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Abstract 

α-Conotoxins that are thought to act as antagonists of nicotinic acetylcholine receptors (nAChRs) 

containing α3-subunits are efficacious in several preclinical models of chronic pain. Potent 

interactions of Vc1.1 with other targets have suggested that the pain relieving actions of α-

conotoxins might be mediated by either α9α10 nAChRs or a novel GABAB receptor-mediated 

inhibition of N-type calcium channels. Here we establish that three α-conotoxins, Vc1.1, AuIB and 

MII, have distinct selectivity profiles for these three potential targets. Their potencies after 

intramuscular administration were then determined for reversal of allodynia produced by partial 

nerve ligation in rats. Vc1.1, which potently inhibits α9α10 nAChRs and GABAB/Ca
2+

 channels but 

weakly blocks α3β2 and α3β4 nAChRs, produced potent, long-lasting reversal of allodynia that were 

prevented by pretreatment with the GABAB receptor antagonist, SCH50911. α-Conotoxin AuIB, a 

weak α3β4 nAChR antagonist, inhibited GABAB/Ca
2+ 

channels but did not act on α9α10 nAChRs. 

AuIB also produced reversal of allodynia.  These findings suggest that GABAB receptor-dependent 

inhibition of N-type Ca
2+ 

channels can mediate the sustained anti-allodynic actions of some α-

conotoxins. However, MII, a potent α3β2 nAChR antagonist but inactive on α9α10 and α3β4 

nAChRs and GABAB/Ca
2+

 channels, was demonstrated to have short-acting anti-allodynic action. 

This suggests that α3β2 nAChRs may also contribute to reversal of allodynia. Together, these 

findings suggest that inhibition of α9α10 nAChR is neither necessary nor sufficient for relief of 

allodynia and establish that α-conotoxins selective for GABAB receptor dependent inhibition of N-

type Ca
2+ 

channels relieve allodynia, and could therefore be developed to manage chronic pain. 
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1. Introduction 

 

Chronic pain is a significant worldwide health problem and there is a need for new drug classes 

for treatment  [5, 13, 16].  Conotoxins are  peptides from the venom of the Conus genus of predatory 

marine snails [441]. Many conotoxins are selective antagonists of a range of ion channels, 

transporters and membrane receptors associated with pain. Previous studies have demonstrated the 

analgesic potential of several different α-conotoxins that competitively inhibit neuronal nicotinic 

acetylcholine receptors (nAChRs) with varying degrees of subtype selectivity [2,15,24,29,36,37]. 

One α-conotoxin, Vc1.1 from Conus victoriae, potently suppresses signs of neuropathic pain 

following intramuscular (i.m.) administration in rats [37] and recently progressed to Phase II clinical 

trials [2,18,26].  

 

How Vc1.1 and related α-conotoxins relieve neuropathic pain remains controversial. Vc1.1 more 

selectively, but weakly, antagonises peripherally expressed nAChR subtypes (α3β2, α3β4 and 

α3α5β2) than those more abundantly expressed in the CNS (α4β2, α4β4, and α7) or skeletal muscle 

(α1β1γδ) [12]. More recently, Vc1.1 was shown to have high potency as an antagonist at α9α10 

nAChRs and it was proposed that this nAChR is the analgesic target of Vc1.1 [43]. However, the 

loss of anti-allodynic activity of several analogs of Vc1.1 that retain activity at α9α10 but not other 

nAChR subtypes [31] suggests that targets other than α9α10 contribute to the pain-relieving activity 

of α-conotoxins.  

 

We have recently reported that Vc1.1 inhibits N-type calcium channels in rat sensory neurons via 

a novel GABAB receptor-dependent signalling mechanism [8], which may also contribute to its pain-

relieving actions [4,39].  The mechanism of inhibition of N-type calcium channel currents by Vc1.1 

remains to be elucidated but does not involve a conventional GPCR-like modulatory mechanism 
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because it is voltage-independent [8], requires src-kinase activity [8], does not modulate GABAB 

receptor-activated GIRK channels expressed in Xenopus oocytes [29] and does not directly displace 

binding of GABAB receptor ligands [29]. N-type calcium channel inhibition also persists in sensory 

neurons from α9 nicotinic receptor knockout mice [7].  To better understand the potential analgesic 

mechanisms of α-conotoxins, the present study employed α-conotoxins with vastly differing 

selectivities for α3-containing nAChR, α9α10 nAChRs and GABAB/Ca
2+

 channels to determine 

whether one or several of these targets contributes to relief of neuropathic pain. Intramuscular Vc1.1, 

