (%) qX,Y L2(X,Y) Avg(L2(X,Y))

s = 0.01 s = 0.05 s = 0.10

Wiki-Vote j = 5 43.52 98.49 99.91 0.67 1.61 � 10�2 1.55 � 10�7

j = 10 61.13 98.86 99.98 0.69 2.37 � 10�2 2.28 � 10�7

j = 20 70.68 99.96 99.98 0.70 3.48 � 10�2 3.35 � 10�7

CA-HepPh j = 5 52.63 96.11 99.53 0.92 1.18 � 10�2 4.97 � 10�8

j = 10 70.45 99.02 99.88 0.95 1.23 � 10�2 5.18 � 10�8

j = 20 75.65 99.51 99.87 0.96 2.90 � 10�2 1.22 � 10�7

CA-CondMat j = 5 22.23 80.51 96.98 0.73 1.39 � 10�2 7.43 � 10�8

j = 10 35.16 93.72 99.40 0.79 2.18 � 10�2 1.16 � 10�7

j = 20 35.63 95.80 99.44 0.83 3.40 � 10�2 1.81 � 10�7

Cit-HepTh j = 5 47.62 97.76 99.78 0.78 0.92 � 10�2 2.60 � 10�8

j = 10 60.61 99.45 99.93 0.83 1.36 � 10 �2 3.85 � 10�8

j = 20 63.68 99.62 99.93 0.85 2.04 � 10�2 5.78 � 10�8

Facebook j = 5 56.98 97.34 99.36 0.79 1.01 � 10�2 5.11 � 10�9

j = 10 56.85 98.49 99.76 0.84 1.87 � 10�2 1.20 � 10�8

j = 20 68.58 99.39 99.90 0.84 2.67 � 10�2 1.72 � 10�8

Youtube j = 5 11.74 44.28 72.41 0.49 1.31 � 10�3 2.64 � 10�10

j = 10 13.18 59.40 84.91 0.75 1.87 � 10�3 3.78 � 10�10

j = 20 27.92 82.29 96.17 0.89 2.83 � 10�3 5.72 � 10�10

3 http://www.emilio.ferrara.name/werw-kpath/.
4 http://nodexl.codeplex.com/.
5 http://pajek.imfm.si/doku.php?id=pajek.
6 http://nwb.cns.iu.edu/.
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which has the given value of centrality is plotted as a function of
the j-path centrality. Each plot adopts a log–log scale.

The analysis of this figure highlights three relevant facts:

� The probability of finding edges in the network with the lowest
j-path edge centrality values is smaller than finding edges with
relatively higher centrality values. This means that the most of
the edges are exploited for the message propagation by the ran-
dom walks a number of times greater than zero.
� The power law distribution in edge centrality emerges even
more for different values of j and in presence of different data-
sets. In other words, if we use different values of j the centrality
indexes may change (see below); however, as emerges from
Fig. 4, for each considered dataset, the curves representing j
path centrality values are straight and parallel lines with the
exception of the latest part. This implies that, for a fixed value
of j, say j = 5, an edge �e will have a particular centrality score.
If j passes from 5 to 10 and, then, from 10 to 20, the centrality
of �e will be increased by a constant factor. This implies that the
ordering of the edges remains unchanged and, therefore, the
edge having the highest centrality at j = 5 will continue to be
the most central edges also when j = 10 and j = 20. This high-
lights a nice feature of WERW-Kpath: potential uncertainties on
the tuning of the parameter j do not have a devastating impact
on the process of identifying the highest ranked edges.
� The higher j, the higher the value of centrality indexes. This has
an intuitive explanation. If j increases, our algorithm manages
longer paths to compute centrality values. Therefore, the chance
that an edge is selected multiple times increases too. Each time

an edge is selected, our algorithm awards it by a bonus score
(equal to b). As a consequence, the larger j, the higher the
number of times an edge with high centrality will be selected,
and ultimately, the higher its final centrality index.
Such a consideration provides a practical criterion for tuning j.
In fact, if we select high values of j, we are able to better dis-
criminate edges with high centrality from edges with low cen-
trality. By contrast, in presence of low values of j, edge
centrality indexes tend to edge flatten in a small interval and
it is harder to distinguish high centrality edges from low cen-
trality ones.
On the one hand, therefore, it would be fine to fix j as high as
possible. On the other, since the complexity of our algorithm
is O(jm), large values of j negatively impact on the perfor-
mance of our algorithm. A good trade-off (explained by the
experiments showed in this section) is to fix j = 20.

