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Abstract

Ecotron facilities allow accurate control of many environmental variables coupled with extensive monitoring of ecosystem

processes. They therefore require multivariate perturbation of climate variables, close to what is observed in the field and

projections for the future. Here, we present a new method for creating realistic climate forcing for manipulation experiments

and apply it to the UHasselt Ecotron experiment. The new methodology uses data derived from the best available regional

climate model projection and consists of generating climate forcing along a gradient representative of increasingly high

global mean air temperature anomalies. We first identified the best-performing regional climate model simulation for the

ecotron site from the Coordinated Regional Downscaling Experiment in the European domain (EURO-CORDEX) ensemble

based on two criteria: (i) highest skill compared to observations from a nearby weather station and (ii) representativeness

of the multi-model mean in future projections. The time window is subsequently selected from the model projection for

each ecotron unit based on the global mean air temperature of the driving global climate model. The ecotron units are

forced with 3-hourly output from the projections of the 5-year period in which the global mean air temperature crosses

the predefined values. With the new approach, Ecotron facilities become able to assess ecosystem responses on changing

climatic conditions, while accounting for the co-variation between climatic variables and their projection in variability, well

representing possible compound events. The presented methodology can also be applied to other manipulation experiments,

aiming at investigating ecosystem responses to realistic future climate change.

Keywords Regional climate model · Climate forcing · Controlled environment experiment · Global warming ·

Ecosystem response

Introduction

Ecosystem climate change experiments are one of the key

instruments to study the response of ecosystems to a change

in climate. There are primarily four different factors that are

altered in such experiments: air temperature, precipitation,

CO2 concentration, and nitrogen deposition (Curtis and

Wang 1998; Rustad et al. 2001; Lin et al. 2010; Wu

et al. 2011; Knapp et al. 2018). More recently, multi-factor
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experiments are starting to emerge. In those experiments,

different combinations of the four main drivers are altered

(Kardol et al. 2012; Yue et al. 2017). What is common in

the majority of climate change experiments is that while

the drivers of interest are being altered, all other variables

are being held equal between the different treatment groups.

Consequently, differences in the response can be related to

the change in the main driving factor (or multiple driving

factors).

Altering only one or a limited number of climate change

drivers allows for a straightforward analysis of the observed

responses and has provided a wealth of mechanistic

insights in ecosystem responses to environmental changes

(e.g., Hovenden et al. 2014; Karlowsky et al. (Karlowsky

et al. 2018; Terrer et al. 2018)). However, the resulting

multivariate combination of climate variables may be

physically unrealistic and may miss key aspects related to

natural climate variability and the co-variance of multiple

http://crossmark.crossref.org/dialog/?doi=10.1007/s00484-020-01951-8&domain=pdf
http://orcid.org/0000-0002-8673-1933
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variables, linked to each other by synoptic conditions. This

is particularly important for representing compound events,

where the combination of non extreme drivers can lead

to extreme impacts (Zscheischler and Seneviratne 2017;

Zscheischler et al. 2018; Rineau et al. 2019). For example,

droughts and heatwaves often co-occur (Zscheischler and

Seneviratne 2017), and soil moisture conditions and

precipitation occurrence are linked (Guillod et al. 2015;

Moon et al. 2019). Incorporating the co-variability of key

climate drivers is also important for the studied responses.

For instance, heatwaves characterized by similar extreme air

temperature can lead to different plant responses depending

on the atmospheric conditions: under different shortwave

radiation, relative humidity, and surface wind conditions,

the leaf temperature and the potential for heat stress vary a

lot (De Boeck et al. 2016).

Until recently, it was not possible to simulate plausible

future climates in ecosystem climate change experiments

(Korell et al. 2019), as these experiments require accurate

manipulation of environmental variables to represent cur-

rent and future climate conditions. Controlled environment

facilities meet these requirements by providing systems

to simultaneously manipulate as well as measure multiple

parameters (e.g., Lawton 1993; Lawton 1996; Griffin et al.

1996; Steward et al. 2013; Clobert et al. 2018), especially

in combination with an observation station in the field pro-

viding real-time observations of most of those parameters

(Rineau et al. 2019). This approach is powerful especially

when combined with a measurement station in the field

providing real-time observations of most of these required

parameters (Rineau et al. 2019). In such facilities, climate

change experiments can be informed by meteorological

forcing representing both present and future climatic con-

ditions in a holistic manner. For instance, this forcing can

include both realistic changes of climate variability as well

as important drivers of changes in the frequency, intensity,

and duration of meteorological extremes. This potential is

especially interesting in gradient experiments covering a

range of global warming levels, as this combination allows

for the detection of non-linearities, thresholds, and possible

tipping points in ecosystem responses to increasing climate

change forcing (Kreyling et al. 2018; Rineau et al. 2019).

Sampling realistic climate information in a climate

change context is challenging but can be achieved by using

climate model output. Global climate models (GCMs) are

generally used to assess the climate state and variability

at global to continental scales with a resolution of 100

to 250 km. By dynamically downscaling GCMs, regional

climate models (RCMs) typically resolve the climate

on a regional scale with higher spatial resolutions of

1 to 50 km. As such, RCMs allow a more realistic

representation of meso-scale atmospheric processes and

processes related to orography and surface heterogeneities.

As climate models realistically simulate the atmospheric

state under past, present, and future climatic conditions

with a high temporal resolution, they are suited to

provide a holistic and physically consistent climate forcing

for ecosystem climate change experiments. Generally,

ensemble climate projections show a large spread for

future climate conditions (Keuler et al. 2016), especially

for variables relevant for ecosystem experiments such as

extreme air temperature, droughts, and intense precipitation

(Sillmann et al. 2013; Orlowsky and Seneviratne 2013;

Rajczak and Schär 2017; Greve et al. 2018). This spread is

related to (i) different climate sensitivities of the GCMs, (ii)

structural differences between the models, and (iii) natural

variability within the climate system. The Coordinated

Regional Climate Downscaling Experiment in the European

domain (EURO-CORDEX) provides an ensemble of high-

resolution dynamically downscaled RCMs (Kotlarski et al.