which interacts potently with both α9α10 nAChRs [31,42,43] and GABAB/Ca
2+

 channels [8] but 

quite weakly with α3β2 and α3β4 nAChRs [11], produced potent, long-lasting relief from allodynia 

after partial nerve ligation. Another α-conotoxin, AuIB also produced potent, long-lasting relief from 

allodynia. AuIB, which is a relatively weak but selective α3β4 nAChR antagonist [14,27], potently 

inhibited N-type Ca
2+

 channels but did not interact with α9α10 nAChRs. We found that a third α-

conotoxin, MII, produced weak, short-lived reversal of allodynia. MII did not interact with α9α10 

nAChRs or GABAB/Ca
2+

 channels but is a potent inhibitor of α3β2 nAChRs [7]. Significantly, these 

results suggest that GABAB receptor-dependent inhibition of N-type Ca
2+

 channels may be the major 

mechanism of sustained anti-allodynic actions of α-conotoxins. As reported previously, we confirm 

inhibition of α9α10 nAChR is not required for the anti-allodynic actions of α-conotoxins [31].  

  

2. Materials and Methods  

 

2.1. Electrophysiological recordings in oocytes  

 

All experiments adhere to the guidelines of the Committee for Research and Ethical Issues of 

IASP published in Pain, 1983;16:109–110.  Procedures for harvesting Xenopus laevis oocytes were 

approved by the University of Queensland Animal Ethics Committee, which complies with National 
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Health & Medical Research Council of Australia (NHMRC) guidelines. RNA preparation, oocyte 

preparation and expression of nAChR subunits in Xenopus oocytes were performed as described 

previously [31]. Briefly, plasmids with cDNA encoding the rat 9 and 10 nAChR subunits were 

provided by Dr. A.B. Elgoyhen (Universidad de Buenos Aires, Buenos Aires, Argentina). 5 ng of 

cRNA was injected into each oocyte which was then kept at 18°C in ND96 buffer (96 mM NaCl, 2 

mM KCl, 1.8 mM CaCl2, 1 mM MgCl2 and 5 mM HEPES at pH 7.4) supplemented with 50 mg/L 

gentamycin and 5 mM pyruvic acid for 2-5 days before recording. 

 

Membrane currents were recorded from the Xenopus oocytes using an OpusXpress™ 6000A 

workstation (Molecular Devices, Sunnyvale, CA). Electrodes had resistances of 0.3-1.5 M when 

filled with 3 M KCl. All recordings were conducted at room temperature (20-23°C) using a bath 

solution of ND96 as described above. During recordings, the oocytes were perfused continuously at 

a rate of 1.5 ml/min, with 5 min incubation times for the conotoxins. Acetylcholine (ACh; 30 M) 

was applied for 2 s at 5 ml/min, with 10 min washout periods between applications. Conotoxins were 

bath applied and co-applied with the agonist. Oocytes were voltage clamped at a holding potential of 

–80 mV. Data were sampled at 500 Hz and filtered at 200 Hz. Peak current amplitude was measured 

before and following incubation of the peptide. 

 

2.2. Electrophysiological recordings from DRG neurons 

 

Dorsal root ganglion (DRG) neurons were enzymatically dissociated from ganglia of 7-14 day old 

Wistar rats. All procedures were approved by the University of Queensland Animal Ethics 

Committee, which complies with NHMRC guidelines. Briefly, rats were killed by cervical 

dislocation, the spinal column was hemi-segmented and the spinal cord removed. Ganglia were 
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removed and rinsed in cold Hanks’ balanced salt solution (HBSS; MultiCel), minced and incubated 

in 1 mg/ml collagenase (Type 2; 405U/mg, Worthington Biochemical Corp., Lakewood NJ) in 

HBSS at 37°C for ~30 min. Following incubation, ganglia were rinsed three times with warm (37°C) 

Dulbecco’s modified Eagle’s medium (DMEM; GIBCO) supplemented with 10% fetal calf serum 

and 1% penicillin/streptomycin and gently triturated with a fire-polished Pasteur pipette. Cells were 

plated on glass cover slips, incubated at 37°C in 95% O2:5% CO2 and used within 4-24 hrs. 

