
Research Article

A Novel Method for Adaptive Multiresonance Bands
Detection Based on VMD and Using MTEO to Enhance
Rolling Element Bearing Fault Diagnosis

Xingxing Jiang, Shunming Li, and Chun Cheng

College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Correspondence should be addressed to Xingxing Jiang; jiangxinlong1989@126.com

Received 27 March 2015; Revised 9 August 2015; Accepted 20 August 2015

Academic Editor: Marcello Vanali

Copyright © 2016 Xingxing Jiang et al.
is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Vibration signals of the defect rolling element bearings are usually immersed in strong background noise, which make it di�cult
to detect the incipient bearing defect. In our paper, the adaptive detection of the multiresonance bands in vibration signal is
�rstly considered based on variational mode decomposition (VMD). As a consequence, the novel method for enhancing rolling
element bearing fault diagnosis is proposed. Speci�cally, the method is conducted by the following three steps. First, the VMD is
introduced to decompose the raw vibration signal. Second, the one ormoremodeswith the information of fault-related impulses are
selected through the kurtosis index.
ird,MultiresolutionTeager EnergyOperator (MTEO) is employed to extract the fault-related
impulses hidden in the vibration signal and avoid the negative value phenomenon of Teager Energy Operator (TEO). Meanwhile,
the physical meaning of MTEO is also discovered in this paper. In addition, an idea of combining the multiresonance bands is
constructed to further enhance the fault-related impulses. 
e simulation studies and experimental veri�cations con�rm that the
proposed method is eective for identifying the multiresonance bands and enhancing rolling element bearing fault diagnosis by
comparing with Hilbert transform, EMD-based demodulation, and fast Kurtogram analysis.

1. Introduction

Rolling element bearings are widely used in rotating machin-
ery to support rotating sha�s, and themajor cause ofmachin-
ery breakdown is the bearing failure. Hence, it is necessary to
detect bearing faults at an early stage. However, the rolling
element bearing early incipient defect feature is very weak for
reasons of being buried in the strong background noises and
the interference of the rotating frequency. Besides, there exist
the severe signal attenuation phenomenon between the fault
source and the sensor collecting the fault signal if the sensor is
placed far from the fault-related location. Currently, the fault
diagnosis of rolling bearing early weak fault is not only a hot
area but also a di�cult area [1].

Rolling element bearings usually consist of an inner race,
an outer race, several rollers, and a cage. When the surface of
one or more of these components develops a localized fault,
the impacts generated excite the resonant frequencies of the
bearing and adjacent components and induce a modulating

phenomenon [2, 3], which is the basis of bearing fault
diagnosis. Vibration signals collected from bearings carry
the rich information on machine health conditions. 
ere-
fore, the vibration-based methods have received intensive
study during the past decades. It is possible to obtain vital
characteristic information from the vibration signals through
the use of signal processing techniques [4, 5]. In order to
extract the transient features from the vibration signals,
dierent signal processing techniques have been developed
in the area of rotary machine fault diagnosis, such as the
wavelet analysis [6], empirical mode decomposition (EMD)
[7], time-frequency analysis (TFA) [8], sparse decomposition
[9–11], manifold learning [12], spectral kurtosis (SK) [13, 14],
cyclic spectral analysis [15, 16], and envelope analysis [17–
20]. In fact, the essence of most methods for the weak fault
diagnosis is to detect the resonance bands excited by bearing
defect. However, by the optimal frequency band selection
methods, only the noises outside the selected frequency band
are removed from the original signal, while those inside the
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selected frequency band cannot be wiped o eectively. As
a result, the performances of these methods may be poor
in the presence of low signal-to-noise ratio and each of
these methods leaves something to be desired and some
even perform badly in analyzing weak vibration signal. For
example, the same class decomposition models of EMD are
mostly limited by their algorithmic ad hoc nature lacking
mathematical theory, the recursive si�ing which does not
allow for backward error correction, and the inability to
properly cope with noise [21]. As for the wavelet transform,
if the wavelet function is selected properly, the defect-related
featuresmay bewell extracted [5].
erefore, the constructing
wavelet function that adaptively matches the defect-related
characteristics of vibration signal is one of the key issues.
However, the way of constructing wavelet function needs
the prior knowledge and the hard band-limits of wavelet
transform is also another inevitable shortcoming of it. In
addition, the resonance bands excited by bearing defect are
o�en more than one, while the conventional methods may
fail to uncover the accurate multiresonance bands.

Recently, Dragomiretskiy and Zosso [22] proposed a
new decomposition model called VMD that determined the
relevant bands adaptively and estimated the corresponding
modes concurrently, thus properly balancing errors between
them. VMD is a fully intrinsic and adaptive variational
method which is motivated by the narrow-band properties
corresponding to the current common intrinsic mode func-
tion (IMF) de�nition and looks for an ensemble ofmodes that
reconstruct the given input signal optimally (either exactly,
or in a least-squares sense). Each mode being band-limited
about a center frequency is estimated on-line. Speci�cally,
the method can address the presence of noise in the input
signal in which the tight relations of it to the Wiener �lter
actually suggest that it has some optimality in dealing with
noise. Subsequently, Mohanty et al. [23] employed the VMD
to decompose the vibration signal in severalmodes, extracted
the energy feature of it to diagnose whether the bearing
doped with sand or not, and compared the method with
EMD to verify its performance. Wang et al. [24] used the
VMD to detect the rub-impact fault of the rotor system
and verify that its performance outperforms the conventional
decomposition methods such as empirical wavelet transform
(EWT) [25], EMD [21], and EEMD [26]. To our knowledge,
there is no report in the literature so far on its applications
to weak bearing vibration signal analysis and its property of
detecting multiresonance bands is also not discovered up till
now.
us, the method of VMD is �rstly applied to detect the
resonance bands for taking full advantage of the resonance
information in vibration signal of defective bearing in our
paper.