5. Applications of our approach in knowledge-based systems

In this section we detail some possible applications of our ap-
proach to rank edges in social networks in the area of knowl-
edge-based systems (hereafter, KBS).

In detail, we shall focus on three possible applications. The first
is data clustering and we will show how our approach can be
employed in conjunction with a clustering algorithm with the
aim of better organizing data available in a KBS. The second is re-
lated to the Semantic Web and we will show how our approach can
be used to assess the strength of the semantic association between
two objects and how this feature is useful to improve the task of

Fig. 4. j-Paths centrality values distribution on different networks.
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discovering new knowledge in a KBS. The third, finally, is related to
better understand the relationship and the roles of user in virtual
communities; in this case we show that our approach is useful to
elucidate relationships like trust ones.

5.1. Data clustering

A central theme in KBS-related research is the design and
implementation of effective data clustering algorithms [12]. In fact,
if a KBS has to manage massive datasets (potentially split across
multiple data sources), clustering algorithms can be used to orga-
nize available data at different levels of abstraction. The end user
(both a human user or a software program) can focus only on the
portion of data which are the most relevant to her/him rather than
exploring the whole data space managed by a KBS [12,35,36]. If we
ideally assume that any data managed by a KBS is mapped onto a
point of a multidimensional space, the task of clustering available
data requires to compute the mutual distance existing between
any pair of data points.

Such a task, however, is in many cases unfeasible. In fact, the
computation of the distance can be prohibitively time-consuming
if the number of data points is very large. In addition, KBS often
manage data which are related each other but, for these kind of
data, the computation of a distance could make no-sense: think,
for instance, of data on health status of a person and her/his demo-
graphic data like age or gender.

Therefore, many authors suggest to represent data as graphs

such that each node represents a data point and each edge specifies
the type of relationships binding two nodes. The problem of
clustering graphs has been extensively studied in the past and sev-
eral algorithms have been proposed. In particular, the graph clus-
tering problem in the social network literature is also known as
community detection problem [37].

One of the early algorithms to find communities in graphs/
networks was proposed by Girvan and Newman in 2002 [5].
Unfortunately, due to its high computational complexity, the
Girvan–Newmanalgorithmcannotbeappliedonvery large andcom-
plex data repositories consisting of million of information objects.

Our algorithm, instead, can be employed to rank edges in net-
works and to find communities. This is an ongoing research effort
and the first results are quite encouraging [38].

Once a community finding algorithm is available we can design
complex applications to effectively manage data in a KBS. For in-
stance, in [13] the authors focused on online social networks like
Internet newsgroups and chat rooms. They analyzed through
semantic tools the text comments posted by users and this allowed
large online social networks to be mapped onto weighted graphs.
The authors showed that the discovery of the latent communities
is a useful way to better understand patterns of interactions among
users and how opinions spread in the network.

We then describe two use cases possibly benefiting from com-
munity detection algorithms. In the first case, consider a social net-
work in which users fill a profile specifying their interests. A graph

Fig. 5. Effect of different j = 5, 10, 20 on networks described in Table 1.
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can be constructed which records users (mapped onto nodes) and
relationship among them (e.g., an edge between two nodes may
indicate that two users share at least one interest). Our algorithm,
therefore, could identify group of users showing the same
interests.

Therefore, given an arbitrary message (for instance a commer-
cial advertisement) we could identify groups of users interested
to it and we could selectively send the message only to interested
groups.

As an opposite application, we can consider the objects gener-
ated within a social media platform. These objects could be for in-
stance photos in a platform like Flickr or musical tracks in a
platform like Last.fm. We can map the space of user generated con-
tents onto a graph and apply on it our community detection algo-
rithm. In this way we could design advanced query tools: in fact,
once a user issues a query, a KBS may retrieve not only the objects
exactly labeled by the keywords composing user queries but also
objects falling in the same community of the retrieved objects. In
this way, users could retrieve objects of their interest even if they
are not aware about their existence.