 

The external recording solution for rat DRG neurons contained (in mM): 150 TEACl, 2 BaCl2, 10 

D-glucose, 10 HEPES, pH 7.4. Recording electrodes were filled with an internal solution containing 

(in mM): 140 CsCl, 1 MgCl2, 5 MgATP, 0.1 NaGTP, 5 BAPTA-Cs4, 10 HEPES, pH 7.3 with CsOH 

and had resistances of 1.0-2.5 M. Membrane currents were recorded using the whole-cell 

configuration of the patch clamp technique with an Axopatch 200B amplifier (Molecular Devices, 

Sunnyvale, CA). A voltage protocol using step depolarizations from 80 mV to 0 mV was used 

when examining high voltage-activated (HVA) Ca
2+

 channel currents. Test potentials 150 ms in 

duration were applied every 20 s. Leak and capacitative currents were subtracted using a P/4 pulse 

protocol. Currents were generated by a computer using pClamp 9.2 software (Molecular Devices), 

filtered at 2 kHz and sampled at 8 kHz by the Digidata 1322A (Molecular Devices). Sampled data 

were stored digitally on a computer for further analysis. 

 

2.3. Surgery: partial nerve ligation model 

 

Male Sprague-Dawley rats weighing 200-250g were housed in groups of 3 in a constant 

temperature room (22 ± 1˚C), under a 12/12 h light/dark cycle (lights were on between 05:30-17:30 

h) with access to food and water ad libitum. Animals were anaesthetised for all surgical procedures 
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using isoflurane and were killed by anaesthetic overdose at the end of the experiment. All 

experiments were approved by the Royal North Shore Hospital and University of Technology 

Animal Ethics Committee, which complies with NHMRC guidelines. 

 

Signs of neuropathic pain were produced using partial ligation of the left sciatic nerve (PNL) 

under isoflurane anaesthesia [40]. Briefly, the left sciatic nerve in the mid-thigh region of the rat was 

exposed by blunt dissection through the biceps femoris at a site near the trochanter just distal to the 

posterior biceps semitendinosus nerve branches off the common sciatic nerve. A 4-0 silk suture was 

inserted into the left sciatic neve trunk approximately 3mm proximal to the trifurcation of the nerve 

at the popliteal fossa and was tightly ligated so that the dorsal 30-50% of the nerve thickness was 

trapped in the ligature.  

 

2.4. Mechanical alldoynia testing 

 

Mechanical paw withdrawal threshold (PWT) was measured using a series of von Frey hairs with 

bending pressures ranging from 0.41-15.1 g. Rats were placed in elevated plastic cages with wire 

mesh bases suspended above a table. All rats were given 30 min to acclimatise to the testing 

environment. Beginning with the 2g filament, von Frey hairs were pressed perpendicularly against 

the plantar surface of the left hind paw and held for 2 s. Each von Frey filament was applied 7 times 

at random locations. A positive response was regarded as the sharp withdrawal of the paw, paw 

licking, or flinching upon removal of the von Frey filament. The mechanical PWT was calculated 

using the up-down paradigm [10]. If an animal did not respond to any hairs then the mechanical 

PWT was assigned as 15 g. Mechanical PWT to non-noxious mechanical stimuli were tested prior to 

surgery on day 0 (pre-PNL) and 1, 4-5, 7-8, 9-11 and 12-14 days following injury. 
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2.5. Motor performance 

 

As nAChRs are expressed on skeletal muscle, an accelerating rotarod device (Ugo Basile, Italy), 

with a maximum cut-off time of 300 s, was used to examine motor side effects. Animals were placed 

on the rotating drum and were required to walk against the accelerating motion. Each latency 

recording consisted of the average of three measurements on the day of testing.  

 

2.6. Drugs and drug treatment 

 

Vc1.1 (1,810 Da), MII (1,711 Da) and AuIB (1,572 Da) were synthesised as previously described 

[9,12,27,38]. Briefly, all α-conotoxins were manually synthesized by Boc solid phase chemistry, 

deprotected and cleaved from the resin as described previously [38]. The HPLC-purified reduced 

peptides (100 M) were oxidised in 100 mM ammonium bicarbonate at pH 7.5–8.2 with stirring for 

48 h at room temperature. The oxidised peptides were purified by preparative reverse phase-HPLC. 

Each was quantified in triplicate by RP-HPLC using an external reference standard for each peptide. 

The effects of the α-conotoxins on withdrawal thresholds and motor function were assessed between 

12 and 14 days post-PNL in all animals. On the day of drug testing, animals were tested twice pre-

injection (30 min prior to and just before injection) in order to stabilise pre-injection responses. 

