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By introducing an ideal and active flux-controlled memristor and tangent function into an existing chaotic system, an interesting
memristor-based self-replication chaotic system is proposed. +e most striking feature is that this system has infinite line
equilibria and exhibits the extreme multistability phenomenon of coexisting infinitely many attractors. In this paper, bifurcation
diagrams and Lyapunov exponential spectrum are used to analyze in detail the influence of various parameter changes on the
dynamic behavior of the system; it shows that the newly proposed chaotic system has the phenomenon of alternating chaos and
limit cycle. Especially, transition behavior of the transient period with steady chaos can be also found for some initial conditions.
Moreover, a hardware circuit is designed by PSpice and fabricated, and its experimental results effectively verify the truth of
extreme multistability.

1. Introduction

In 1963, the first chaotic system was discovered by Lorenz.
Since then, many scientists have constructed many new
chaotic systems, such as Chen system, Lu system, and Jerk
system [1, 2]. +en, in 1971, Chua proposed the memristor,
the fourth element after resistor [3, 4], capacitor, and in-
ductor. People have studied chaotic systems based on
memristor design. Compared with other classical chaotic
systems [5], memristive nonlinear systems have more
complex chaotic characteristics [6–10]. Some articles re-
ported the phenomenon of memristive multistable state.

In addition to the sensitivity of the system to the pa-
rameters, it also depends on the initial value of the memristor.
Due to the introduction of the ideal memristor [11–16], the
dynamic system based on the memristor produces infinite
equilibria, such as line equilibria and surface equilibria. +ese
equilibria are related to the initial state variables of the
memristor. +ese memristor models not only exhibit complex
chaotic behaviors but also produce multistability phenomena
[17, 18]. As we all know, multistability is the coexistence
behavior of two or more attractors under the same parameters

and different initial conditions [19–21]. Bao et al. [22] in-
troduced an ideal and active flux-controlledmemristor into an
existing hypogenetic chaotic jerk system, an interesting
memristor-based chaotic system with a hypogenetic jerk
equation, and proposed circuit forms. +e most striking
feature is that this system has four line equilibria and exhibits
the extrememultistability phenomenon of coexisting infinitely
many attractors. Jafari et al [23] propose a newly parameter
estimation method on both an ordinary chaotic system and a
chaotic system with extreme multistability. It proves the
importance of that difference better by comparing the effi-
ciency of the chaotic system. Recently, the introduction of
trigonometric functions, such as the tangent function, sine
function, hyperbolic tangent function [24, 25], and hyperbolic
sine function, has made the system produce multiscroll
attractors, multiwing attractors, infinite coexistence attractors,
and attractor duplication phenomena [26, 27]. +is nonlinear
performance is caused by the periodicity of trigonometric
functions [28, 29]. +is special feature has been reported in
some chaotic article recently. However, there are relatively few
studies on homogeneous multistability in the memristor
chaotic systems of trigonometric functions [30–34].
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Inspired by the abovementioned ideas, an interesting
memristor-based chaotic system is constructed in this paper,
which is achieved by introducing a tangent function
(tan(z)) and an ideal and active flux-controlled memristor
with absolute value nonlinearity into an existing chaotic
system boostable VB18 [31].+e newly proposedmemristive
system has infinite line equilibria and can exhibit the initial-
condition-dependent extreme multistablity phenomenon of
coexisting infinitely many attractors, which has seldom been
reported in the academic literature.

+e rest of this paper is organized as follows. In Section 2,
a novel memristive system with infinite line equilibria is
presented, upon which the stability for the infinite line
equilibria are explored. In Section 3, parameter-dependent
change is investigated by bifurcation diagrams and Lyapunov
exponent spectra and coexisting intermittent chaos behavior
revealed by phase portraits. In Section 4, initial-condition-
dependent extreme multistability is investigated by coexisting
bifurcation diagrams and Lyapunov exponent spectra, and
coexisting infinitely many attractors’ behavior and symmetric
behavior are revealed by phase portraits. In Section 5, an
implementation circuit is designed and PSpice circuit sim-
ulations are performed to verify the initial-condition-de-
pendent dynamical behaviors of coexisting infinitely many
attractors. In Section 6, the conclusions are summarized.