2014) and is therefore highly suitable to serve as a base

for the selection of representative climate forcing for

climate change experiments. With a suite of GCM/RCM

combinations available, a well-informed choice on the most

adequate RCM/GCM simulation can be made based on (i)

the model skill in representing the observed climatology

and (ii) the air temperature sensitivity to future increases in

greenhouse gas concentrations.

So far, statistically downscaled GCM output has only

rarely been used as climate forcing in ecosystem experi-

ments. Thompson et al. (2013) describe a process for gener-

ating air temperature forcing for experiments in which they

use daily air temperature output from a GCM (MIROC) and

a stochastic weather generator to generate hourly weather.

They validated their method against statistical characteris-

tics of air temperature observations. Likewise, the Montpel-

lier CNRS ecotron facility is driven by multivariate statisti-

cally downscaled GCM projections (using the ARPEGEv4

model; Roy et al. 2016). They force their experiment with

climatic conditions of an average climatological year of

the period 2040–2060. During the summer months, they

artificially simulate an extreme event by including drought

and heatwave by reducing the irrigation amount to zero

and increasing the air temperature artificially. However,

by using a climatological year, possible extreme events

are dampened by averaging. Both studies lack a thorough

evaluation procedure for selecting the used climate model.

Moreover, to the best of our knowledge, no study accounts

for the co-variance between climate variables.

In this paper, we present a new method for creating

realistic climate forcing for manipulation experiments.

From an ensemble of dynamically downscaled climate

model simulations, we select one simulation that well

represents present-day climate conditions for four key

variables in the region of interest and is representative of the

multi-model mean of these variables in future projections.
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In this way, the new methodology accounts both for co-

variance of climate parameters and for climate variability

while naturally incorporating extreme events under present

and future climate conditions. Furthermore, the method can

be combined with a gradient approach. We apply the new

methodology to generate climate forcing for the UHasselt

Ecotron Experiment, an infrastructure consisting of 12

climate-controlled units, each equipped with a lysimeter

containing a dry heathland soil monolith extracted from

the National Park Hoge Kempen in Belgium (Rineau et al.

2019). In this experiment, six units are directly forced with

regional climate model output along a global mean air

temperature (GMT) gradient anomaly.

Data andmethods

Newmethodology for generating climate forcing for
ecosystem climate change experiments

In our methodology, variability and co-variance between

variables are preserved by selecting the best-performing

RCM simulation and subsequently extract the required

variables from the grid cell covering the location of the

experiment. By extracting a single grid cell of a single

RCM simulation, climate extremes are not smoothed and the

climate variability inherent to the model is fully preserved.

The units in the ecosystem climate change experiments

follow a gradient of increasing GMT anomalies. In this way,

a given unit is forced with the climatic conditions consistent

with, e.g., a 2 ◦C warmer world, and the units represent

conditions associated with increasingly warmer climates.

The methodology presented here is deployed in three

steps. First, the best-performing RCM projection needs

to be selected based on two criteria: (i) the simulation

should have high skill in reproducing mean and extreme

present-day climatic conditions and (ii) the projected future

air temperature anomalies should be close to the multi-

model mean; that is, the selected simulation should be

representative of the future mean projection (Fig. 1, step

1). To this end, the model performance is evaluated

for four variables that are highly relevant for ecosystem

climate change experiments: precipitation, air temperature,

relative humidity, and surface wind speed. Precipitation is

considered one of the most important variables, as water

availability is likely to constrain plant growth the most.

Second, the time windows for the different units along

the GMT anomaly gradient are defined based on the annual

GMT projection of the driving GCM of the chosen RCM

simulation (Fig. 1, step 2). To span a large range of

climate change scenarios, we use projections following

the Representative Concentration Pathway (RCP) 8.5, a

Fig. 1 Methodology for generating climate forcing along the GMT

anomaly gradient

worst-case scenario following an unabated greenhouse gas

emissions pathway (Riahi et al. 2011). The UHasselt

Ecotron experiment, including all units, is running for

5 years. We choose time windows corresponding to the

experimental period and centered around the year in which

the climatological GMT anomaly (averaged with a 30-

year period) crossed the predefined thresholds for the first

time. In the third step, the values of all necessary variables

are extracted from the chosen RCM projection based on

the defined time windows for the grid cell covering the

experiment location (Fig. 1, step 3). These time series are

then directly used to force the ecotron units, in the highest

available temporal resolution.
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The UHasselt Ecotron experiment

The UHasselt Ecotron experiment is an ecotron infrastruc-

ture consisting of replicated experimental units in which

ecosystems are confined in enclosures. By allowing the

simultaneous control of environmental conditions and the

online measurement of ecosystem processes, the ecotron

units are suited for experiments with highly controlled cli-

mate change manipulation of large intact parts of the ecosys-

tem. The infrastructure allows intensive monitoring and

control of key abiotic parameters on 12 large-scale ecosys-

tem replicas, called “macrocosms.” These macrocosms had

been extracted without disruption nor reconstitution of the

soil structure from the same dry 6- to 8-year-old heathland

plot in the National Park Hoge Kempen (50◦ 59’ 02.1” N,

5◦ 37’ 40.0” E) in November 2016.

The infrastructure is a W-E oriented, 100 m by 10

m wide, and 6 m tall building (Fig. 2a). Only 12 of

the 14 units are used, excluding the outermost to avoid

boundary effects. Each unit consists of three compartments

in which the abiotic environmental variables are controlled:

the dome, the macrocosm, and the chamber. The dome

is transparent for photosynthetic active radiation (PAR)

and long- and medium-wave ultraviolet radiation (UVa

and UVb, respectively). Here, wind and precipitation are

measured and generated, and CO2, N2O, CH4, PAR,

and net radiation (NR; i.e., the difference in incoming

and outgoing short-and longwave radiation) are measured.

The second compartment, the macrocosm, contains the

extracted soil column (the ecosystem) enclosed in a

lysimeter. In this compartment, the soil water content,

soil water tension, soil electrical conductivity, and soil

temperature are measured and controlled. The chamber,

the third compartment, the air pressure, air temperature,

relative humidity, and CO2 concentration are controlled.

The ecotron infrastructure is linked with an Integrated

Carbon Observation System (ICOS) ecosystem station,

which provides real-time information on local weather and

soil conditions. These data are used to simulate the current

weather conditions within the ecotron units with a frequency

of at least once every 30 min (Rineau et al. 2019).