Behavioural testing occurred at 1, 2, 4 and 6 hours post-injection to assess the acute effects of each 

drug. In addition, every animal was tested 24 hours post-injection in order to assess any potential 

long-term effects of each peptide. Each dose or vehicle was assigned randomly according to a Latin-

square based design to reduce the influence of treatment order and the experimenter was blinded to 

treatments. CGP 55845 and SCH 50911 were purchased from Tocris Bioscience (UK). 

 

2.7. Data analysis 
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All data were analysed using Prism software (GraphPad version 4 for Windows, San Diego, CA, 

USA). Plots of mechanical PWT and bar charts of rotarod latencies were presented as mean ± 

S.E.M. over time. All other plots of rotarod latencies were presented as mean change ± S.E.M. over 

time. For treatment groups, a two-way (group x time) repeated measures analysis of variance 

(ANOVA) was performed. All behavioural data were analysed using a one–way repeated measures 

ANOVA with time as a within-subjects factor where appropriate to compare the thresholds before 

and after the induction of pain and administration of drugs. Where one-way ANOVAs were 

significant, post-hoc comparisons were made against the time 0 hour point at 12-14 days post-PNL 

(time effects) or against the vehicle-injected group using Dunnett’s adjustment for multiple 

comparisons. To analyse dose-response relationships the mean changes in mechanical PWT 

produced by i.m. injection of the α-conotoxins were calculated as the integrated area under the curve 

(AUC) post-injection relative to pre-injection levels. All AUC data were calculated from 0-6 h after 

peptide injection using baseline subtraction. Dose-response curves were constructed by fitting a 

logistic curve to the increase in mechanical PWT.  P < 0.05 was considered significant.  

 

3. Results 

 

3.1. Inhibition of α9α10 nAChR channel currents by Vc1.1 but not AuIB or MII  

 

As previously reported [31,43], robust ACh-induced cation currents were expressed in Xenopus 

laevis oocytes following injection of mRNA encoding α9α10 nAChR channel subunits (Figure 1). 

Superfusion of Vc1.1 (100 nM) potently inhibited α9α10 nAChR currents, whereas in the same 

series of experiments, neither AuIB nor MII produced any inhibition of α9α10 nAChR currents at 

concentrations up to 3 µM (Figure 1). 
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(Insert Figure 1 about here) 

 

3.2. Inhibition of N-type Ca
2+

 channel currents in DRG neurons by Vc1.1 and AuIB but not MII. 

 

We have previously reported that Vc1.1 potently inhibits (IC50 = 1.7 nM) high voltage-activated Ca
2+

 channel 

currents in DRG neurons via a novel mechanism involving GABAB receptor-mediated inhibition of N-type 

Ca
2+

 channel [8]. Using the same procedures, AuIB similarly produced a partial inhibition of high voltage-

activated Ca
2+

 channel currents in rat DRG neurons (Figure 2) with an IC50 of 1.5 ± 0.3 nM (n = 17). As with 

Vc1.1 [8], inhibition by AuIB did not affect the kinetics of activation of the N-type Ca
2+

 channel currents 

(Figure 2). By contrast, in the same series of experiments, MII (1 µM) produced no inhibition of 

depolarization-activated Ca
2+

 channel currents. Application of the selective N-type Ca
2+

 channel inhibitor, ω-

conotoxin CVID, confirmed that AuIB targeted the N-type component of the HVA Ca
2+

 channel currents. 

AuIB (100 nM) reduced peak Ca
2+

 channel current amplitude to 54.7 ± 6.2% (n = 10) of control. Application 

of 100 nM AuIB in the presence of CVID (200 nM) produced no further reduction of the HVA Ca
2+

 channel 

current amplitude (51.6 ± 8.9% of control, n = 10) (Figure 2 C (i)). Furthermore, in the presence of the 

GABAB receptor antagonist CGP 55845, AuIB (100 nM) failed to inhibit the HVA Ca
2+

 channel currents. 

CGP 55845 (1 M) alone had no effect on the HVA Ca
2+

 channel current amplitude and following the 

addition of AuIB the Ca
2+

 channel current amplitude was 87.9 ± 4.0% (n = 12) of control (Figure 2 C (ii)).  

The inhibition of HVA Ca
2+

 channel currents by Vc1.1 (100 nM) was antagonized in the presence of the long 

acting GABAB receptor antagonist SCH 50911 (1 µM) [6]. Bath application of 1 µM SCH 50911 alone, 

increased HVA Ca
2+

 channel current amplitude (115 ± 5.6 %, n = 7,  P = 0.046), the current amplitude was 

117 ± 6 % of control following application of Vc1.1 in the presence of SCH50911. In a control batch of cells, 

application of Vc1.1 alone (100 nM) reduced HVA Ca
2+

 channel currents to 61 ± 6.0 % of control (n = 5).  