A�er the resonance bands are determined in the bearing
vibration signal where the fault-related periodic impulse is
a modulator to the high natural frequencies of the machine,
the demodulation techniques should be used to demodulate
the impact impulses from the resonance modes obtained
by VMD. Many demodulation methods have been studied,
such as FFT-based Hilbert transform [21, 27], wavelet-based
[28, 29], and TEO [17, 18]. Among them, the TEO method is
an attractive demodulation method proposed and developed

byMaragos et al. [30–32], is a sort of time-frequency analyzer,
and has been used for many applications such as speech
processing, image processing, and AM/FM demodulation.
Compared with HT method, TEO method is totally based
on the local dierential operation without involving integral
transform, so it has a better localization property and lower
computational complexity. 
e TEO is also known to be
sensitive to spikes, where a spike means that a signal is
concentrated in a short time interval and at a high frequency
band. With these advantages, the TEO method has been
also introduced into machinery fault diagnosis. Lin et al.
[33] utilized TEO for resonance demodulation analysis to
extract fault characteristic of roller bearings. Junsheng et
al. [34] presented a TEO demodulation approach based on
EMD to diagnose machinery fault. Liang and Bozchalooi [17]
introduced a repetitive application of TEO on detecting the
fault characteristic frequency in the spectrum of the energy-
transformed signal. However, under a low signal-to-noise
ratio (SNR) or in background noise at high frequencies, the
TEO gets more sensitive to high noisy peaks than to the
true fault-related impulses, and the performance of TEO as
an impulse detector degrades rapidly. Besides, the extracted
envelope waveform by these demodulation methods is at
a single scale [35]. 
us, Choi et al. [35, 36] proposed the
MTEOmethod to detect the action potential of neural signals
which could make up for the weakness by tuning the TEO
to the frequency of action potentials with the resolution
parameter. 
e analysis results of experimental data in
[35, 36] have shown that the MTEO method outperforms
TEO and the other conventional demodulation methods in
handling both noise and interferences. However, the MTEO
physical meaning is not given in paper [35, 36]. We will
further develop and uncover the MTEO physical meaning
and then �rstly employ MTEO to enhance the fault-related
impulses in bearing vibration signal. And yet, the enhanced
vibration signal still confronts the contamination of in-band
noise. 
e optimal smoothing window, hamming window,
together with MTEO is used to further enhance the fault-
related impulses.

Furthermore, we can consider that the noise compo-
nents are less correlated with the dierent resonance bands
while the impulses of envelope waveform are still correlated.

erefore, the combination ofmore possible resonance bands
could be further bene�cial to in-band noise removal. Even-
tually, we propose the novel method for enhancing fault-
related impulses in bearing vibration signal by combining the
VMD and MTEO. 
e simulation studies and experiment
veri�cation on an experimental rolling element bearing will
also be conducted to test the improved performance of the
proposed method and compare with the conventional FFT-
based Hilbert transform, EMD-based demodulation [27],
and fast Kurtogram analysis [2, 13].


is paper is organized as follows. Section 2 describes the
details on the theoretical backgroundof the proposedmethod
for the enhanced fault diagnosis of rotating machines. 
e
MTEO physical meaning is also given and uncovered in this
section. In Section 3, the simulation studies of the proposed
method are studied where there are two cases, single reso-
nance band and double resonance bands. 
en in Section 4,
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the practical applications to bearing defect identi�cation are
conducted to verify the eectiveness of the proposedmethod.
A discussion is given in Section 5.
e conclusions are �nally
drawn in Section 6.

2. A Description of Theoretical Background

2.1. Variational Mode Decomposition (VMD). 
eVMD [22]
is a recently developed methodology for adaptive signal
decomposition which decomposes an input signal into �
discrete number of subsignals (modes) ��. 
ese modes
have speci�c sparsity properties while reproducing the input,
where each mode has limited bandwidth in the spectral
domain. Each mode �� is required to be mostly compact
around a center pulsation �� determined along with the
decomposition.
e VMD to process the input signal is given
as follows.(1) For each mode ��, compute the associated analytic
signal bymeans of theHilbert transform to obtain a unilateral
frequency spectrum.(2) Shi� the frequency spectrum of each mode to the
baseband by mixing with an exponential tuned to the esti-
mated center frequency, respectively.(3) Estimate the bandwidth through the �1 Gaussian
smoothness of the demodulated signal, that is, the squared�2-norm of the gradient. As a consequence, the constrained
variational problem is given by

min
{��},{��}

{∑
�

								
� [( (�) +
���) ∗ �� (�)] �−����

								
2

2
}

s.t. ∑
�
�� = �,

(1)

where � is the input signal, � is the number of modes, ��
is the �th mode, �� is the central frequency of �th mode, 
is the Dirac distribution, � is the time script, and ∗ denotes
convolution.(4) Both a quadratic penalty term and Lagrangian multi-
pliers � to render the problem unconstrained are used as the
reconstruction constraints. 
e combination of both terms
thus bene�ts greatly from the nice convergence properties
of the quadratic penalty at �nite weight and the strict
enforcement of the constraint by the Lagrangian multiplier�. 
erefore, the solution to �nd the optimal �� with the
inclusion of Lagrange multipliers � and quadratic penalty is
given by
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where � denotes the balancing parameter of the data-�delity
constraint and the Lagrangian multiplier � is a common way
of enforcing constraints strictly.

(5) Alternate direction method of multipliers (ADMM)
optimization algorithm [37–39] is used to solve (2) to produce
dierent decomposed modes and the center frequencies of
these modes during each shi�ing operation. 
e procedures
of these operations are shown in following.

(i) To update the modes ��, the subproblem is formulated
as (3) which is rewritten as the equivalent minimization
problem shown in (4):

��+1� ← argmin
��

� ({��+1�<� } , {���≥�} , {��� } , ��) , (3)

��+1� = argmin
��∈�

{�∑
�

								
� [( (�) +
���) ∗ �� (�)]

⋅ �−����								
2

2
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� (�)2
										
2

2
} .