The aim of the UHasselt Ecotron experiment is to study

the ecological and societal impacts of climate change, by

manipulating climatic variables alone or in combination

and, across a wide range of predicted values, while

monitoring as many soil biota and processes as possible

and to translate them into socio-economic values using

heathland as a case study (Rineau et al. 2019). Examples

of measured ecosystem processes are evapotranspiration,

net ecosystem exchange, CH4 or N2O emissions. The main

research questions of this multi-disciplinary experiment are

how climate change will affect the transitioning of the

heathland ecosystem to alternative stable states like pine

Fig. 2 The UHasselt Ecotron experiment. a (picture: Liesbeth

Driessen). b Scheme of a unit with the three compartments (1)

denoting the dome; (2) the lysimeter, shown in detail on the right; and

(3) the chamber. c An overview map with location of the infrastructure

and reference weather observation stations

forest or acid grassland and what the consequences are for

ecosystem services. The experiment will run uninterrupted

for a period of at least 5 years. Six units will be used to

simulate a gradient of increasing variability in precipitation

regime. They are driven by the ICOS station and a perturbed

precipitation time series following a gradient of increasingly

long periods with no precipitation (2, 6, 11, 23, 45, and 90

days). In the remaining six units, atmospheric conditions

along the GMT anomaly gradient will be simulated as

described in “New methodology for generating climate

forcing for ecosystem climate change experiments.” The 3-

hourly RCM output is linearly interpolated to a 30-min time

resolution to force the ecotron units. For soil temperature

and soil water tension however, the 30-min ICOS data is

used. This is because leaving the lysimeter uncontrolled

would lead to (i) an overestimation of soil temperature

section*.5
section*.5
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variability as the lysimeter is exposed to air temperature

in the chamber (despite being thermically insulated), and

(ii) accumulation of water at the bottom of the lysimeter,

hence considerably overestimating soil water level, as soil

water movements are mimicked by suction from the bottom.

Following the gradient design, each ecotron unit represents

the local climate conditions of a globally 0 ◦C (historical),

+1 ◦C (present day), +1.5 ◦C (Paris Agreement), +2 ◦C,

+3 ◦C, and +4 ◦C warmer world. The climatology of the

unit forced by +1 ◦C can thereby be directly compared to

the unit driven by the ICOS station and thus representing the

present-day observed conditions. In this regression design,

there is no experiment replication. To minimize the noise

in initial ecosystem responses, the units are allocated to the

two gradient experiments based on a cluster analysis of the

variance of the 14 variables measured during a test period

of 11 months (Rineau et al. 2019).

Meteorological data

EURO-CORDEX

The best-performing RCM simulation compared to obser-

vations is selected from the Coordinated Regional Climate

Downscaling Experiment in the European domain (EURO-

CORDEX), an ensemble of high-resolution dynamically

downscaled simulations available at a horizontal resolution

of 12 km (0.11◦ on a rotated grid; Jacob et al. 2014; Kot-

larski 2014). The simulations, hereafter referred to as GCM

downscalings, cover the historical period (1951–2005) and

the three RCP scenarios (RCP 2.6, 4.5, and 8.5, for the

period 2006–2100) by using GCMs as initial and lateral

boundary conditions. Additionally, for each RCM, a reanal-

ysis downscaling is provided in which the RCM is driven

by the European Centre for Medium-Range Weather Fore-

casts (ECMWF) ERA-Interim as initial and lateral boundary

conditions for the period 1990–2008 (hereafter referred to

as reanalysis downscalings). These reanalysis-driven simu-

lations allow to evaluate the skill of the RCMs themselves

by comparing them to observations (Kotlarski et al. 2014).

In this study, we use the variables for daily mean,

minimum, and maximum air temperature, precipitation,

mean surface wind, and relative humidity of all available

simulations (Table 1). We consider the values of the 12 km

by 12 km pixel covering the location of the reference

station providing the observations. As relative humidity

is not directly available for all simulations, we converted

specific humidity to relative humidity using the mean air

temperature and surface air pressure for every simulation.

Comparing the applied conversion with the simulations for

which relative humidity is available proves this conversion

is applicable. Neither specific nor relative humidity is

publicly available for the simulations with RegCM4-2 and

ALARO-0 and the mean surface wind speed variable is not

available for ALADIN53 and ALARO-0; therefore, we do

not analyze these variables for the respective simulations.

Once the EURO-CORDEX ensemble member is

selected, the relevant variables (precipitation, mean air tem-

perature, surface air pressure, surface up-welling latent heat

flux and sensible heat flux, wind speed, and relative humid-

ity) are extracted from the 3-hourly RCP 8.5 simulation for

the pixel covering the ecotron location for the time windows

in which the GMT anomalies are crossed for each dome.

These 3-hourly values (except for surface up-welling latent

heat flux and sensible heat flux) are then linearly interpo-

lated to 30-min resolution and used to drive the climate con-

trollers in the ecotron units. For precipitation, one additional

step was added where drizzle (precipitation of less than 1

mm) was postponed and accumulated until it reached 1 mm

to start a rain event in the ecotron. The surface air pres-

sure is calculated from the mean sea level pressure using the

elevation of the ecotron facility (43 m a.s.l.) and assuming

hydrostatic equilibrium. The concentrations of the control-

lable greenhouse gases (CO2, CH4, and N2O) are deter-

mined based on the annual values calculated by van Vuuren

et al. (2011) according to RCP 8.5. These correspond to the

prescribed concentrations of the RCM simulations.

Weather station observations

Reference station data is obtained from the European Cli-

mate Assessment and Dataset (Klein Tank et al. 2002). The

three operational weather stations closest to the UHasselt

Ecotron experiment are Maastricht Airport (11 km), Aachen

(37 km) and Heinsberg-Schleiden (29 km; Fig. 2c). These

weather stations provide daily observations from the end

of the 19th century (Maastricht Airport and Aachen) or

mid 20th century (Heinsberg-Schleiden) until the present-

day, thereby covering both the EURO-CORDEX GCM and

reanalysis downscaling periods. All stations record air tem-

perature (◦C), precipitation (mm day−1), relative humidity

(%) and surface wind speed (m s−1) at daily resolution,

except for the Heinsberg-Schleiden station where there are

no surface wind observations available.