(Figure 2 C (iii)). 
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(Insert Figure 2 about here) 

 

3.3. Effects of Vc1.1, MII and AuIB on PNL-induced mechanical allodynia 

 

PNL produced allodynia that was maximal 12-14 days after surgery. Mechanical PWT decreased 

from 9.8 ± 0.4 g prior to surgery (day 0, pre-PNL, n = 115) to 0.7 ± 0.1 g by 12-14 days after PNL. 

The α-conotoxins Vc1.1, MII and AuIB all produced a significant dose-dependent increase in the 

mechanical PWT. As shown in Figure 3A, i.m. injection of Vc1.1 produced a significant, dose-

dependent increase in mechanical PWT, which, for the highest dose tested (36 µg), was significant at 

the earliest time point tested. The anti-allodynic activity of Vc1.1 was maintained throughout the 

initial test period up to 6 hours post-injection at all doses tested. As previously reported [26], the 

anti-allodynic action of Vc1.1 persisted for at least 24 h after injection. PWT was significantly 

elevated 24 h after injection at both the 3.6 and 36 µg doses. As shown in Figure 3B, AuIB also 

produced a significant, dose-dependent increase of mechanical PWT, which was significant soon 

after injection and persisted at the highest dose for at least 24 h after injection. As shown in Figure 

3C, i.m. injection of MII also dose-dependently increased the mechanical PWT but this was only 

significantly different from vehicle-treated animals 4 h after injection (3.6 and 36 µg doses) and had 

returned to baseline after 24 h. 

 

(Insert Figure 3 about here) 

 

3.4 Dose-response relationships 
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The area under the curve (AUC) from 0-6 hours post-injection was calculated for each animal to 

construct dose-response curves of the data represented in Figures 3A, 3B and 3C (Figure 4). A 

logistic curve was then fitted to estimate the EC50 for each drug. A two-way ANOVA (drug x dose) 

indicated significant dose (P < 0.0001) and type of α-conotoxin (P < 0.01) effects, indicating that the 

three α-conotoxins had significantly different potencies. Vc1.1 was clearly the most potent of the α-

conotoxins, followed by AuIB and then MII. Vc1.1 had an estimated EC50 for increasing mechanical 

PWT of 0.34 µg (95% CI = 0.06-1.89 µg). By contrast, AuIB had an EC50 of 1.88 µg (95% CI = 

0.04-8.75 µg) and MII had an EC50 of 9.16 µg (95% CI = 2.75-30.54 µg).  

 

(Insert Figure 4 about here) 

 

3.5. Effects of Vc1.1, MII and AuIB on motor performance 

 

Rotarod latencies were 155 ± 8 s (n = 114) at baseline 12-14 days following PNL. Injection of the 

α-conotoxins Vc1.1, MII and AuIB at any dose did not produce any significant changes in rotarod 

latency over time (P>0.05, two-way repeated measures ANOVA). For clarity the effects on rotarod 

performance are shown only for the highest dose of each α-contoxin in Figure 5 but lower doses 

were also without significant effects. No other behavioural disturbances were noted after all doses of 

the α-conotoxins. 

 

(Insert Figure 5 about here) 

 

3.6. Effects of Vc1.1 and baclofen are prevented by a GABAB receptor antagonist 
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As previously reported the GABAB receptor agonist, baclofen (4 mg/kg, s.c.) produced significant 

reversal of allodynia [33], as did Vc1.1.  Both actions were significantly and almost completely 

antagonised by pre-treatment (15 min prior to baclofen or Vc1.1) with the long-acting GABAB 

receptor antagonist SCH 50911 [6] (20 mg/kg, s.c.) but not vehicle (isotonic phosphate buffered 

saline) (Figure 6). 