(4)

Subsequently, the solution to �nd the optimal �� in
spectral domain is given by (5).Moreover, the two regularized
terms are written as half-space integrals over the nonnegative
frequencies based on exploiting the Hermitian symmetry of
the real signals in the reconstruction �delity term. As a result,
the solution of this quadratic optimization problem is readily
found as (6) by forcing the �rst variation vanish for the
positive frequencies which is identi�ed as Wiener �lter. 
e
decomposed mode in time domain is eventually obtained by
the inverse Fourier transform of the �ltered analytic signal:

�̂�+1� = argmin
�̂�,��∈�

{� 				�� [1 + sgn (� + ��) �̂� (� + ��)]				22

+ 										�̂ (�) −∑� �̂� (�) +
�̂ (�)2

										
2

2
} ,

(5)

�̂�+1� (�) = �̂ (�) − ∑� ̸=� �̂ (�) + �̂ (�) /2
1 + 2� (� − ��)2 . (6)

(ii) To update the central frequency ��, the other sub-
problem is formulated as (7). Because the center frequency��
does not appear in the reconstruction �delity term, but only
in the bandwidth prior, the relevant problem is thus read as
(8):

��+1� ← argmin
��

� ({��+1� } , {��+1�<� } , {���≥�} , ��) , (7)

��+1�
= argmin
��

{								
� [( (�) +
���) ∗ �� (�)] �−����

								
2

2
} . (8)

As before, the optimization can also take place in Fourier
domain, and the solution to �nd the optimal �� in spectral
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domain is given by (9). 
erefore, this quadratic problem is
easily solved as (10):

��+1� = argmin
��

{∫∞
0
(� − ��)2 9999�̂� (�)99992 :�} , (9)

��+1� = ∫∞0 � 9999�̂� (�)99992 :�
∫∞0 9999�̂� (�)99992 :� (10)

which puts the new �� at the center of gravity of the
corresponding mode’s power spectrum. 
e mean carrier
frequency is the frequency of a least squares linear regression
to the instantaneous phase observed in the decomposed
mode. 
e complete algorithm of the VMD in detail can be
found in [22].

2.2. Teager Energy Operator (TEO)

2.2.1. A Single TEO. 
e TEOmethod [31, 32] is an attractive
demodulationmethodwhich is introduced in this subsection.
It is applied on a continuous signal >(�) which is de�ned as

Ψ [> (�)] = (:> (�):� )2 − > (�) :2> (�):�2 . (11)


e de�nition of the original discrete-time TEO is then
given by

Ψ [> (B)] = >2 (B − 1) − > (B − 1) > (B + 1) . (12)


e derived version of this operator has been used to
separate the frequency and amplitudemodulations of signals.
It is logic to conjecture that the extraction of certain infor-
mation relying on the combined amplitude and frequency
demodulations could be carried out directly by this operator
[17]. When we consider an arbitrary signal >(�) de�ned as
(13), the corresponding discrete-time equivalent of the energy
operator is given as (14):

> (�) = � (�) cos (C (�)) , (13)

Ψ [> (B)] = >2 (B − 1) − > (B − 1) > (B + 1)
= �2 (B) sin2 (Ω (B)) , (14)

where >(B) = �(B) cos(C(B)) andΩ(B) = C(B) − C(B − 1).
According to (14), the TEO extracts both the amplitude-

modulation (AM) and frequency-modulation (FM) infor-
mation of the signal. Although the energy operator has
mainly been used to separate the amplitude and frequency
modulations of a given signal, the separation of such infor-
mation is not necessary in the context of machinery fault
diagnosis [17].
e information of interest formachinery fault
detection is the transient nature of the fault impulses resulting
from both amplitude and frequency modulations. It is well
known that TEO is sensitive to transient impact, where an
impact means a signal that is concentrated in a short time
interval and at a high frequency band, and valuable means
of accentuating the transient fault characteristics relative

to the other components of vibration signal such as gear
meshing, sha� imbalance vibration, and noise component.
However, the TEO gets more sensitive to high noisy peaks
than to the true impact under a low SNR or background
noise of the obtained signal at high frequencies, and the
performance of the TEO as an impact detector degrades
rapidly. Moreover, the negative value phenomenon which is
nonphysical easily arises in the transformed signal by TEO.
In the following subsection, theMTEO is introduced to avoid
these drawbacks.

2.2.2. Multiresolution TEO (MTEO). In paper [35, 36],
MTEO is proposed to accurately identify the action potentials
in the neural signal by tuning TEO to the frequency range of
the impacts with the multiresolution parameter E (E ≥ 2).

e de�nition of the discrete-time MTEO is given in the
following sense:

Ψ� [> (B)] = >2 (B) − > (B − E) > (B + E) . (15)

However, the physical meaning of (15) is not given clearly
in [35, 36]. Hereby, we deduce the essential mechanism to
deeply uncover (15). We de�ne dierentiation operator G�
which is useful to suppress low frequency interferences and
noise, integration operator H�which can enhance the signal in
the presence of noise or increase signal-to-noise ratio (SNR)
due to its smoothing eects, and composite operator Δ as
follows:

G� (> (B)) = (> (B) − > (B − 1))
− (> (B − 1) − > (B − 2)) − ⋅ ⋅ ⋅
− (> (B − E + 1) − > (B − E)) ,

(16)

H� (> (B)) = (> (B) + > (B − 1))
+ (> (B − 1) + > (B − 2)) + ⋅ ⋅ ⋅
+ (> (B − E + 1) + > (B − E)) ,

(17)

Δ� (> (B)) = G�−1 (H1 (> (B))) = H�−1 (G1 (> (B)))
= > (B) − > (B − E) , (18)

where the G�, H�, Δ� represent the E order dierentia-
tion operator, integration operator, and composite operator,
respectively. It should be noted that the composite operatorΔ� is only de�ned as the two formations in (18).

According to (11), a new transform operator Ψ�[⋅] is
formed as

Ψ� [> (B)] = (Δ� (> (B)))2 − > (B) ⋅ Δ� (Δ� (> (B))) , (19)

where Ψ�[⋅] is regarded as the generalized form of Ψ[⋅] (12)
and Δ�(Δ�(>(B))) is shown in the following:

Δ� (Δ� (> (B))) = (> (B) − > (B − E))
− (> (B − E) − > (B − 2E))

= > (B) − 2> (B − E) + > (B − 2E) .
(20)
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As a result, (15) can be obtained by using (19). It can be
concluded from (19) that MTEO is formed by the composite
operator which consists of dierentiation and integration
operators.
erefore, MTEO takes advantages of two original
operators for suppressing low frequency interferences and
increasing SNR, besides the virtue of TEO.

Another important element that aects the impact detec-
tor performance is the smoothing window. When using theE-TEO as a tool of enhancing impulses, it only uses three
samples to calculate an output value at a time instance. One
prominent noise sample can induce a peak at the output and
disturb the accurate fault impact. When the SNR is low, such
noisy peaks cause serious problems andmust be removed by a
smoothingwindow.As suggested by paper [35], the hamming
window was suitable for the matched �lter of impulses and
paper [36] also gave a logical interpretation to the smoothing
window using the matched �lter theory, and both of them
recommended the hamming window with length of 4E + 1
as an optimal window for the E-TEO. In addition, a�er the
components obtained from VMD are processed by E-TEO,
they still contain some noises around the impulses.
erefore,
we select the hamming window as the smoothing window
to extract the more pure impulses. 
is optimal smoothing
window, together with E-TEO, is used to process the fault-
related signal. We can adjust the E-TEO to be sensitive to
the frequency of the fault-related impacts. When we take
the eect of the output window into account, the windowed
output of a white Gaussian noise J(B) is

K� (B) = 2�∑
�=−2�

ℎ� (M) J (B + M) , (21)

where ℎ�(M) denotes the Mth coe�cient of the smoothing
window matched to theE-TEO.