The seasonal cycles of the observations for the different

stations follow a similar annual course (Fig. 3). For air

temperature, the curves overlay and for precipitation they

are similar. Relative humidity (RH) has a small offset

between the three stations, possibly owing to the differences

in absolute height and local topography. The difference in

surface wind speed between Maastricht Airport and Aachen

is considerable but plausible considering the large spatial

variability in wind speed. Given that the model evaluation

showed very little sensitivity to the choice of the reference

station, we hereafter present the results with the reference

station closest to the ecotron facility (Maastricht Airport).
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Table 1 Bias in annual precipitation (P bias) and rank based thereof (from 1-best to 18-worst) for the EURO-CORDEX GCM downscalings for

the period 1951–2005 over Maastricht Airport

RCM GCM P bias (mm year−1) Rank

CCLM4-8-17 CNRM-CERFACS-CNRM-CM5 145 8

CCLM4-8-17 ICHEC-EC-EARTH 8 1

CCLM4-8-17 MOHC-HadGEM2-ES -174 9

CCLM4-8-17 MPI-M-MPI-ESM-LR 24 2

ALADIN53 CNRM-CERFACS-CNRM-CM5 550 14

HIRHAM5 ICHEC-EC-EARTH 323 12

HIRHAM5 MOHC-HadGEM2-ES 101 6

HIRHAM5 NCC-NorESM1-M 571 16

WRF331F IPSL-IPSL-CM5A-MR 726 18

RACMO22E ICHEC-EC-EARTH 99 5

RACMO22E MOHC-HadGEM2-ES 36 3

REMO2009 MPI-M-MPI-ESM-LR 225 10

ALARO-0 CNRM-CERFACS-CNRM-CM5 560 15

RCA4 CNRM-CERFACS-CNRM-CM5 319 11

RCA4 ICHEC-EC-EARTH 386 13

RCA4 IPSL-IPSL-CM5A-MR 691 17

RCA4 MOHC-HadGEM2-ES 111 7

RCA4 MPI-M-MPI-ESM-LR 70 4

Metrics and diagnostics

The evaluation of the EURO-CORDEX ensemble mem-

bers is performed using different metrics accounting for

performance of representing the climatic means, distribu-

tions, and extremes.

A ranking is made of the reanalysis downscalings,

assigning the lowest ranks to the best-performing models

Fig. 3 Seasonal cycles of observed mean air temperature (a), mean

daily precipitation (b), mean relative humidity (c), and mean surface

wind speed (d) in the weather stations of Maastricht Airport, Aachen,

and Heinsberg-Schleiden (monthly averages based on daily data from

1963 to 2018). For Heinsberg-Schleiden no surface wind observations

are available. The curves for air temperature are overlaying
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and higher ranks to the least-performing models (1-best

to 9-worst). First, the bias is calculated as the difference

between the averages of the daily modelled and observed

variables. The second metric, the Perkins skill score (PSS),

is a quantitative measure of how well each simulation

resembles the observed probability density functions by

measuring the common area between two probability

density functions (Perkins et al. 2007). The mean absolute

error (MAE) is calculated by taking the means of the

absolute differences between the modelled and observed

seasonal cycles, calculated based on the whole series. This

is done for the whole series and to capture the potential

errors in the extremes, also for the 1st, 10th, 90th, and 99th

percentiles which are calculated based on the daily time

series of both observed and modelled time series. Next, the

root mean square error (RMSE) is calculated by taking the

root of the squared errors. The Spearman rank correlation

(hereafter referred to as Spearman) coefficient shows the

correlation of the observed and modelled series, calculated

based on daily values. Finally, the Brier skill score (BSS) is

calculated, which gives an indication of the improvement of

the Brier score (an index to validate probability forecasts)

compared to a background climatology in which each event

has an equal occurrence probability (Brier 1950; Murphy

1973). For the GCM downscalings, we use the same

ranking method and scores, except for the RMSE, Spearman

rank correlation, and BSS because the internal variability,

inherent to individual simulations with a coupled climate

model, cannot be predicted on multi-decal timescales, and

can therefore not be compared to observations on a day-by-

day basis (Fischer et al. 2014; Meehl et al. 2014).

In addition to the performance metrics computed on the

actual time series, the RCM performance is also evaluated

based on the bias in climatological diagnostics related to

air temperature and precipitation. To this extent, the average

diurnal air temperature range (DTR; K; the difference

between the daily maximum and minimum air temperature)

is calculated for the whole year, for the winter (December–

February) and summer (June–August) season. Next, the

number of wet days (defined as days during the year for

which precipitation is larger than 0.1 mm or larger than 1

mm, to account for differences in drizzle; (Casanueva et al.

2016) and the number of frost days (days with a minimum

air temperature below 0 ◦C) are calculated. Furthermore,

the monthly maximum 1-day precipitation (Rx1day; mm

day−1) and the number of consecutive dry days (CDD;

days); the annual maximum number of days for which

precipitation is below 1 mm and consecutive wet days

(CWD; days); and the annual maximum number of days

for which precipitation is equal to or more than 1 mm

are included in the analysis. All indices are calculated for

the simulated and observed time series, and consequently

the ranking is established based on the difference between

the model and observed diagnostic. Next, the correlation

between the different variables is evaluated by comparing

them to the observed correlation. This is done both on the

annual time scale and for the summer and winter seasonal

averages, as correlations are expected to differ in sign

Fig. 4 Seasonal cycle of the

reanalysis downscalings for

mean air temperature (a), mean

daily precipitation (b), mean

relative humidity (c), and mean

surface wind speed (d). (The

RegCM4-2 and ALARO-0

simulations are not available for

relative humidity and the

ALADIN53 and ALARO-0

simulations are not available for

surface wind speed)
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and magnitude between the two seasons (e.g., negative

correlation between air temperature and relative humidity

in summer reflecting heatwave conditions, and a positive

correlation between wind speed and precipitation in winter

reflecting storm conditions).

After choosing the best-performing simulation based

on the evaluation of both the reanalysis and GCM

downscalings, the climate change signals for this simulation

are investigated by calculating changes in various climate

change indices, based on the Expert Team on Climate

Change Detection and Indices (ETCCDI; see http://

etccdi.pacificclimate.org/list 27 indices.shtml) for the 5-

year periods defined by the GMT anomalies relative to

the reference period (1951–1955). These indices are widely

used for analyzing changes in extremes (e.g., Zhang et

al. 2009; Orlowsky and Seneviratne 2013; Sillman et al.