2. Model Description

According to the chaotic system VB18 reported in [31], a
new memristive system can be easily constructed by the
tangent function to substitute a z status variable and by
introducing utilizing memristor in the chaotic system with
an existing nonlinear dynamical system boostable VB18.

A VB18 chaotic system is described as

x
.
� az + y2 − 1,

y
.
� byz,

z
.
� − x − z.

 (1)

+e memductance function of the desired flux-con-
trolled memristor is expressed as

W(ϕ) � − m + n|ϕ|, (2)
where m and n are two memristor parameters with positive
values.+e abovementioned model (2) is used to describe an
ideal and active flux-controlled memristor with an absolute
value nonlinearity.

+rough introducing the newly proposed memristor
featured by (2) and trigonometric function (tan(z)) into the
chaotic system in [1], a new kind of memristor chaotic system
is established, which can be mathematically modeled as

x
.
� a tan(z) + y2 − 1,

y
.
� by tan(z),

z
.
� − xW(u) − tan(z),

u
.
� x,


(3)

where x, y, z, and u are the state variables of system (3), a,
b, and c are the control parameters of system (3), and

W(u) � − m + n|u| is the normalized memductance func-
tion. u in formula (3) is φ in formula (2).

+e voltage-current curves of the memristor with dif-
ferent values of the frequency f are plotted in Figure 1. It can
be seen that the pinched hysteresis loop gradually shrinks
with f increasing from 1.07 to 2.07, then to 3.07 in
Figure 1(a), and keeps pinched at the original point with the
origin, which is a typical 8-like hysteresis loop. It can be seen
that W(u) stands for the memductance related to the
magnetic flux u in Figure 1(b) implying that system (2)
satisfies the definition of the memristor.

When a� 5.8, b� 7.9, m� 0.02, and n� 0.06, the initial
conditions (x0, y0, z0, u0) are assigned as (1, 1, 0, 5). Matlab
numerical simulations are performed and several useful
results are obtained, as shown in Figure 2, from which the
chaotic behavior characterized by a strange attractor is
revealed. System (3) displays two phase portraits in two
different planes with a single-scroll attractor and double-
vortex attractor. Correspondingly, the finite-time Lyapunov
exponents are calculated by Wolf s method [33] as
L1� 0.041139, L2� − 0.002245, L3� − 0.733286, L4� − 1.475
227, and Kaplan–York dimension DKY� 3 + (L1 + L2 + L3)/
L4� 3.4707. Consequently, the numerical results in Figure 2
indicate that system (3) is a chaotic system.

3. Basic Dynamical Analysis

3.1. Stability Analysis of the EquilibriumPoint. When a� 5.8,
b� 7.9, m� 0.02, and n� 0.06, x, y, z, and w are state var-
iables of system (3).+e equilibrium points of system (3) can
be easily calculated by setting the left-hand side to zero,
which are not associated with the memductance function.

a tan(z) + y2 − 1 � 0,

by tan(z) � 0,

− x(− m + n|u|) − tan(z) � 0,

x � 0.


(4)

According to the fourth dimension x� 0 of equation (4),
it can be that the third dimension is tan(z) � 0, and the
solution z(z � kπ)(k ∈ N); then, y2 − 1 � 0 in the first
dimension can get y � ± 1, and then, system (3) has an
infinite equilibrium point (0, ±1, k π, u), (k ∈ N), where k is
any real constant.