According to the central limit theorem, K�(B) is approx-
imated as a Gaussian random variable with mean N2∑ℎ(M)
and variance 3N4∑ℎ2(M). 
erefore, the mean-square value
of the windowed noise J(B) is

O {K2� (B)} = N4 [3∑ℎ2� (M) + {ℎ� (M)}2] . (22)


e windowed output can be regarded as a signal of
defect-related feature mixed in the background noise K�(B).
However, the value of O{K2�(B)} could change at dierent
resolution parameters E where some false impacts may be
caused by the in-band noise. 
erefore, let the window
coe�cients be (23) to normalize the output noise power to
a constant value:

ℎ� (M) = ℎ� (M)
√3∑ℎ2� (M) + (∑ ℎ� (M))2

. (23)

For MTEO, all these elements, that is, dierentiation,
integration and energy operator, and hamming window, are
implemented by a simple formula in one step. 
e main
attractive advantages ofMTEO include its simplicity, compu-
tational e�ciency, excellent time resolution, and the leaving-
out of the band-pass �ltering process. As such, it is suited to
on-line bearing fault detection in a noisy environment with
multiple vibration interference.

2.3. Summary of the Proposed Method. In summary, the
procedure of the proposed method can be described brie�y
as follows:

(1) Conduct VMD on the measured raw vibration signal
to transform it into several modes. Considering that
fault-related resonance bands are identi�ed preferen-
tially by VMD, the number of the resonance bands
may be more than one in the vibration signal of
early stage defect generally. 
erefore, the number of
decomposed modes by VMD is set as at least 2, but
should not be too large for saving the computing time.

(2) Calculate the kurtosis value of these decomposed
modes.

(3) Employ MTEO and smoothing window to enhance
the fault-related waveforms of the decomposed
modes with a large kurtosis value on four scales with
spacing 3. 
e four scales could cover the analysis
frequency range as suggested in paper [35, 36].

(4) Observe the enhanced time domain waveform and its
frequency spectrum from the four enhanced wave-
forms to diagnose the faulty bearing. If there are
multiresonance bands in the obtained modes, the
combination of them will be used to further enhance
the fault-related waveform.

Since the VMD could adaptively extract the modes in
the resonance bands, the proposed method does not need
more prior knowledge. In addition, the MTEO is a nonlinear
method. 
erefore, it can reveal the nonlinear transient
envelope information of machinery systems by combining
one or more decomposed modes.
us the result analyzed by
the proposed method is taken for further pure impulse and
spectrum analysis to identify the fault-related characteristic
and locate the defect position in a machine. 
e frame of the
proposed method is shown in Figure 1.

3. Simulation Study

3.1. Simulated Defect-Related Signal with Single Resonance
Frequency Band. To verify the performance of the proposed
method, a simulated signal with single resonance frequency
band [40, 41] is �rst constructed. In general, the vibration
signal of a faulty bearing consists of periodic impulses and
white noise. 
e simulated signal can be computed by the
following formula:

> (�)
= �∑
�=1
S (�) �(−�/√1−�2)[2���(�−��)]2 sin [2��� (� − �T)]

+ B (�) ,
(24)

where �� = 1000Hz is the central frequency of the resonance
band and V = 0.02 is the damping ratio. S = 1 represents
the initial magnitude of a single free vibration; T = 0.02 s
is the fault repetition period, and hence the characteristic
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Figure 1: Flow chart of the proposed scheme for weak faulty signal.
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Figure 2: Simulated signal with single resonance frequency band: (a) time waveform for the pure signal; (b) time waveform for the mixed
signal; (c) power spectrum for the mixed signal.

0 0.05 0.1 0.15 0.2 0.25 0.3

2

4

Time (s)

A
m

p
li

tu
d

e

(a)

0 100 200 300 400 500 600

0.02

0.04

0.06

Frequency (Hz)

A
m

p
li

tu
d

e

(b)

Figure 3: Analyzed results of simulated signal shown in Figure 2(b) by Hilbert transform: (a) envelope waveform; (b) envelope spectrum.

frequency of this faulty signal is �� = 50Hz.W = 14 stands
for the number of impulses; B(�) is the added white noise.

Figure 2(a) shows the pure simulated signal with the
sampling frequency �� = 12000Hz. It can be seen from the
waveform that these resonance impulses derived from the
impacts at the localized fault of amachine exist periodically at
the interval of T = 0.02 s. However, in the presence of noise,
the result may be dierent. Figure 2(b) shows the simulated
signal with the additive white noise resulting in a SNR of 0 dB
by using theMATLAB functionAWGN(>, SNR) inwhich the
power of > defaults to 0 dBW. It can be seen that the noise
corruption makes the periodic transient impulses di�cult to

identify from the waveform. As shown in Figure 2(c), the
resonance band in the power spectrum is also completely
distorted. As described in Figure 3(a), the Hilbert transform
of the noisy signal is obtained. It can be seen that the envelope
waveform of fault-related impulses cannot be discovered in
the envelope waveform of Figure 3(a), and there still exist a
large number of interfering components. It can also be seen
from Figure 3(b) that the envelope spectrum cannot show the
faulty characteristic frequency.


e proposed method is introduced to analyze the sim-
ulated single resonance signal shown in Figure 2(b). First,
the VMD is addressed on the signal and �ve modes are
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Figure 4: Analyzed results of the simulated signal shown in Figure 2(b) by the proposed method: (a) power spectrum obtained by VMD;
(b) the number of iterations with central frequencies; (c) kurtosis curve of �ve decomposed modes; (d) waveform of the second mode; (e)
enhanced waveform of the second mode byMTEO; (f) power spectrum of the enhanced waveform byMTEO; (g) enhanced waveform of the
second mode by TEO.