2013). The air temperature indices are (i) � T (◦C), the

mean daily air temperature change; (ii) � TXx (◦C), the

difference in the annual maximum value of daily maximum

air temperature; (iii) � TNn (◦C), the difference in the

annual minimum value of daily minimum air temperature;

(iv) � frost days, the difference in the number of frost

days (with a minimum air temperature below 0 ◦C); (v)

� summer days, the difference in the number of summer

days (with the maximum air temperature above 25 ◦C); and

finally (vi) � GSL (days), the difference in growing season

length, defined as the annual count between the first span of

at least 6 days with a daily mean air temperature higher than

5 ◦C and the first span after July 1st of 6 days with a daily

mean air temperature lower than 5 ◦C. The precipitation

indices are (i) � PRCPTOT (mm), the difference in annual

accumulated precipitation (as simulated over the 5-year

period); (ii) � Rx1day (mm), the difference in monthly

maximum 1-day precipitation; (iii) � R10mm (days), the

difference in the number of days per year with more than

10 mm precipitation, (iv) � CDD (days), the difference

in the maximum length of a dry spell (measured as the

maximum number of consecutive days with less than 1 mm

precipitation); and finally, (v) � CWD (days), the maximum

length of a wet spell (measured as the maximum number of

consecutive days with more than 1 mm precipitation).

Applying the newmethodology for the UHasselt
Ecotron experiment

The best-performing RCM simulation is identified by

elimination based on expert judgment based on the

performance of the two selection criteria. Next, we define

the time windows for the different units along the gradient

based on the 30-year averaged GMT anomaly of the driving

GCM under RCP8.5 relative to 1951–1955. Based on these

Fig. 5 Ranking of the reanalysis downscalings based on performance

on mean air temperature (a), mean daily precipitation (b), mean

relative humidity (c), and mean surface wind speed (d) compared to

observations from Maastricht. The metrics shown are the bias, Perkins

skill score (PSS), mean absolute error (MAE) for the entire time series

and the 1st, 10th, 90th, and 99th percentiles, root mean square error

(RMSE), Spearman rank correlation (Spearman), and Brier skill score

(BSS). Rankings are from 1-best to 9-worst. Gray colors indicate that

the variable is not available for the considered model

http://etccdi.pacificclimate.org/list_27_indices.shtml
http://etccdi.pacificclimate.org/list_27_indices.shtml
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time windows, we extract the 3-hourly data for all necessary

variables from the simulation for the 12-km by 12-km grid

cell covering the location of the experiment.

Results

Identification of the best-performingmodel
simulation

First criterion: skill in present-day climate

Overall, model skill strongly varies across RCMs (Fig. 4).

While the annual air temperature cycle is generally well

represented by all RCMs, biases may reach up to 2

degrees in individual months for some RCMs. The biases

in precipitation are generally positive (up to factor 2.4)

and vary across RCMs. Only CCLM4-8-17 simulates

precipitation in the same range as the observed climatology

(nearly no bias (100.22 %) on annual mean precipitation

amounts), while the other RCMs overestimate the total

precipitation amounts from 114 % up to 182 %. For relative

humidity and surface wind speed, all RCMs generally

succeed in representing the seasonal cycle, but exhibit

deviations in amplitude and absolute values (e.g., amplitude

biases of RCA4 (−37.8 %), ALADIN53 (23.3 %) and

CCLM4-8-17 (+16.3 %) for relative humidity, and annual

mean biases for WRF331F (+15.6 %) and HIRHAM5

(−9.1 %) for surface wind speed). Overall, these seasonal

cycles indicate that for all simulations, the relative bias in

precipitation is large compared to biases in other variables.

The rankings of the reanalysis downscalings for the

four variables (Fig. 5) indicate that, overall, CCLM4-8-17,

RACMO22E, REMO2009, and HIRHAM5 are performing

best. CCLM4-8-17 and RACMO22E show the highest

relative skill for precipitation, while REMO2009 and

HIRHAM5 demonstrate high skill for air temperature.

CCLM4-8-17 is the best-performing model based on the

bias and total MAE metrics for air temperature and

precipitation but is ranked in the mid range for the metrics

related to the shape of its air temperature distribution

(PSS and percentile MAE). This can be attributed to

an overestimation of the amplitude of the seasonal air

temperature cycle in this model (too cold in winters,

too hot in summers; Fig. 4a; Kotlarski et al. 2014). For

relative humidity and surface wind speed, RACMO22E

generally demonstrates the highest skill. Considering the

climatological diagnostics (Fig. 6a), CCLM4-8-17 shows

the highest relative skill for precipitation-related diagnostics

(wet days, monthly maximum 1-day precipitation, length of

dry and wet spells), while RACMO22E and RCA4 show

higher relative skill for the annual, winter, and summer

diurnal air temperature range. While RCA4 is highly ranked

for air temperature-related diagnostics, it is one of the

models with the lowest relative skill for precipitation-related

diagnostics. The correlation ranking shows a more scattered

image, for the annual correlation as well as summer and

winter correlations (see Suppl. Fig. A1). Overall, as the

reanalysis-driven simulations with ALADIN53, RegCM4-

2, WRF331F and ALARO-0 show the lowest skill compared

to the other RCMs, we take them out of consideration to

serve as ecosystem forcing.