5.2. Semantic web

A further research scenario that can take advantage from our re-
search work is represented by the Semantic Web. In detail, Seman-
tic Web tools like RDF allow complex and real-life scenarios to be
modeled by means of networks. In many cases these networks are
called multi-relational networks (or semantic networks) because
they consist of heterogeneous objects and many type of relation-
ships can exist among them [39].

For instance, an RDF knowledge base in the e-learning domain
[40] could consist of students, instructors and learning materials
in a University. In this case, the RDF knowledge base could be con-
verted to a semantic network in which nodes are the players de-
scribed above. Of course, an edge may link two students (for
instance, if they are friends or if they are enrolled in the same
BsC programme), a student and a learning object (if a student is
interested in that learning object), an instructor and a learning
material (if the instructor authored that learning material) and so
on [41].

A relevant theme in Semantic Web is to assess the weight of the
relationships binding two objects because this is beneficial to dis-
cover new knowledge. For instance, in the case of the e-learning
example described above, if a student has downloaded multiple
learning objects on the same topic, the weight of an edge linking
the student and a learning material would reflect the relevance
of that learning material to the student. Therefore, learning mate-
rials can be ranked on the basis of their relevance to the user and
only the most relevant learning materials can be suggested to
the user.

An approach like ours, therefore, could have a relevant im-
pact in this application scenario because we could find interest-
ing associations among items by automatically computing the
weight of the ties connecting them. To the best of our knowl-
edge there are few works on the computation of node centrality
in semantic networks [39] but, recently some authors suggest
to extend parameters introduced in Social Network Analysis
like the concept of shortest path to multi-relational networks
[14].

Therefore, we plan to extend our approach to the context of
semantic networks. Our aim is to use simple randomwalks in place
of shortest paths to efficiently discover relevant associations be-
tween nodes in a semantic network and to experimentally
compare the quality of the results produced by our approach
against that achieved by approaches relying on shortest paths.

5.3. Understanding user relationships in virtual communities

A central theme in KBS research is represented by the extraction
of patterns of interactions among humans in a virtual community
and their analysis with the goal of understanding how humans
influence each other.

A relevant problem is represented by the classification of the
relationship of humans on the basis of their intensity. For instance,
in [15] the authors focus on the criminal justice domain and, in
particular, on the identification of social ties playing a crucial role
in the transmission of sensitive information. In [42], the author
provides a belief propagation algorithm which exploits social ties
among members of a criminal social network to identify criminals.
Our approach resembles that of [15] because both of them are able
too associate each edge in a network with a score indicating the
strength of the association between the nodes linked by that edge.

A special case occurs when we assume that the edge connecting
two nodes specifies a trust relationship [43,44]. In [43], the authors
suggest to propagate trust values along paths in the social network
graph. In an analogous fashion, the approach of [44] uses path in
the social network graph to propagate trust values and infer trust
relationships between pairs of unknown users. Finally, Reinforce-
ment Learning techniques are applied to estimate to what extent
an inferred trust relationship has to be considered as credible.
Our approach is similar to those presented above because both of
them rely on a diffusion model. In [43,44], the main assumption is
that trust reflects the transitive property, i.e., if a user x trusts a user
y who, in her/his turn, trusts a user z, then we can assume that x
trusts z too. In our approach, we exploit connections among nodes
to propagate messages by using simple random walks of bounded
length. There are, however, some relevant differences: in the ap-
proaches devoted to compute trust all the paths of any arbitrary
length are, in principle, useful to compute trust values even if the
contribution brought in by long paths is considered less relevant
than that of short paths. Vice versa, in our approach, the length
of a path is bounded by a fixed constant j.

6. Conclusions

In this paper we introduced an edge centrality measure in social
networks called j-path edge centrality index. Its computation is
computationally feasible even on large scale networks by using
the algorithm we provided. It performs multiple random walks
on the social network graph, which are simple and their length is
bounded by a factor j. We showed that the worst-case time com-
plexity of our algorithm is O(jm), being m the number of edges in
the social network graph. Finally, we discussed experimental re-
sults obtained by applying our method to different online social
network datasets.