provided. Figure 4(a) shows the power spectra of the �ve
decomposition modes. As shown in Figure 4(b), the �ve
modes converge to their central frequencies where the central
frequency of the secondmode is 1100Hz, which approximates
the true carrier frequency 1000Hz of the resonance band.
It can be seen from Figure 4(c) that the second mode has
the maximum kurtosis value and the formula of kurtosis is
shown in (25). As displayed in Figure 4(d), the waveform of
the second mode demonstrates that its fault-related impulses
are more apparent to compare with Figure 2(b), but still
contaminated by the noise. 
en, the second mode is further
processed by MTEO with dierent resolution parameters. It
can be seen from the waveform of Figure 4(e) that the fault-
related impulses are more distinct with E = 7. 
e fre-
quency spectrum of Figure 4(f) shows that the fault-related
frequency and its harmonics are very clear. Subsequently,
the second mode is also analyzed by TEO. 
e result is
provided in Figure 4(g). We can �nd that the in-band noise
even corrupts the fault-related impulses and the negative
values which are nonphysical arise in the transformed signal.

erefore, it is veri�ed that the TEO does not work as well

as MTEO. 
e more detailed explanation for causing the
negative values can be seen in the paper [42]:

� = O (> − Y)4
N4 , (25)

where Y is the mean of signal >, N is the standard deviation of>, and O(⋅) represents the expected value.
As a comparison, the simulated single resonance signal

is also analyzed by the EMD-based demodulation method
[27], which employs the EMD as an adaptive �lter followed
by the Hilbert envelope analysis on the decomposed IMF
that contains the characteristic frequency component. As
described in Figures 5(a) and 5(b), the �rst four IMFs locate
in high frequency ranges and the frequency band of IMF3
approximates the original setting resonance frequency. In
addition, the spectra of IMF5∼IMF7 which have a large
deviation from the natural frequency 1000Hz are displayed
in Figure 5(c). It can be also seen that the IMF3 has a large
kurtosis value in Figure 6(a). As demonstrated in Figure 6(b),
IMF3 is selected to be processed by Hilbert transform. 
e
results are provided in Figures 6(c) and 6(d), respectively.
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Figure 5: Decomposition results of the simulated signal shown in Figure 2(b) by EMD (a) waveform of IMF1∼IMF4, (b) power spectrum of
IMF1∼IMF4, and (c) power spectrum of IMF5∼IMF7.
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Figure 6: Analyzed results of the simulated signal shown in Figure 2(b) by the EMD-based demodulation method: (a) kurtosis curve of 13
decomposed IMFs; (b) waveform of IMF3; (c) envelope waveform of IMF3; (d) envelope spectrum of IMF3.

We can �nd that the noise component completely corrupts
the fault-related impulses in Figure 6(c). As displayed in
Figure 6(d), the characteristic frequency in envelope spec-
trum is not obvious enough by comparing with the proposed
method.

In order to further investigate the improved performance
of the proposed method in resonance band detection, the
fast Kurtogram [2, 13] is used to analyze the same simulated
signal shown in Figure 2(b).
e paving of the fast Kurtogram
is shown in Figure 7(a), where an optimal �lter with a
centre frequency of 5812.5Hz and a bandwidth of 375Hz is
automatically chosen. 
e signal �ltered by the optimal �lter
and its envelope spectrum are shown in Figure 7(b) which
cannot provide any fault-related information to indicate the
existence of the fault characteristic frequency. It can be

seen that the fast Kurtogram indicates a wrong location for
selecting resonance band.

3.2. Simulated Faulty Signal with Double Resonance Frequency
Bands. In this subsection study, the simulated vibration
signal with double resonance frequency bands is constructed.

e central frequencies of two resonance bands are ��1 =1000Hz and ��2 = 2000Hz, respectively. 
e fault character-
istic frequency is also �� = 50Hz. 
e simulated signal can
be computed by the following formula:

> (�) = �∑
�=1
S1 (�) �(−�/√1−�2)[2���1(�−��)]2

⋅ sin [2���1 (� − �T)]
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Figure 7: Analyzed results of the simulated signal shown in Figure 2(b) by the fast Kurtogram: (a) Kurtogram of the simulated signal; (b)
envelope of the �ltered signal and corresponding demodulation spectrum.

+ �∑
�=1
S2 (�) �(−�/√1−�2)[2���2(�−��)]2

⋅ sin [2���2 (� − �T)] + B (�) .
(26)

Figure 8(a) shows the pure simulated signal occupying
double resonance frequency bands with the sampling fre-
quency �� = 12000Hz. As presented in Figure 8(b), the
simulated faulty signal in Figure 8(a) is also mixed with the
additive white noise resulting in a SNR of 0 dB by using
the MATLAB function AWGN(>, SNR) in which the power
of > defaults to 0 dBW. It can be seen that the transient
feature is almost swallowed by noise signal. 
e corre-
sponding frequency domain representation of the obtained
noise-contaminated signal is illustrated in Figure 8(c). 
e
resonance bands in the power spectrum are also corrupted.
As represented in Figure 9(a), the Hilbert transform is used
to analyze the noise-contaminated signal. It can be seen that
the envelope waveform of fault-related impulses cannot be
seen in Figure 9(a). Similarly, as delineated in Figure 9(b),
the faulty characteristic frequencies are contaminated by the
interference components marked in the rectangles which
make some trouble in the defect detection.


e proposed method is employed to process the sim-
ulated double resonance noisy signal. To begin with, VMD

technique is applied to decompose the noise-contaminated
signal and �ve modes are obtained. Figure 10(a) shows the
power spectra of the decomposed components by VMD, in
which the components located in the resonance bands are
successfully extracted. As shown in Figure 10(b), the central
frequencies of the second and third modes are 1067Hz and
1964Hz, respectively, which approximate the carrier frequen-
cies 1000Hz and 2000Hz assumed in the simulated signal.
Figure 10(c) shows the kurtosis curve of the �ve modes. It
can be observed from Figure 10(c) that the third mode has
the maximum kurtosis value and the second mode has the
second maximum kurtosis value. As displayed in Figures
10(d) and 10(e), the second and third modes demonstrate
that the fault-related impulses in the waveform are apparent
compared with the result of Figure 8(b). Nevertheless, they
are still contaminated by the noise. 
en, the two modes are
analyzed by TEO. 
e results are provided in Figures 11(a)
and 11(b). It still can be seen that the fault-related impulses
are incorporated into in-band noise and the negative values
which are nonphysical also arise in the transformed signal.