Second, we evaluate the GCM downscalings for the

period 1951–2005. The seasonal cycles of the air tempera-

ture, precipitation, relative humidity, and surface wind speed

show a similar pattern as the reanalysis downscalings, with

again a strong wet bias for precipitation in most models

(see Suppl. Fig. A2). The rankings show a mixed pattern

for the different variables: there are no simulations which

rank high for all considered variables (Fig. 7). For precipi-

tation, the simulations with CCLM4-8-17 and RACMO22E

have better relative skill compared to the other simulations,

Fig. 6 Ranking of the reanalysis (a) and GCM (b) downscaling for

the historical period based on climatological diagnostics. Diurnal

air temperature range (DTR) in summer (July–August) and winter

(December–February), number of wet days defined as days with pre-

cipitation > 0.1 mm and precipitation > 1 mm, number of frost

days defined as days with mean air temperature < 0 ◦ C, monthly

maximum 1-day precipitation (Rx1day), consecutive dry days (CDD),

the maximum length of a dry spell, and consecutive wet days (CWD),

the maximum length of a wet spell. Next to the diagnostic name, its

value as observed in Maastricht Airport is shown. Rankings are from

1-best to 9 or 18-worst for the reanalysis and GCM downscaling,

respectively
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which is in line with the high ranking of these models in

the reanalysis downscalings. Furthermore, it is remarkable

that the simulations which show a high skill for precipita-

tion, typically show lower skill for relative humidity and

vice versa, e.g., CCLM4-8-17 driven by HadGEM2-ES

(high ranking in precipitation, lowest in relative humid-

ity) and REMO2009 driven by MPI-ESM-LR (high ranking

in relative humidity and lower in precipitation). The three

MPI-ESM-LR-driven simulations appear to be better in

reproducing the air temperature climatology compared to

the other simulations. For the climatological diagnostics,

generally CCLM4-8-17 is scoring best for the precipitation-

related diagnostics, whereas simulations with RCA4 are

ranked the best for DTR (annual, summer, and winter).

Based on the ranking of the GCM downscalings, the

following simulations are considered potential candidates to

serve as climate forcing: CCLM4-8-17 driven by CNRM-

CM5, EC-EARTH and MPI-ESM-LR, HIRHAM5 driven

by EC-EARTH and HadGEM2-ES, and RACMO22E driven

by HadGEM2-ES (Figs. 5, 7, and 6). Since precipitation

biases strongly differ among RCMs (Table 1), and since

precipitation is a critical variable for the ecosystem

experiments (Van der Molen et al. 2011; Vicca et al. 2014;

Estiarte et al. 2016), we prioritize a minimum relative bias

for precipitation over a lower bias for air temperature,

relative humidity, and surface wind speed. The precipitation

biases for the considered simulations are +150 mm year−1

for CCLM4-8-17 driven by CNRM-CM5, +8 mm year−1

for CCLM4-8-17 driven by EC-EARTH, +24 mm year−1

for CCLM4-8-17 driven by MPI-ESM-LR, +323 mm

year−1 for HIRHAM5 driven by EC-EARTH, 101 mm

year−1 for HIRHAM5 driven by HadGEM2-ES, and 36 mm

year−1 for RACMO22E driven by HadGEM2-ES. Based

on this, the CCLM4-8-17 EC-EARTH-driven simulations

has the best chance to be chosen as forcing, followed

by the CCLM4-8-17 MPI-ESM-LR, and the RACMO22E

HadGEM2-ES-driven simulation.

Second criterion: Representativeness of multi-model mean

in future projections

To verify the second requirement, we look at anomalies from

the mean signal of the four variables for the future period

of the simulations under RCP 8.5. The EC-EARTH-driven

CCLM4-8-17 simulation is representative of the multi-model

mean for all four variables (Fig. 8), and even the median

simulation for the mean air temperature anomaly. For

precipitation and relative humidity, however, the CCLM4-

8-17 EC-EARTH simulation shows decreasing anomalies

after 2050 and underestimates the multi-model mean

anomaly. The other selected simulations have a larger

positive bias in precipitation for their GCM downscalings.

A possible reason is that these simulations overestimate

precipitation and simulate a more intensive hydrologic

cycle, which also implies stronger changes in the future.

The remaining five simulations from step 1 (CCLM4-8-

17 driven by MPI-ESM-LR, HIRHAM5, and RACMO22E

driven by HadGEM2-ES) all systematically underestimate

or overestimate other variables (Suppl. Figs. A4, A5, A6, A7

and A8). For instance, the mean air temperature anomaly of

Fig. 7 Ranking of the GCM downscalings based on performance

on mean air temperature (a), mean daily precipitation (b), mean

relative humidity (c), and mean surface wind speed (d) compared

to observations from Maastricht. The metrics showed are the bias,

Perkins skill score (PSS), mean absolute error (MAE) for the total and

1st, 10th, 90th, and 99th percentile. Rankings are from 1-best to 16, 17,

or 18-worst for surface wind speed, relative humidity, precipitation,

and air temperature, respectively. Gray colors indicate that the variable

is not available for the considered model
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Fig. 8 Anomalies for the

CCLM4-8-17 EC-EARTH

simulation following RCP 8.5 at

the ecotron site for mean air

temperature (a), mean daily

precipitation (b), mean relative

humidity (c), and mean surface

wind speed (d). The reference

period is 1977 to 2006, the

anomalies of the CLM4-8-17

EC-EARTH simulation are

calculated compared to its own

values in the reference period. In

gray, the envelope of all

EURO-CORDEX RCP 8.5

simulations is showed

Fig. 9 Annual cycles of the CCLM4-8-17 EC-EARTH ecotron unit

forcing for the +1 ◦C, +1.5 ◦C, +2 ◦C, +3 ◦C, and +4 ◦C units com-

pared to the 0 ◦C reference period with a daily mean air temperature,

b mean daily precipitation, c mean relative humidity, d mean surface

wind speed, e daily maximum air temperature, and f daily minimum

air temperature. Curves were smoothed using Savitzky-Golay filtering

(order = 2 frame = 301; Savitzky and Golay 1964)
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CCLM4-8-17 driven by MPI-ESM-LR simulation (1.46 ◦C)

is lower than the 10th percentile of all simulations (1.51 ◦C)

and the air temperature anomaly for CCLM4-8-17 driven by

CNRM-CM5 is the 30th percentile (1.67 ◦C). HIRHAM5

driven by HadGEM2-ES overestimates relative humidity

anomalies compared to the multi-model mean, with a

mean value (1.26 %) around the 80th percentile. Finally,

the HadGEM2-ES-driven RACMO22E simulation overesti-

mates relative humidity and air temperature anomalies, up to

the 90th percentile for air temperature. Overall, we conclude

that the EC-EARTH-driven CCLM4-8-17 simulation is the

most appropriate candidate for serving as climate forcing

for the UHasselt Ecotron experiment.