+e Jacobian matrix of system (3) at the equilibrium
point E � (1, 1, 0, u) is yielded as

Jec �

0 2y a(sec(z))2 0

0 b tan(z) by(sec(z))2 0

− W(u) 0 − (sec(z))2 − xnsign(u)

1 0 0 0


,

(5)
where W(u) � − m + n|u|. In consideration of z � 0, u � h,
the characteristic polynomial equation is derived as

λ a0λ
3
+ a1λ

2
+ a2λ

1
+ a3( ) � 0, (6)

where a1 � a0 � 1, a2 � 0.348|h| − 0.116, and a3 � 0.948
|h| − 0.316, and the abovementioned characteristic
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Figure 1: +e memductance and pinched hysteresis loop. (a) +e pinched hysteresis loop; (b) the memductance loop.
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Figure 2: Chaotic behavior characterized by an symmetric chaotic attractor of system (2) with a� 5.8 and b � 7.9 under initial condition
[1, 1, 0, 5]: (a) phase portrait in the x-y plane, (b) phase portrait in the y-z plane, (c) phase portrait in the z-x plane, and (d) phase portrait
in the x-u plane.
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polynomial implies that Jacobian matrix (5) has three
nonzero roots and one zero root. For these roots,
Routh–Hurwitz conditions are given as

Hk �

a1 a3 a5

a0 a2 a4

0 a1 a3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0, (7)

where k � 1, 2, 3, and

H1 � a1 > 0,
H2 � a1a2 − a3 > 0,
H3 � a3 a1a2 − a3( )> 0,

i.e., 0.348|h| − 0.116 + 0.316 − 0.948|h|< 0.

(8)

If the conditions in (8) are satisfied, i.e.,− (1/3)< h<
(1/3), E is stable. Obviously, the eigenvalues of (6) are
relevant to the algebraic symbols u. When h≥ (1/3) or
h≤ − (1/3), system (3) has one positive real root and two
complex conjugate roots with negative real parts. +e
results imply that the infinite line equilibiria of system (3)
only consist of unstable saddle points and unstable
saddle-foci.

3.2. Bifurcation Analysis. +e dynamic properties of the
system will be changed by the changing parameters, which
will make the system show the phenomena of chaotic pe-
riodic divergence.

For system (3), the parameters a and b effectively
determine the dynamic behavior, as shown in Figure 3.
When the initial value [1, 1, 0, 5] is fixed, the parameter
b � 7.9. When the parameter a varies in [2, 11], chaos and
periodic oscillation appear alternately as shown in Fig-
ure 3. +e largest finite-time Lyapunov exponents are
calculated and plotted with varying parameter a, as shown
in Figure 3. As we can be seen from Figure 3, when a is in
the interval [6.23, 6.355] and [4.256, 4.455], the largest
finite-time Lyapunov exponents are equal to 0, and the
system produces cycle-4 attractors. When a is in the in-
terval [4.85, 4.95] and [6.25, 7.25], the system produces
cycle-2 attractors. When a is in the interval [7.35, 11], the
system produces cycle-1 attractors. +e change of pa-
rameter a makes system (3) show inverted period bifur-
cation behavior. When a > 7.2, the antiperiod bifurcation
of the system has chaos and reaches a steady state. +en,
the same initial value [1, 1, 0, 5] is fixed, when the pa-
rameter a � 5.8, and the parameter b changes in [4, 13]; the
Lyapunov exponent spectrum and bifurcation diagram of
system (3) are shown in Figures 4(a) and 4(b). +e change
of parameter b makes system (3) show period-doubling
bifurcation behavior. It can be seen from Figure 4 that
when the value of b is in the interval [7.566, 8.26] and
[11.533, 12.155] and [12.566, 13.215], the system is in a
chaotic state. Obviously, when parameter b is set to dif-
ferent values, the system shows periodic, chaotic, single
scroll, double scroll, and other dynamic behaviors as
shown in Figure 5.

4. Multistable State Analysis

When the same parameter takes different initial values, two
or more attractors are called coexistent attractors or multiple
attractors, which is called the multistable state. +e four-
dimensional initial value of system (3) has different
attractors when it takes different values. It can generate
various types of coexisting attractors.