We plan to extend our work in several directions. First of all, our
centrality measure can be used to detect communities in large so-
cial networks. Such a task is currently unfeasible if we use classic
measures like edge betweenness centrality. In fact, to the best of
our knowledge, efficient algorithms do not currently exist that esti-
mate the community structure of a large network based on global
topological information and our strategy could fit well to this pur-
pose. We believe that our approach could be beneficial in the field
of visualization of large social networks as well. In fact, recently it
has been advanced the possibility of exploiting efficient network
clustering techniques based on edge bundling to improve the
graphical representation of the hierarchical structure of social net-
works [45].

In addition, we plan to design an algorithm to estimate the
strength of ties between two social network actors: for instance,
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in social networks like Facebook this is equivalent to estimate the
friendship degree between a pair of users.

Finally, we point out that some researchers studied how to de-
sign parallel algorithms to compute centrality measures; for in-
stance, Madduri et al. [46] proposed a fast and parallel algorithm
to compute betweenness centrality. We guess that a new, interest-
ing, research opportunity is to design parallel algorithms to com-
pute the j-path edge centrality.
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Appendix A

In this section we shall analyze the correctness of our ERW-
KPath and WERW-KPath algorithms. In details, we will study
how the centrality indexes returned by these algorithms are re-
lated to the actual centrality values provided in Definition 3.

To explain our results it is convenient to re-write Eq. (4) in a
more manageable fashion. First of all let us consider an undirected
graph G = hV,Ei and denote as /sl an arbitrary simple path in G

starting from a fixed source node s and of length l (i.e., the consid-
ered path contains l edges). The graph G can be unweighted as well
as weighted.

In the following, when it does not generate confusion, we will
avoid subscripts to denote both nodes and edges and, therefore,
we will denote a node as v (rather than vn) and an edge as e (rather
than em).

Let us assume that the sequence of nodes forming /sl is
/sl = {s,u1, . . . ,ul�1} (note that s = u0); in addition, let us denote as
P(/sl) the probability of generating the path /sl by simulating a
simple path of length l. In [47] the authors show that, in case G

is unweighted, the value of P(/sl) is as follows

Pð/slÞ ¼
Y

l

j¼1

1
jOðuj�1Þ � s;u1; . . . ;uj�2

	 


j
ð16Þ

Here O(uj) is the set of nodes adjacent to uj (i.e., a node v belongs to
O(uj) if there is an edge joining uj to v).

In an analogous fashion, it is possible to consider the case of
weighted graphs. In detail, let W(u,v) be the weight of the edge
going from the node u to the node v; in such a case, on the wake
of the considerations presented in [47], we can derive the follow-
ing expression for P(/sl)

Pð/slÞ ¼
Y

l

j¼1

Wðuj�1;ujÞ
P

v2Oðuj�1Þ�fs;...;uj�2g
Wðuj�1; vÞ

ð17Þ

We are now able to re-write the expression of edge centrality index
Lj(e) in terms of P(/sl). In detail, given an edge e 2 E and a path /sl,
we will use the notation e 2 /sl if the edge e belongs to the path /sl;
we can therefore define a variable v(e 2 /sl) as follows

vðe 2 /slÞ ¼
1 if e 2 /sl

0 otherwise

�

Due to these definitions, it is possible to show that the edge central-
ity of an edge e can be rewritten as follows

LjðeÞ ¼
X

s2V

X

16l6j

X

/sl

Pð/slÞ � vðe 2 /slÞ ð18Þ

The interpretation of Eq. (18) is as follows. To compute the edge
centrality of an edge e we start by fixing an arbitrary source node
s. We consider a simple path /sl starting from s of length l. The path
/sl contributes to the centrality of e only if it contains e itself. This is

captured by the product /sl � v(e 2 /sl) in Eq. (18): in fact, if e 2 /sl,
then v(e 2 /sl) = 1 by definition and, therefore, the contribution of
/sl to Lk(e) is equal to P(/sl).