erefore, the two modes obtained by VMD are further
analyzed by MTEO with dierent resolution parameters,
respectively. It can be observed from Figures 11(c) and 11(e)
that the fault-related impulses in the waveforms are more
pure and distinct with E = 7. As shown in Figures 11(d) and
11(f), the frequency spectra of the enhanced signals byMTEO



10 Shock and Vibration

0 0.05 0.1 0.15 0.2 0.25 0.3

0

2

Time (s)

A
m

p
li

tu
d

e

−2

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3

0

2

Time (s)

A
m

p
li

tu
d

e

−2

−4

(b)

0 1000 2000 3000 4000 5000 6000

0.02

0.04

0.06

Frequency (Hz)

A
m

p
li

tu
d

e

(c)

Figure 8: Simulated signal with double resonance frequency band: (a) time waveform for the pure signal; (b) waveform for the mixed signal;
(c) power spectrum for the mixed signal.
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Figure 9: Analyzed results of simulated signal with double resonance band shown in Figure 8(b) byHilbert transform: (a) envelopewaveform;
(b) envelope spectrum.
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Figure 10: Analyzed results of the simulated signal with double resonance bands shown in Figure 8(b) by the proposed method: (a) power
spectrumobtained byVMD; (b) the number of iterationswith central frequencies; (c) kurtosis curve of �ve decomposedmodes; (d) waveform
of second mode with the second maximum kurtosis value; (e) waveform of third mode with the maximum kurtosis value.
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Figure 11: Enhanced waveform and its power spectrum by the proposed method: (a) enhanced waveform of the second mode by TEO; (b)
enhanced waveform of the third mode by TEO; (c) enhanced waveform of the second mode by MTEO; (d) power spectrum of the second
mode enhanced waveform by MTEO; (e) enhanced waveform of the third mode by MTEO; (f) power spectrum of the third mode enhanced
waveform by MTEO; (g) enhanced waveform of the combined mode; (h) power spectrum of the combined mode enhanced waveform.

show that the fault-related frequency and its harmonics are
very clear. However, some pulses are still weak as shown
in the rectangles of Figures 11(c) and 11(e). 
e idea that
the combination of the second and third modes is designed
to produce a new mode is constructed. As delineated in
Figure 11(g), the new mode has more apparent impacts
than both of the second and third modes. As provided in
Figure 11(h), the frequency spectrum of newmode shows the
more clearly fault-related frequency and its harmonics.

For comparison purpose, the method of EMD-based
demodulation is also used to analyze the vibration signal in
Figure 8(b). 
e �rst four IMFs decomposed by EMD are
shown in Figure 12(a). As displayed in Figure 12(b), these
IMFs locate in the high frequency ranges and the frequency
bands of IMF2 and IMF3 approximate the 1000Hz and
2000Hz, respectively. 
e frequency bands of the rest IMFs
are far away from the 1000Hz shown in Figure 12(c). In
addition, it can be seen from Figure 13(a) that there are 13
IMFs shown in the kurtosis curve. Although the IMF9 has
the maximum kurtosis value, it locates in the low frequency
region and does not contain fault-related information.
ere-
fore, the IMF2 and IMF3 owning the larger kurtosis values in

high frequency regions are selected. However, the waveforms
of themonly show the slight impacts. Both of themare further
analyzed by the Hilbert transform. We cannot see the fault-
related impulses from the envelope waveforms in Figures
13(b) and 13(d). Similarly, as described in Figures 13(c) and
13(e), the envelope spectra of the IMF2 and IMF3 cannot
display the accurate fault characteristic and its harmonics
which are severely contaminated by noise.


e fast Kurtogram is also applied to analyze the same
mixed signal with double resonant frequency shown in
Figure 8(b). 
e paving of the fast Kurtogram is plotted in
Figure 14(a), where it is indicated that the optimal �lter has
a centre frequency of 1875Hz and a bandwidth of 750Hz.

e centre frequency of 1875Hz deviates from the frequency
of 2000Hz which is one of the original setting natural
frequencies. But our proposedmethod can accurately identify
both of the original setting natural frequencies. 
e signal
�ltered by the optimal �lter and its envelope spectrum show
the fault-related signatures in Figure 14(b). It is found that
the visual inspection ability of the fast Kurtogram is not
as good as that of the proposed method for showing fault
characteristic where some interferential components exist.
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Figure 12: Decomposition results of the simulated signal shown in Figure 8(b) by EMD: (a) waveform of IMF1∼IMF4, (b) power spectrum
of IMF1∼IMF4, and (c) power spectrum of IMF5∼IMF7.
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Figure 13: Analyzed results of the simulated signal with double resonance bands shown in Figure 8(b) by the EMD-based demodulation
method: (a) kurtosis curve of 13 decomposed IMFs; (b) envelope waveform of IMF2; (c) envelope spectrum of IMF2; (d) envelope waveform
of IMF3; (e) envelope spectrum of IMF3.


e extracted impulses by the proposed method are more
pure than that of the fast Kurtogram.

As such, the eectiveness of the VMD technique in
detectingmultiresonance bands of incipient defective bearing
is well demonstrated by using the simulated signal. 
e
validity will be further evaluated using the practical vibration
signal in the following section.

4. Experimental Verification

To verify the eectiveness of proposed method in practical
applications for enhancing the fault diagnosis of rotating
machines, the experimental data from a defective bearing are
analyzed in this section. 
e experiment is carried out on a
deep groove ball bearing.
e kinematical parameters and the
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Figure 14: Analyzed results of the simulated signal shown in Figure 8(b) by the fast Kurtogram: (a) Kurtogram of the simulated signal; (b)
envelope of the �ltered signal and corresponding demodulation spectrum.
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Figure 15: Experimental vibration signal with early stage defect: (a) time waveform; (b) power spectrum; (c) envelope waveform by Hilbert
transform; (d) envelope spectrum.

corresponding fault frequencies of rolling element bearings
are listed in Tables 1 and 2, respectively. Experimental data
with the sample frequency 97656Hz, input sha� rate �� =25H, and under the load of 1200N are provided by theMFPT
(Mechanical Failure Prevention Technology) [43].