4.1. Dynamics with Respect to Memristor Initial Condition
(u0). In most memristor systems, the value of a memristor
has some relations with the initial condition, so we have
different oscillating dynamics depending on whether the
initial data of the internal variable causes different oscillations.
+is phenomenon is widely studied and is known as extreme
polystability. In system (3), the control parameters are set as
a� 5.8, b� 7.9, m� 0.02, and n� 0.06, the initial conditions
are assigned x (0)� 0, y (0)� 1, and z (0)� 0, and the
memristor initial condition u (0) is taken as the bifurcation
parameter. When the memristor initial condition u0 varies in
(− 30, 30), system (3) has a different stable state, in which the
Lyapunov exponent and bifurcation evolution are shown in
Figures 6(a) and 6(b) and 7(a) and 7(b). When the memristor
initial condition u (0) is gradually changed, system (3) shows
multiple period-doubling bifurcations and the chaotic state
intermittent existence phenomenon. Consequently, the re-
sults of Figures 6 and 7 demonstrate that, under different
memristor initial conditions, there are completely different
dynamical behaviors in system (3), leading to the coexisting
phenomenon of many attractors. As can be seen from
Figure 6(a), with the change of initial value u0, system (3)
shows extremely complex dynamic behavior, including single
period, double period, chaotic behavior, and period doubling.
In particular, it can be found that the dynamic behavior of
system (3) is extremely sensitive to the disturbance from small
changes in initial conditions, and the initial value u0 has a
completely different dynamic behavior in the region around
parameter 0. It is remarked that when the initial conditions of
x (0), y (0), and z (0) are assigned to different values as shown
in Figure 7, system (3) has different bifurcation behaviors as
the memristor initial condition u (0) is varied, which further
indicates that there exists coexisting infinitely many attrac-
tors’ behavior in system (3).

To better represent extreme multisteadiness, the typical
phase portraits of attractors under different u0 are shown in
Figure 8. When the initial value u0 is different, the state of
system (3) is shown in Table 1.

4.2. Dynamics with Respect to Memristor Initial Condition
(Y0). +e control parameters of system (3) are kept un-
changed, the initial conditions are assigned as (1 Y0 0 5),
and the initial condition Y0 is taken as the bifurcation
parameter. When Y0 is varied in the region [− 10, 10], the
bifurcation diagram of the state variable Y0 and its Lya-
punov exponent spectra are plotted in Figures 9(a) and
9(b). When the initial condition Y0 is increased from 0,
system (3) goes from the normal chaotic state into the
quasiperiodic state, breaks into the weak chaotic state, and
then, turns into the normal chaotic state.
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Near Y0�1.85, system (3) degrades into the periodic state
via chaos, but near Y0� 2.09, system (3) abruptly changes into
the chaotic state with periodic stats bifurcation. When Y0 is
further increased, system (3) jumps into the periodic state
again at Y0� 2.5. In the parameter region [1.85, 2.09] of Y0,
system (3) mainly operates in the periodic state. In the pa-
rameter region [2.13, 8.45] of Y0, system (3) mainly operates
in the exhibits weak chaotic behaviors but exhibits weak
chaotic behaviors near Y0� 2.24, 3.22. +erefore, system (3)
displays periodic state alternate with chaos. An example is
taken to analyze the influence of the change of the initial value
of Y0 on the system. It can be seen that the initial value Y0 is
positive and negative, and system (3) has symmetry. When

fixing a� 5.8 and b� 7.9 and initial value Y0 changes in the
interval [− 10, 10], the phase diagram of the system is sym-
metrically distributed in the x-y plane, as shown in Figure 10.
When the value of Y0 is 1.85, the system is in the cycle-3 stats,
when the value of Y0 is 2.215, the system is in the cycle-4 stats,
and when the value of Y0 is 3.214, the system is in the cycle-6
stats. When the value ofY0 is 1, the system is in a chaotic state.
+us, the results of Figure 10 imply that there is coexisting
many attractors’ behavior in system (3).