By contrast, if e R /sl, then v(e 2 /sl) = 0 and, therefore, the path
/sl does not provide any contribution to the computation of Lk(e).

Due to Definition 3, in the computation of Lk(e) we are inter-
ested in all the simple paths up to length j; this explains why, in
Eq. (18), we need a double sum over all the simple paths of length
l being 1 6 l 6 j. Moreover, Definition 3 requires to consider all the
nodes s 2 V as potential source nodes and this explains the third
sum appearing in Eq. (18).

It is also interesting to observe that the term
P

16l6j

P

/sl
Pð/slÞ

�vðe 2 /slÞ can be linked to the probability of selecting an edge
e 2 E under the assumption that a simple random path starts from
a fixed vertex v 2 V. This is expressed by the following theorem:

Theorem 6.1. Let G = hV,Ei be a graph, s 2 V be a node in G and e 2 E

be an edge in G. The probability Pe,s of selecting the edge e by means of

a simple random path starting from s is Pe;s ¼
P

16l6j
P

/sl
Pð/slÞ�

vðe 2 /slÞ.

To prove this result, let us focus on a vertex s 2 V and on an edge
e 2 E. We can consider three cases:

Case 1. There is no simple path of length l 6 j starting from s

and containing e. In such a case, the term v(e 2 /sl) will
be always 0 and, therefore, the value of Pe,s will be 0.
Such a result is correct because, in this case, the proba-
bility of selecting e is clearly 0.

Case 2. There exists exactly one path /�sl containing the edge e; if
this path is selected, then, the edge ewill be selected too
and then the term v(e 2 /sl) will be equal to 1. The prob-
ability of selecting the edge e will be, therefore, equal to
the probability of selecting the path /�sl passing through
e. In such a case the term Pe,s would simply be equal to
Pe;s ¼ P /�sl

� �

which coincides with the probability of
selecting e.

Case 3. There are multiple paths starting from s and going
through e. In such a case, the probability of selecting e is
equal to the probability of selecting at least one of these
paths. Since the paths are generated one by one, the prob-
ability Pe,s of selecting e is equal to

P

16l6j

P

/sl
Pð/slÞ.

Once we provided a formal definition of edge centrality we
are interested in analyzing the centrality value generated by
our algorithm. Let us focus on an edge e and observe that our
algorithm performs q trials and, in each trial, it generates a sim-
ple random path of at most j edges. Let us consider the ith trial
and observe that the edge e can be selected in the ith trial or not;
of course, since the path must be simple, the edge e can be se-
lected no more than once in a trial. To model the selection of
an edge e in the generic, ith trial, we define the random variable
Xi(e) as follows

X iðeÞ ¼
1 if e has been selected in the i-th trial

0 otherwise

�

Recall that our ERW-KPath algorithm (along with its weighted ver-
sion WERW-KPath) initially awards any edge by assigning it a cen-
trality index equal to 1

jEj
. Any time an edge e is selected, it gets an

additional award equal to b ¼ 1
E
; as a consequence, since the number

of times the edge e is selected is equal to
Pq

i¼1XiðeÞ, the value x(e)
returned by the algorithm is equal to

xðeÞ ¼
X

q

i¼1

X iðeÞ þ 1
jEj

ð19Þ
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Our goal is to show that the ERW-KPath and WERW-KPath algo-
rithms provide a ‘‘good’’ approximation of Lj(e). This is formalized
by Theorem 6.2

Theorem 6.2. Let G = hV,Ei be a graph and, for each edge e 2 E, let

Lj(e) be the j-path edge centrality index of e computed according to

Definition 3. Finally, let q be an integer. The following results hold

true:

1. The edge centrality value x(e) computed by the ERW-Kpath algo-

rithm on G is related to the actual centrality value Lj(e) by the fol-

lowing relation: xðeÞ ¼ 1
jEj
þ q
jEjjV j

LjðeÞ.