  

(Insert Figure 6 about here) 

 

4. Discussion 

 

The present study establishes that intramuscular injections of a range of α-conotoxins with diverse 

spectra of target selectivity can all reverse signs of allodynia in a nerve injury model of chronic pain, 

albeit with differing potencies and durations of action. The interactions of -conotoxins Vc1.1, MII 

and AuIB with their potential analgesic targets as identified from the present and previous studies 

are summarised in Table 1. The large, often more than 1,000-fold differences in potencies of Vc1.1, 

AuIB and MII at their known molecular targets provide suggestive evidence for which target(s) are 

important for reversal of allodynia. The results presented in Table 1 suggest that GABAB receptor-

dependent inhibition of N-type Ca
2+

 channels could be a major mechanism of sustained anti-

allodynic actions of α-conotoxins.  Inhibition of α9α10 nAChR is not required though α3β2 nAChRs 

may contribute to the reversal of allodynia.  

 

(Insert Table 1 about here)  

 

Focusing only on the most potent of the three α-conotoxins suggests that Vc1.1 could potentially 

reverse allodynia via either α9β10 nAChRs [43] or the novel GABAB receptor-mediated inhibition 
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of N-type Ca
2+

 channels in sensory neurons [8]. As previously proposed [43], antagonism of α3β2 or 

α3β4 nAChRs is not a likely mechanism of action of Vc1.1 because moderately effective doses 

(<0.1 nmol/kg in this study) are several orders of magnitude lower than Vc1.1’s affinity for 

heterologously expressed α3β2 or α3β4 nAChRs (>1 µM, Table 1) and the ability of Vc1.1 to 

antagonise the nicotine-induced increase in axonal excitability of isolated unmyelinated human C-

fiber axons (>1 µM) [24].  

 

Resolution of which of these targets mediate the anti-allodynic actions of α-conotoxins (either 

α9β10 nAChRs or GABAB receptor/N-type Ca
2+

 channels, or both) can potentially be achieved using 

peptides highly selective for one or the other target. Given that Vc1.1 and another previously 

examined anti-allodynic α-conotoxin, Rg1A, have high affinity for both targets [8,43], they cannot 

be utilised to resolve this issue. The present results show that AuIB, which has high potency for 

GABAB receptor/N-type Ca
2+

 channels (low nanomolar range) but does not interact with α9α10 

nAChRs, has potent, long-acting anti-allodynic actions. These findings suggest that inhibition of 

α9α10 nAChRs is not necessary for long-term relief of allodynia. Furthermore, we have reported 

previously that two analogues of Vc1.1, vc1a and [P6O] Vc1.1 that retain full activity at α9α10 

nAChRs [31] but have little or no activity GABAB receptor/N-type Ca
2+

 channels [8], produce no 

reversal of nerve injury-induced allodynia [31]. Therefore antagonism of α9α10 nAChRs is neither 

necessary nor sufficient to reverse allodynia after nerve injury. Thus the most parsimonious 

mechanism for the anti-allodynic actions of Vc1.1 and AuIB is the GABAB receptor-dependent 

inhibition of N-type Ca
2+

 channels in sensory neurons [8] although an as yet unidentified mechanism 

mediated by the same subset of α-conotoxins cannot be ruled out. Prevention of anti-allodynic 

actions of both Vc1.1 and baclofen by pre-treatment with the long-acting GABAB receptor 

antagonist, SCH 50911 is consistent with this interpretation. 
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N- type Ca
2+

 channels are an appealing target for chronic pain treatment as they are well known to 

play a central role in the detection and transmission of nociceptive stimuli in DRG neurons [3,28]. 

Several studies have highlighted the importance of N-type  Ca
2+

  channels in neuropathic pain: N-

type 1B channel knock-out mice have a decreased response to neuropathic pain [2023,35], there is 

an up-regulation of N-type 1B as well as 2 subunits in rat nerve injury models [1,11, 33,44], and 

currently used treatments, or treatments being developed, for pain relief include direct (-conotoxin 

MVIIA, aka Prialt®) and indirect (eg. Gabapentin) inhibitors of N-type Ca
2+

  channels [28]. We 

have previously reported a novel mechanism by which some anti-allodynic -conotoxins, including 

Vc1.1 and Rg1A, modulate N-type Ca
2+

 channel currents in DRG neurons, requiring  GABAB 

receptors [8]. The activation of GABAB receptors by agonists such as baclofen is well established as 

producing antinociceptive and antiallodynic actions in chronic pain models [4,32, 33,39]. Therefore, 

the  Vc1.1, AuIB and Rg1A  inhibition of Cav2.2 (N-type) channels that depends on GABAB 

receptors via a novel transduction process is the most likely the mechanism mediating their anti-

allodynic properties.  As discussed above, the mechanism of N-type calcium channel inhibition by 

-conotoxins has yet to be fully elucidated but is not mediated by a conventional GPCR signalling 

mechanism that  involves direct channel modulation by agonist-mobilized G-protein β subunits [8]. 