Characterization of the selectedmeteorological
forcing

Based on the selection criteria, we single out the EC-

EARTH (ensemble member r12i1p1) driven CCLM4-8-17

simulation as climate forcing for the UHasselt Ecotron

experiment. The climatic conditions in the six units along

the gradient represent an increasing signal of climate

change, representing the local climatic conditions of

6 future climate states corresponding to an increasing

GMT. The overall trend of the local air temperature

anomaly compared to the reference period (0 ◦C) increases

monotonically with the corresponding GMT anomalies

(Fig. 9a). No clear trends are visible for precipitation,

relative humidity, and surface wind speed anomalies, but

very clear for the minimum and maximum air temperature

anomalies which are both increasing (Fig. 9). The mean

daily air temperature is increasing at a similar rate

compared to GMT anomaly, and minimum and maximum

air temperature show a larger increase (Table 2). None of

the air temperature indices show a linear increase, reflecting

the difference between global and local climatic conditions

and the influence of decadal internal variability. The ecotron

unit representing a +4 ◦C world is the most extreme case,

with increases of TXx of +6.30 ◦C and an increase of

TNn with +10.21 ◦C (Table 2). The number of frost days

decreases with about −76.2, while the number of summer

days with air temperature above 25 ◦C increases with about

36.6 days. The annual growing season length is extended

with 80 days on average, leaving only 59.4 days of the

year not favorable for growth. The indices for precipitation

show a less clear trend (Table 2). The total precipitation

amount varies for the five units, without any trend and

shows a substantial decadal variability in all seasons (see

Fig. 9). Rx1day has positive anomalies for the +1.5 ◦C,

+2 ◦C, and +3 ◦C units (+0.35 mm day−1, +1.92 mm

day−1, and +2.34 mm day−1, respectively). These +2 ◦C

and +3 ◦C units also know an increase in R10mm (+3.2

and +3.6 days) compared to the other units. Finally, there is

no clear trend in CWD, but there is an increase in CDD up

to +11.8 days for the +4 ◦C unit. The +1.5 ◦C unit spans

a drier time window, with an average CDD of +9.6 days.

Figure 9 further shows a systematic decrease of relative

humidity during summer with increasing warming and a

strong decadal variability of surface wind speed especially

in winter.

Discussion

The presented methodology exhibits some challenges,

which are addressed in the following section.

We extract all climate variables from one grid cell

of the RCM simulation to conserve the most realistic,

Table 2 Extracted 5-year

periods and air temperature and

precipitation indices based on

ETCCDI for the CCLM4-8-17

EC-EARTH simulation at the

ecotron location

0 ◦C (ref value) +1 ◦C +1.5 ◦C +2 ◦C +3 ◦C +4 ◦C

1951–1955 2011–2015 2028–2032 2043–2047 2067–2071 2091–2095

� T (◦C) 8.17 +1.13 +1.14 +1.81 +3.15 +4.49

� TXx (◦C) 30.98 +0.82 +1.66 +1.34 +5.24 +6.30

� TNn (◦C) −12.73 +6.75 +3.34 +5.94 +8.27 +10.21

� Frost days 103 −22 −14.8 −36.4 −59 −76.2

� Summer days 11.4 +4 +12.2 +8.6 +26.2 +36.6

� GSL (days) 225.6 +9.6 +20 +33.6 +45.8 +80

� PRCPTOT (mm) 771.09 −81.32 −57.2 +25.12 −23.14 −136.05

� Rx1day (mm) 14.38 −0.2 +0.35 +1.92 +2.34 +0.5

� R10mm (days) 14.6 0 −1 +3.2 +3.6 −1.2

� CDD (days) 17.2 +2.4 +9.6 +1.6 +7.2 +11.8

� CWD (days) 9.6 −0.2 +1.2 +1.4 0 −1.8

The 0 ◦C column gives the absolute reference values. The periods are calculated based on the 30-year

averaged global mean air air temperature (GMT) anomaly calculated from EC-EARTH
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non smoothed signal of the climate models. However, the

extracted time series of the grid cell can differ a lot between

different models and time periods, reflecting the natural

climate variability. GCMs and RCMs provide robust signals

when aggregated over a larger spatial area (Seneviratne et al.

2016; Fischer and Knutti 2015). By taking the spatial mean,

a more robust estimate of the mean climate is obtained,

including robust signals of climate change. This explains the

difference in local climate change signals (Fig. 8; Table 2)

and non-linearities compared to the GMT anomaly obtained

by global averaging (Seneviratne et al. 2016). It is however

necessary to use actual time series from a single grid cell

to capture, e.g., the extreme precipitation event occurring

in the considered grid cell, but not in the neighboring grid

cells. The grid cell values also reflect strong inter-annual to

decadal variability which is of high relevance for a realistic

forcing of the ecosystem.

Climate model simulations are often biased, which is

mostly related to structural model deficiencies (Flato et al.

2013). Applying bias adjustment is a standard way to

deal with biases (Gudmundsson et al. 2012; Vanderkelen

et al. 2018), but such methods face several challenges

and need to be chosen carefully to not increase biases

in the co-variability of variables (Zscheischler et al.

Fig. 10 Annual anomalies per

GMT anomaly for increasing

time window lengths (ranging

from a 1-year period to a

20-year period) of the

CCLM4-8-17 EC-EARTH

simulation following RCP 8.5

for air temperature indices:

mean air temperature anomaly

(� T; a), annual maximum air

temperature (� TXx; b), annual

minimum air temperature (�

TNn; c), anomaly in annual

number of summer days (d),

frost days (e), and the anomaly

in growing season length (f).

Note the different y-axis scales
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2019). In the proposed method, we therefore directly

use the “raw” model output, as such preserving climate

variability and the physically consistent co-variance of the

different meteorological variables. In this way, the Ecotron

experiment will study ecosystem responses to multivariate

drivers as compound controls. For instance, it will provide

a unique opportunity to study the impact of realistic

compound events (Zscheischler et al. 2018), e.g., events

similar to the drought-heat event of 2018, which caused

massive heather die-off both in the field and in the ecotrons,

forced by conditions like they happened in the field.