A vibration signal measured from the experimental
bearing is plotted in Figure 15(a), and its power spectrum
is described in Figure 15(b). As depicted in Figure 15(c), the
envelope waveform of the raw vibration signal of Figure 15(a)
is obtained by Hilbert transform. A few impulses can be
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Figure 16: Analyzed results of the experimental vibration signal in Figure 15(a) by the proposed method: (a) power spectrum of �ve modes
decomposed by VMD; (b) the number of iterations with central frequencies; (c) kurtosis value of �ve decomposed modes; (d) waveform of
the �rst mode with the maximum kurtosis value; (e) waveform of the second mode with the third maximum kurtosis value; (f) waveform of
the third mode with the second maximum kurtosis value.

Table 1: Parameters of the test rolling bearing.

Ball numbers
Roller

diameter
(in.)

Contact
angle

Pitch
diameter
(in.)

Speed
(rpm)

Load
(N)

8 0.235 0∘ 2.815 1500 1200

Table 2: Fault characteristic frequencies of the test rolling bearing.��, ball pass frequency inner race (BPFI); ��, ball pass frequency
outer race (BPFO); ��, ball fault frequency (BFF); ��, cage pass
frequency (CPF).

Fault type �� �� �� ��
Fault ratio 4.76 3.25 5.11 0.41

Fault
frequency/(Hz)

118.88 81.13 127.73 10.14

observed from the envelope waveform. However, the most
fault-related impulses are masked by noise and not evident
enough to detect the existence of bearing fault. From the
envelope spectrum shown in Figure 15(d), the frequency
78Hz which approximates the third harmonic of the rota-
tional frequency is quite dominant but the fault frequency of
the outer race �� = 81.13 cannot been seen. 
is means that
the envelope analysis fails to discover the fault characteristics
and could cause a misjudgment about the outer race fault
bearing in noisy signal.

Subsequently, we apply the proposed method to pro-
cess the vibration signal in Figure 15(a). First, the VMD

is addressed on the raw vibration signal and �ve modes
are obtained. Figure 16(a) shows the power spectra of �ve
decomposition modes. 
e central frequencies of �ve modes
are depicted in Figure 16(b). 
e kurtosis curve of �ve
modes is also described in Figure 16(c). It can be also
seen from Figure 16(c) that the �rst three modes have the
large kurtosis value. As shown in Figure 16(b), the central
frequencies of the �rst three modes are 2666Hz, 9268Hz,
and 18230Hz, respectively. Compared with Figures 15(a) and
15(c), the �rst three modes displayed in Figures 16(d), 16(e),
and 16(f) demonstrate that the fault-related impulses in the
waveform are more apparent but still contaminated by the
noise. 
en, the �rst three modes are processed by MTEO
with dierent resolution parameters. It can be seen from
Figures 17(a) and 17(c) that the fault-related impulses of the
enhanced waveforms of �rst two modes are more distinct
in E = 10. 
e frequency spectra of them show that the
fault-related frequency and its harmonics are very clear in
Figures 17(b) and 17(d). However, the enhanced waveform
of the third mode does not illustrate the remarkable fault-
related impulses comparedwith the �rst and secondmodes in
Figures 17(a) and 17(c). In addition, the frequency spectrum
of Figure 17(f) only shows the fault-related frequency but it
cannot display its harmonics. According to the above analysis,
we can deduce that this faulty experimental bearing could
excite two resonance bands in this experiment and the centers
of the resonance bands approximate 2666Hz and 9268Hz,
respectively. 
e resonance band with central frequency
18230Hz may be slightly excited. Although the enhanced
waveforms of �rst two modes have more distinct impulses,
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Figure 17: Enhanced waveform and its power spectrum by the proposed method: (a) enhanced waveform of the �rst mode by MTEO; (b)
power spectrum of the �rst mode enhanced waveform byMTEO; (c) enhanced waveform of the secondmode byMTEO; (d) power spectrum
of the second mode enhanced waveform by MTEO; (e) enhanced waveform of the third mode by MTEO; (f) power spectrum of the third
mode enhanced waveform by MTEO; (g) enhanced waveform of the combined mode by MTEO; (h) power spectrum of the combined mode
enhanced waveform by MTEO; (i) enhanced waveform of the �rst mode by TEO; (j) enhanced waveform of the second mode by TEO.

there still exist some poor impulses shown as rectangles in
Figures 17(a) and 17(c). 
e combination of multiresonance
bands is used to further enhance the detection of fault-related
impulses. As shown in Figure 17(g), the enhanced waveform
of the combined mode exhibits more clear impulses every-
where. Furthermore, the frequency spectrum of combined
mode in Figure 17(h) outperforms the single modes with one
resonance band. As a comparison to MTEO, the method of
TEO is also used to analyze the �rst two modes decomposed
by VMD in Figures 16(d) and 16(e). 
e corresponding
enhanced waveforms in Figures 17(i) and 17(j) show a lot
of poor impulses which are indicated by the rectangles.

Besides, it can also be seen that the fault-related impulses are
incorporated into the in-band noise and the negative values
which are nonphysical also arise in the transformed signal by
TEO. All of these results verify that the method of MTEO
can obtain the more pure impulses and suppress the eect
of negative value produced by TEO based on the extracted
resonance bands.

In addition, the method of EMD-based demodulation is
also used to analyze the raw vibration signal in Figure 15(a).

ere are ��een IMFs obtained by EMD decomposition.
Considering that the frequency ranges of the IMFs a�er IMF8
which have nothing to do with the bearing fault information
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Figure 18: Decomposition results of the experimental signal shown in Figure 15(a) by EMD: (a) waveform of IMF1∼IMF4, (b) waveform of
IMF5∼IMF8, (c) power spectrum of IMF1∼IMF4, and (d) power spectrum of IMF5∼IMF8.

is less than 1000Hz, we show only the time waveforms
and spectra of the �rst eight IMFs in Figure 18. It can also
be seen that these IMFs have a heavy mode mixing with
each other. 
en, the kurtosis curve of all IMFs is given in
Figure 19(a). 
ere are two regions which have the larger
kurtosis value shown in the rectangles. 
e high frequency
components belong to the �rst region where the fault-related
information is contained. Instead, the second region only
has some low frequency components.Moreover, the envelope
waveforms and their spectra of IMF3–IMF7which havemore
impacts than the rest IMFs are shown in Figures 19(b)–19(k),
respectively. We can see from these envelope waveforms that
they cannot show the regular impacts. Similarly, the envelope
spectra of them cannot also exhibit the accurate frequency of
outer race defective bearing and are severely disturbed by the
noise.