 

The basis for the long duration of action (>24 h) of both Vc1.1 and AuIB (but not MII) after a 

single, systemic injection is still unknown. It is therefore possible that the sustained anti-allodynic 

actions of these α-conotoxins result from a long-term effect of N-type Ca
2+

 channel inhibition on 

peripheral nerves that also express GABAB receptors. Indeed, reversal of allodynia has recently been 

reported with the peripherally-restricted, N-type selective -conotoxin, CVID [22]. It is not yet 

known whether inhibition of N-type Ca
2+

 channel currents by Vc1.1 and AuIB persists for the 

duration of anti-allodynic activity but it is irreversible during patch-clamp experiments (<1 h) [8]. It 
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is also unknown whether differential biodistribution and metabolism of the distinct peptides 

contributes to the long duration of action. 

 

The present study also suggests that antagonism of α3β2 nAChRs can weakly contribute to 

reversal of allodynia after nerve injury. MII is a potent (nanomolar range) antagonist of α3β2 

nAChRs (Table 1) but does not inhibit either N-type calcium channels or α9α10 nAChRs. Attempts 

to ascribe either the acute or longer term anti-allodynic actions of all α-conotoxins to a single 

combination of subunits [eg. 43] are therefore probably futile. Conotoxin MII was found to reverse 

allodynia more weakly than either Vc1.1 or AuIB although its action was not sustained 24 hours 

after injection. This might suggest that α3β2 nAChRs are not of primary importance but can 

contribute to reversal of allodynia. Indeed, nicotinic agonists excite nociceptive primary afferents 

and α3-subunit containing nAChRs are functionally expressed in at least some nociceptors in rodents 

[34] and unmyelinated nerves in humans [25]. By contrast, there is some evidence that antagonism 

of α3β2 nAChRs in the spinal cord has pro-nociceptive actions [45], but this effect is probably 

restricted to spinal neurons as we observed only anti-allodynic actions after peripheral administration 

of MII.  

 

In conclusion, the present study demonstrates that novel GABAB receptor-mediated inhibition of 

N-type Ca
2+

 channels in sensory neurons is a likely mechanism underlying the anti-allodynic actions 

of α-conotoxins and should be further investigated as a potential therapeutic target for persistent 

pain. Furthermore, antagonism of α9α10 nAChRs is neither necessary nor sufficient to reverse 

allodynia after nerve injury. Because antagonism of α3-subunit containing nAChRs may also 

contribute to reversal of allodynia, it may be premature to rule out investigation of this target in 

further development of α-conotoxins as potential therapies for persistent pain states.    
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Figure 1  

 

Effect of -conotoxins on 910 nAChRs expressed in Xenopus oocytes. 

(A) Superimposed traces of ACh-evoked currents mediated by 910 nAChRs obtained in the 

absence (Control) and presence of 100 nM Vc1.1 (i), 1 M AuIB (ii), and 1 M MII (iii). Oocytes 

were voltage clamped at –80 mV and membrane currents evoked with 2 sec application of 30 M 

ACh co-applied with the toxin following 300 s incubation. (B) Bar graph of the inhibition of ACh-

evoked peak current amplitude by α-conotoxins Vc1.1, Au1B and MII. ACh-evoked currents were 

inhibited 35  5% (n = 9) and 89  5% (n = 6) of control by 100 nM and 1 M Vc1.1, respectively, 

whereas neither AuIB nor MII inhibited the ACh-evoked currents at concentrations up to 3 M (n = 

3-9). All data were pooled and represented as mean  SEM. 

Figure 2 

 

Effect of  -conotoxins on HVA calcium channel currents in rat DRG neurons. 

(A) Superimposed depolarization-activated Ba
2+

 currents elicited by voltage steps from a holding 

potential of -80 mV to -10 mV in the absence (control) and presence of 10 nM AuIB (i) and 1 μM 

MII (ii), respectively. (B) Concentration-response relationships obtained for inhibition of high 

voltage-activated Ca2+ channel currents in DRG neurons by AuIB (○) (n = 4-19), Vc1.1 (---) and 

MII (■, 1 μM) (n = 6). Data points represent mean ± SEM of normalized peak current amplitude. 