2. The edge centrality value x(e) computed by the WERW-Kpath

algorithm on G is related to the actual centrality value Lj(e) by

the following relation: n0LjðeÞ þ 1
jEj
6 xðeÞ 6 n00LjðeÞ þ 1

jEj
, being n0

and n00 two suitable constants whose value is proportional to the

ratio q
jEj
.

Proof. We shall consider two cases, depending on the fact that we
decide to apply the ERW-Kpath or WERW-Kpath algorithm.

Case 1: ERW-Kpath. Let us compute the expectation of both the
members of Eq. (19). Due to the linearity of the expectation
operator we get

E½xðeÞ� ¼
X

q

i¼1

E½X iðeÞ�

jEj
þ

1
jEj

Observe now that, sincex(e) is a fixed value computed by our algo-
rithm, then E[x(e)] =x(e). As for E[Xi(e)] it is simply equal to
P(Xi(e) = 1) due to the definition of expectation

E X iðeÞ½ � ¼ 0 � PðXiðeÞ ¼ 0Þ þ 1 � PðXiðeÞ ¼ 1Þ ¼ PðXiðeÞ ¼ 1Þ

Observe that P(Xi(e) = 1) is the probability of selecting the edge e.
Observe that the ERW-Kpath algorithm manages an overall number
of source nodes s equal to jVj and that each node is selected uni-
formly at random. In addition, due to Theorem 6.1, once s has been
fixed the probability of selecting e starting from s is equal to
P

16l6j

P

/sl
Pð/slÞ � vðe 2 /slÞ; the probability P(/sl), in the case of

the ERW-Kpath algorithm, has to be intended as in Eq. (16).
Due to these reasons, we get that

PðXiðeÞ ¼ 1Þ ¼
1
jV j

X

s2V

X

16l6j

X

/sl

Pð/slÞ � vðe 2 /slÞ

which can be rewritten as

PðXiðeÞ ¼ 1Þ ¼
1
jV j

LjðeÞ

Due to this result we can write

xðeÞ ¼
1
jEj
þ

1
jEj

X

q

i¼1

1
jV j

LjðeÞ

After some simplifications we get

xðeÞ ¼
1
jEj
þ

q
jEjjV j

LjðeÞ

which states that the actual value of Lj(e) differs from that com-
puted by our algorithm by a constant factor.

Case 2: WERW-Kpath. The proof in this case is analogous to Case
1. In detail, by repeating the considerations provided in Case 1,
we can show that

xðeÞ ¼
X

q

i¼1

PðX iðeÞ ¼ 1Þ
jEj

þ
1
jEj

In such a case, however, the expression for P(Xi(e) = 1) is slightly
more complex than in Case 1. In detail, in the WERW-Kpath
algorithm the source node s is selected with probability P(s)
provided in Eq. (11). Therefore, we get

PðXiðeÞ ¼ 1Þ ¼
X

s2V

PðsÞ
X

16l6j

X

/sl

Pð/slÞ � vðe 2 /slÞ

and the term P(/sl) is now computed according to Eq. (17) because the
graph G is now weighted.7 Set P ¼maxs2VPðsÞ and �p ¼mins2VPðsÞ; we
get the following bounds

�p
X

s2V

X

16l6j

X

/sl

Pð/slÞ � vðe 2 /slÞ

6 PðX iðeÞ ¼ 1Þ 6 P
X

s2V

X

16l6j

X

/sl

Pð/slÞ � vðe 2 /slÞ

The last equation can be rewritten as

�pLjðeÞ 6 PðXiðeÞ ¼ 1Þ 6 PLjðeÞ

and, by summing over all the indexes i = 1, . . . ,q

q�pLjðeÞ 6
X

q

i¼1

PðXiðeÞ ¼ 1Þ 6 qPLjðeÞ

and

qpLjðeÞ
jEj

þ
1
jEj
6

1
jEj

X

q

i¼1

PðXiðeÞ ¼ 1Þ þ
1
jEj
6
qPLjðeÞ
jEj

þ
1
jEj

By setting n0 ¼ q�p
jEj

and n00 ¼ qP
jEj

and by Eq. (19), we obtain

n0LjðeÞ þ
1
jEj
6 xðeÞ 6 n00LjðeÞ þ

1
jEj

which ends the proof. h
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