For further comparison, the fast Kurtogram is applied
to analyze the same rolling element fault signal shown in
Figure 15(a). 
e paving of the fast Kurtogram is shown in
Figure 20(a), where an optimal �lter with a centre frequency
of 8138Hz and a bandwidth of 16276Hz is automatically
de�ned. 
e signal �ltered by the optimal �lter and its
envelope spectrum are shown in Figure 20(b). It can be

concluded that the impulses extracted by the fast Kurtogram
have a lower SNR than that extracted by the proposedmethod
as shown in Figure 17(g) and the envelope spectrum obtained
by our proposed method is more clear by comparing Figures
17(b), 17(d), and 17(h) with Figure 20(b). Furthermore, as
shown in Figure 21(a), a vibration signal with the more
serious impact waveform which is collected from the same
test bearing as the signal in Figure 15(a) is also provided
by the MFPT. To demonstrate the outstanding performance
of the proposed method in identifying the multiresonance
bands, the time-frequency representation of the signal in
Figure 21(a)which couldmake a rough guide for the locations
of three resonant frequencies is computed by the Short Time
Fourier Transform (STFT) [44]. As displayed in Figure 21(b),
the locations of these resonant frequencies approximate the
values identi�ed by the proposed method. Besides, Dr. Eric
Bechhoefer also pointed out that the faulty bearing shows
a natural frequency about 9000Hz in [43]. Consequently,
the proposed method is better than the fast Kurtogram for
indicating the existence of the multiresonance bands.

Finally, an outer race defect is discovered in test bearing
as shown in Figure 22which is provided byMFPT [43]. It also
means that the proposedmethod is validated and able tomore
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Figure 19: Analyzed results of vibration signal in Figure 15(a) by EMD-based demodulationmethod: (a) kurtosis curve of 17 IMF; (b) envelope
waveform of IMF3; (c) envelope spectrum of IMF3; (d) envelope waveform of IMF4; (e) envelope spectrum of IMF4; (f) envelope waveform
of IMF5; (g) envelope spectrum of IMF5; (h) envelope waveform of IMF6; (i) envelope spectrum of IMF6; (j) envelope waveform of IMF7;
(k) envelope spectrum of IMF7.

clearly extract fault characteristics and accurately identify the
multiresonance bands than the conventional methods.

5. Discussions


e eectiveness of the proposed method is veri�ed by
simulation cases and engineering applications in Sections 3

and 4, respectively. 
e proposed method can extract the
useful impulse features hidden in the signal. Here, a brief
discussion is given on the proposed method. Speci�cally,
from the observation of the analysis results, the time wave-
forms extracted by the proposed method show the more
pure impulses and the frequency spectra of the enhanced
waveforms describe the clear fault-related frequency and its
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Figure 20: Analyzed results of the simulated signal shown in Figure 15(a) by the fast Kurtogram: (a) Kurtogram of the experimental signal;
(b) envelope of the �ltered signal and corresponding demodulation spectrum.
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Figure 21: Severe fault vibration signal of the test bearing: (a) time waveform; (b) time-frequency representation.

harmonics, while the other contrastive methods can merely
extract partly periodical impulse features or fail to detect
them. 
e selections of key parameters are also discussed in
detail as follows.

For the VMD method, the fault-related resonance bands
which are identi�ed preferentially by VMD usually are one
or more in vibration signal at early stage defective bearing.

erefore, the number � of the decomposed modes in VMD
is set as at least 2. However, the much time will be consumed
with increasing of �. Considering that the vibration signals at
early stage defective bearing only have a few resonance bands,
we suggest that the number � of the decomposed modes
should be set between 2 and 7. For the MTEO method, the

resolution E of MTEO ranges from 1 to 10 with spacing 3 in
our paper, which could cover the analysis frequency ranges
as suggested in paper [35, 36]. 
erefore, we can directly and
easily observe the enhanced time waveform for the only four
situations in MTEO. As a result, the resolution E of MTEO
is set as 7 in the two simulated cases, and the resolutionE is set as 10 in the experimental study when the superior
fault-related impulses are displayed. Although the hamming
window with length of 4E + 1 is very eective for purifying
the noisy impulses as demonstrated in simulation study and
experimental veri�cation, some other window functions are
also worth studying for achieving the better pure impulses in
the future.
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Figure 22: Picture of outer race fault bearing.

As a consequence, the proposedmethod has the following
main contributions and advantages: (1)VMD is �rstly uncov-
ered to extract the single resonance band or more resonance
bands which contain the fault-related impulses. (2)MTEO is
also �rstly developed to enhance the fault-related impulses.(3) 
e physical meaning of MTEO is studied and given in
our paper. (4)
e idea of combining multiresonance bands
is used to further enhance the fault-related impulses. (5)
e
vibration signal of defective bearing can be transformed to the
pure impact waveform in time domain which would make
diagnosis of the bearing fault easier for technical person-
nel. 
e results of simulation studies and the experimental
applications demonstrate the excellent performance of our
proposed method in extracting fault characteristics from
the strong noisy vibration signals. For future research, the
identi�ed natural frequencies by the proposed method is
planned for us to use as the prior knowledge of traditional
resonance demodulation method and design a more simple
and e�cient fault diagnosis method.

6. Conclusion

Aiming at the accurate extracting of the fault-related reso-
nance bands and enhancing the fault-related impulses, our
paper proposes a novel method for enhancing fault diagnosis
of rotatingmachines by combining theVMDandMTEO.
e
proposed method concerns the situation of multiresonance
bands that contain the rich fault-related information and
nonlinearity of machinery dynamic systems at the same
time. 
e resonance bands which contain the plentiful fault-
related information can be adaptively determined through
the VMD method. Moreover, the MTEO in the proposed
method which shows the merits of in-band noise suppres-
sion and fault-related impulses preserving can expose the
remarkable fault-related impulses structure in machinery
fault and the computation of MTEO is also quite e�cient
by comparing with the conventional method. Hence, the
proposed method could process the longer data online. In
particular, the combination of multiresonance bands can be
used further to enhance the fault-related impulses buried
in the vibration signal of the early defective bearing. 
e
eectiveness and superiority of the proposedmethod are ver-
i�ed by simulation studies and the experimental applications.

Furthermore, the performance of the proposed method is
veri�ed to outperform the traditional Hilbert-based, EMD-
based demodulation methods, and fast Kurtogram analysis.
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