4.3. Dynamics with Respect to Memristor Initial Condition
(z0). Furthermore, for the periodic tangent function, all the
infinite countless attractors can be self-reproduced in the
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Figure 3: Lyapunov exponents and bifurcation diagram of system (3) with b � 7.9, when a varies in [2, 11]. (a) Bifurcation diagram;
(b) Lyapunov exponents.
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Figure 4: Lyapunov exponents and bifurcation diagram of system (3) with a � 5.8, when b varies in [4, 13]. (a) Bifurcation diagram;
(b) Lyapunov exponents.
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Figure 6: Dynamics with respect to u(0), where a� 5.8 and b� 7.9 under the initial condition [1, 1, 0, u0 ]. (a) Bifurcation diagram of the state
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dimension of z0. System (3) parameters are chosen as
a � 5.8 and b � 7.9, the value of z0 is representatively 0, ±pi,
and ±2∗ pi, and five attractors appear in different positions,
as shown in Figure 11. +us, the results of Figure 11 imply
that there is coexisting infinitely many attractors’ behavior
in system (3).

+e bifurcation diagram and Lyapunov exponent
spectrum under the change of the initial value z0 are shown
in Figure 12; it can be seen that when the initial value z0 takes
different values, system (3) changes from single-period,
double-period, three-period and four-period, quasiperiodic,
and chaotic attractors; here, four typical attractors including
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Figure 8: Coexisting attractor of system (2) with a � 5.8 and b � 7.9 under the initial condition IC1 [1, 1, 0, u0]. (a) u0 � 0.1 (green),
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chaos and limit cycles are reproduced in phase space for
clear demonstration. Simultaneously, the bifurcation dia-
gram and the Lyapunov exponential spectrum are consis-
tent. When z0 is in the interval [− 0.55, 0.8], the system is in a

state of chaos and periodic state. Typical phase portraits of
attractors of system (3) under different parameters are
shown in Figure 13.When the value of z0 is − 0.55, the system
is in the cycle-1 state, when the value of z0 is − 0.49, the

Table 1: Attractors in system (2) with a� 5.8 and b� 7.9 under initial conditions of [1, 1, 0, u0].

Initial condition (u0) Colour Attractor Figure number

u0� 0.1, − 9, − 2, − 10 g Chaotic (a)–(c), (e)
u0� − 12.5 b Cycle-4 (a)
u0� − 15 r Cycle-2 (a)
u0�1.42, − 3.68 r Quasiperiodicity (b)-(c)
u0� − 1 b Chaotic (b)
u0� 2.25 b Cycle-1 (c)
u0� 22.5 g Cycle-2 (d)
u0�12.35 b Quasiperiodicity (d)
u0� 25 r Cycle-1 (d)
u0� − 5 r Chaotic (e)
u0� 4 b Chaotic (e)
u0� 35, − 5.5 b, r Cycle-1 (f )
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Figure 9: Lyapunov exponents and bifurcation diagram of system (2) with a � 5.8 and b � 7.9 under the initial condition [1, Y0, 0, 5].
(a) Bifurcation diagram with Y0 ∈ (0, 10); (b) Lyapunov exponents; (c) bifurcation diagram with Y0 ∈ (0, 3); and (d) bifurcation
diagram with Y0 ∈ (3, 10).
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Figure 10: Coexisting and symmetry attractor of system (2) with a� 5.8 and b� 7.9 under the initial condition [1, Y0, 0,5 ]. (a) Cycle-1
symmetry; (b) cycle-2 symmetry; (c) cycle-4 symmetry; and (d) chaotic symmetry.
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system is in the cycle-2 state, when the value of z0 is 0.12, the
system is in the cycle-3 state, when the value of z0 is − 0.32,
the system is in the cycle-4 state, and when the value of z0 is
0.24, the system is in the quasiperiodic attractor state. When
the value of z0 is 0.8, the system is in a chaotic state.+us, the
results of Figure 12 imply that there is coexisting many
attractors’ behavior in system (3).