The IC50 for inhibition of Ca
2+

 channel currents by AuIB was 1.5 nM compared to 1.7 nM for Vc1.1 

[7]. (C) (i) Bar graph of the relative inhibition of HVA Ca
2+

 channel currents by the N type Ca
2+

  

channel blocker CVID (200 nM) alone and following application of 100 nM AuIB in the presence of 

CVID. (ii) Bar graph of relative inhibition of HVA Ca
2+

  channel currents by 100 nM AuIB alone, in 

the presence of 1 μM CGP55845A alone and after application of 100 nM AuIB in the presence of 
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CGP 55845A. (iii) Bar graph of relative inhibition of HVA Ca
2+

 channel currents by 100 nM Vc1.1 

alone, in the presence of 1 μM SCH 50911 alone and after bath application of 100 nM Vc1.1 + 1 μM 

SCH 50911. Numbers in parentheses reflect numbers of cells. 

 

Figure 3 

 

Effect of -conotoxins on PNL-induced mechanical allodynia  

Time course of the effects of an i.m. injection of different doses of (A) Vc1.1 (n = 6 in each group) 

and vehicle (n = 6), (B) AuIB (n = 6 in each group) and vehicle (n = 6 ) and (C) MII (n = 6 for 

0.36μg and 36μg, n = 9 for 3.6μg) and vehicle (n = 6) on mechanical PWT. Each point represents the 

mean ± S.E.M. of the mechanical PWT at the indicated times. Time point 0 h represents the time of 

drug injection. Pre-PNL values for each group are shown. ● – vehicle, ▼- 0.36 µg, ■- 3.6 µg and 

▲ – 36 µg of each α-conotoxin. (*-P < 0.05 and **-P < 0.01, Dunnett’s post hoc test vs 0 h values).  

 

 

 Figure 4  

 

Dose-response relationships of α-conotoxins for reversal of mechanical allodynia.  

Dose-response curves (logistic curve fitted) depicting the area under the curve (AUC) of the 

mechanical PWT to non-noxious mechanical stimuli following i.m. injection with α-conotoxins. 

Each point represents the mean AUC ± S.E.M. of the mechanical PWT integrated from 0 to 6 hours 

post-injection.● – Vc1.1, ● - AuIB and ○- MII. Asterisks represent significant difference from the 

vehicle treatment group (*denotes P < 0.05 and ** denotes P < 0.01, Dunnett’s post hoc test). 
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Figure 5  

 

Effect of Vc1.1, MII and AuIB on motor performance  

Time course of the effects of i.m. injection of different doses of Vc1.1, AuIB and MII (n = 6 in each 

group) and vehicle (n = 6) on rotarod latency. Each point represents the mean change ± S.E.M. of the 

rotarod latency at the indicated times. Time point 0 h represents the time of drug injection. .▲ – 

Vc1.1, ▲ - AuIB and ∆- MII and ○ - vehicle. 

 

 

Figure 6  

 

Reversal of mechanical allodynia by Vc1.1 and baclofen are antagonised by SCH 50911 

Area under the curve (AUC) of the mechanical PWT to non-noxious mechanical stimuli following 

injection with Vc1.1 (50 µg i.m.) following pretreatment 15 min earlier with SCH50911 (20 mg/kg, 

s.c.) or vehicle. Each bar represents the mean AUC ± S.E.M. of the mechanical PWT integrated from 

0 to 6 hours post-injection (n = 8 animals per group, *denotes P < 0.05 and ** denotes P < 0.01, 

Bonferroni post hoc tests). 
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Table 1 

 

Target selectivity of -conotoxins Vc1.1, MII and AuIB. 

        

 

 

  

Potency in vitro (IC50 - nM)   [this study or references]  

 

 

α-conotoxin 

 

N-type Ca
2+ 

channel
 

 

α9α10 nAChR 

 

α3β2 nAChR 

 

 

α3β4 nAChR 

 

Vc1.1 

 

1.7 

 

[6] 

 

19 - 64 

 

[31,43]  

 

 

7,300  

 

[12,43]  

  

 

4,200 

 

[12,43]   

 

 

AuIB 

 

 

1.5 

 

[this study] 

 

>> 1,000 

 

[this study] 

 

>> 1,000 

 

 [27] 

 

750 

 

[27] 

 

 

MII 

 

 

>> 1,000 

 

[this study] 

 

>> 1,000 

 

[this study] 

 

0.5 – 3.7 

 

[9,17,19] 

 

 

>> 1,000 

 

[19] 
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α-conotoxins selective for GABAB receptor dependent inhibition of N-type Ca
2+ 

channels rather than other identified mechanisms relieve allodynia in a nerve 

injury pain model. 

 

*Summary
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