The gradient for the different ecotron units does not

follow a monotonic trend for some of the key indicators

(Fig. 9 and Table 2), due to the high local and inter-annual

natural climate variability of the climate system. This issue

could be alleviated by running the experiment for a longer

period. Comparing different time frames, all extracted based

on 30-year averaged GMT anomaly thresholds, shows that

choosing longer time windows of 10 or 20 years leads to

more clear monotonic trends (Figs. 10 and 11), which is

more pronounced for air temperature-derived indices than

for precipitation-derived indices. For shorter time windows

of 1 to 2 years, the inter-annual and local natural variability

leads to larger variations in trend for the different GMT

anomaly levels. Therefore, the experiment would have to

run for a long period, but the experimental time frame is

Fig. 11 Same as Fig. 10, but

now for precipitation indices:

the annual accumulated

precipitation anomaly (�

PRCPTOT; a), anomaly of

monthly maximum 1-day

precipitation (� Rx1day; b),

anomaly of annual number of

days with more than 10 mm

precipitation (� R10mm; c),

anomaly of annual maximum

length of a dry spell (� CDD; d)

and anomaly of maximum length

of a wet spell (� CWD; e). Note

the different y-axis scales
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constrained by the experimental setup and possible renewal.

As a compromise, here, we use a 5-year experimental

period. Ideally, the entire gradient should be replicated

several times with different climate trajectories to average

out the natural climate variability. This approach is however

constrained by the high cost of the experimental setup.

In the different ecotron units, we assume that the

controlled variables (CO2 and CH4 concentration, air

temperature, precipitation, atmospheric humidity, wind, ...)

are in equilibrium with the warming level, by extracting the

5-year period in which the GMT anomaly in the driving

GCM is reached. While this is a reasonable assumption,

several components in the climate system will not yet

be in equilibrium with the GMT anomaly at the time of

simulation (e.g., glaciers, ice sheets, sea level; Zekollari

2019; Church et al. 2013. Therefore, we cannot rule out

that changes in these slower components may still affect

the meteorological conditions until these reach equilibrium

too. For instance, a delayed melting of sea ice could alter

the polar circulation and thereby affecting the mid-latitude

circulation (Coumou et al. 2018), whereas ice sheet melting

may affect oceanic pole-ward heat transport (Caesar et al.

2018). However, to select the time windows, we follow

the same approach as the transient response to cumulative

emissions (TRCE) as presented in the Intergovernmental

Panel on Climate Change (IPCC) Fifth Assessment Report

(IPCC 2013). This concept describes the warming per

unit of carbon emissions, which largely follows a linear

relationship independent of the emission scenario (Knutti

and Rogelj 2015).

The setup of the UHasselt Ecotron experiment implies

that the incoming shortwave radiation will follow current

weather conditions and not the weather conditions as

prescribed by the RCM forcing. It is thus possible to

have, for instance, clear-sky conditions and associated

high incoming shortwave radiation in the field, while in

the ecotron unit, a heavy precipitation event is simulated

consistent with the RCM forcing. In this example, the

system receives more incoming shortwave radiation than in

the simulated climate. Likewise, the surface fluxes will be

higher, but the resulting air temperature and moisture are

corrected within the ecotron unit by the controlling devices

to fully follow the boundary layer conditions as they are

prescribed by the RCM.

The UHasselt Ecotron experiment allows to investigate

ecosystem responses to different levels of climate change.

This allows to study subtle changes in ecosystem responses

such as impacts of decreased frost frequency on plant

mortality (Berendse et al. 1994) and the interactions

between the occurrence of mild droughts and plant

acclimation for longer droughts (Backhaus et al. 2014).

Although climate variables are prescribed, ecosystem-

climate feedbacks originating from interactions between the

biosphere and atmosphere can by partially diagnosed. For

instance, heatwave reinforcements by occurring droughts

(Seneviratne et al. 2010; Zscheischler and Seneviratne

2017) as well as soil moisture effects on precipitation

events (Guillod et al. 2015) may be assessed by calculating

imbalances in the energy budget.

Conclusions

Ecosystem experiments investigating climate change

responses require a holistic, realistic climate forcing,

reflecting not only the changes in the mean climate, but

also representing physically consistent co-variance between

climate drivers, natural variability, and changes in extreme

events. To this extent, we presented a new method for

creating realistic climate forcing for manipulation exper-

iments using a single RCM simulation, and subsequently

applied it on the UHasselt Ecotron experiment. To account

for co-variances between variables and to fully capture the

climate variability including extreme events, we selected

an RCM simulation from the EURO-CORDEX ensemble

based on the following criteria: (i) high skill in the local

present-day climate and (ii) representative of local changes

in the multi-model mean.

Based on a thorough evaluation of four key variables

(air temperature, precipitation, relative humidity, and wind

speed), we found that there is no single RCM-GCM

combination outperforming all others for all considered

variables and metrics. We made a selection of the six

best-performing simulations as potential candidates and

verified whether they represent the multi-model mean for

the considered variables. As precipitation is considered,

the most important variable in ecosystem experiments, and

as most GCM downscalings have a large bias for this

variable, we use the precipitation bias as the decisive factor

to single out the simulation which will serve as forcing:

CCLM4-8-17 driven by EC-EARTH.

The units of the UHasselt Ecotron experiment are forced

with climate conditions along a global mean air temperature

(GMT) anomaly gradient, representing conditions of a

0 ◦C (historical), +1 ◦C (present day), +1.5 ◦C, +2 ◦C,

+3 ◦C, and +4 ◦C warmer world. Five-year time windows

corresponding to these warming levels are defined based on

when the 30-year averaged GMT anomaly of EC-EARTH,

the driving GCM, crosses these air temperature thresholds.

Subsequently, the ecotron forcing is extracted from the

3-hourly RCM simulation according to the time windows.

Our new methodology provides realistic climate forcing,

accounting for co-variances between climatic variables

and their change in variability, well representing possible

compound events. This is particularly interesting for

controlled environment facilities, as their setup allows
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to realistically simulate future climate by controlling

and measuring multiple parameters. Other controlled

environment facilities could also benefit from the proposed

methodology, depending on the posed research questions.

The protocol for selecting a suitable regional climate

simulation and extracting time series for the needed

variables based on the time window defined by a global

mean air temperature threshold provides a framework for

different types of manipulation experiments aiming to

investigate ecosystem responses to a realistic future climate

change, even without a gradient approach.
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