5. Circuit Implementation

+e analog circuit of system (3) is designed as shown in
Figure 14 with the following circuit equation:

x
.
�

1

R1C1
tan(z) +

1

R2C1
y2 −

1

R32C1
,

y
.
�

1

R16C2
y tan(z),

z
.
�

1

R11C3
W(u)x −

1

R10C3
tan(z),

u
.
�

1

R20C4
x.



(9)

+e circuit consists of four channels to realize the in-
tegration, addition, subtraction, and nonlinear operations
including absolute value function and quadratic nonline-
arity, as shown in Figure 14.+emain circuit with the circuit
form is plotted in Figure 14(a), where x, y, and z represent
three state variables of capacitor voltages, respectively, and
RC stands for the time constant of the integrators. +e
equivalent realization unit circuit of the flux-controlled

memristorW(u) is depicted in Figure 14(b), where u is the
inner state variable of capacitor voltage in the memristor.
+e operational amplifier 741 performs the addition and
integration, and the analog multiplier AD633 performs the
nonlinear product operation. +e circuit is powered by
±15V.When the system parameters a� 5.8.2 and b� 7.9, the
corresponding circuit element parameters can be selected as
R1� 17K, R2�R32�R10�R11�R20�100KΩ, R3�R4�
R12�R13�R17�R18�R22�R23�10KΩ, C1� C2�C3�
C4�1 nF, and R16�12.6 KΩ. +e circuit simulation is
shown in Figure 14. +e corresponding memristor circuit
element parameters can be selected as R40�R36� 470Ω,
R37� 50KΩ, R39�16.6 KΩ, and R38�1KΩ. +e circuit
simulation diagram and a plot of pinched hysteresis loop of
the memristor are shown in Figure 15. +e initial voltage of
the capacitor is selected as V1�V2�1V and V2� − 1V,
V3� 0V, andV4� 5V, and the circuit simulation is shown in
Figure 16(a). It can be seen that the attractors in the x-y
phase diagram are symmetrically distributed. +e initial
voltage of the capacitor is selected as V1�V2�1V, V3� πV
and V3� − πV, and V4� 5V, and the circuit simulation is
shown in Figure 16(b). It can be seen that the y-z phase
diagram shows the growth distribution of attractors. Cor-
responding to various preset initial conditions given in
Figure 8, the PSpice-simulated results are yielded and shown
in Figures 17(a) and 17(b). +e results in Figures 16 and 17
just verify the complex phenomenon revealed in the Matlab
numerical simulations. Additionally, in consideration of
different time scales between the mathematical model (3)
and the circuit model (9), there exist some differences be-
tween the results in Figure 17 and those in Figure 8, but both
show the initial-condition-dependent dynamical behavior of
period with steady chaos.
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Figure 12: Lyapunov exponents and bifurcation diagram of system (2) with a � 5.8 and b � 7.9 under the initial condition [1, 1, z0, 5 ].
(a) Bifurcation diagram; (b) Lyapunov exponents.
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Figure 14: Continued.
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Figure 14: Hardware circuit implementation of memristive system (2): (a) main circuit; (b) memristor equivalent realization unit circuit.

Figure 15: Pinched hysteresis loop of the memristor described by equation (3).
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6. Conclusions

A new memristive self-replicating attractor system was
obtained by introducing a tangent function and memristor
into the classical system. In this case, an infinite line of
equilibrium is produced, causing the phenomenon of al-
ternating chaos and period. We analyzed the change of the
initial value of each variable in the four-dimensional system,
a dynamic behavior in which the transient period and steady
state chaos alternately appear depending on the initial value
change is newly discovered, and the super multistable state
was discussed. +e phenomenon of attractor self-replication
appears due to the introduction of the tangent function. +e
results of the new system imply that there is coexisting
infinitely many attractors’ behavior. +e initial-condition-
dependent dynamical behaviors of coexisting infinitely
many attractors and transient period are finally validated by
hardware experiments and PSpice circuit simulations, which
could enhance security for possible secure communication.
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