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Abstract: The form-finding analysis is a crucial step for

determining the stable self-equilibrated states for tenseg-

rity structures, in the absence of external loads. This form-

finding problem leads to the evaluation of both the self-

stress in the elements and the shape of the tensegrity struc-

ture. This paper presents a novel method for determining

feasible integral self-stress states for tensegrity structures,

that is self-equilibrated states consistent with the unilat-

eral behaviour of the elements, struts in compression and

cables in tension, and with the symmetry properties of the

structure. In particular, once defined the connectivity be-

tween the elements and the nodal coordinates, the feasible

self-stress states are determined by suitably investigating

the Distributed Static Indeterminacy (DSI). The proposed

method allows for obtaining feasible integral self-stress so-

lutions by a unique Singular Value Decomposition (SVD) of

the equilibriummatrix, whereas other approaches in the lit-

erature require two SVD. Moreover, the proposed approach

allows for effectively determining the Force Denstiy matrix,

whose properties are strictly related to the super-stability of

the tensegrity structures. Three tensegrity structures were

studied in order to assess and discuss the efficiency and

accuracy of the proposed innovative method.
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1 Introduction

Tensegrity structures are an intriguing class of reticulated

systems and hold promising possibilities in different ap-

plications: from architecture [1, 2] to civil engineering [3ś

6], from biology [7, 8] to aerospace [9ś11], as well as from

robotics [12ś15] to the design of metamaterials [16ś20].

Originally proposed by Buckminster Fuller [21], tenseg-

rity structures can be defined as a, usually free-standing,

pre-stressed, pin-jointed system, composed by a network of

tensile elements (cables) within a discontinuous set of com-

pressed elements (struts). The initial pre-stressed condition

allows for the rigidity and the stability of the tensegrity

structures [22].

It is evident that the mechanical behaviour of these

structures is highly dependent on the self-stress states [23].

Thus a complete analysis of tensegrity structures is made

of two key points: first, the form-finding problem, and then

the study of the response to the external loads [24].

The process of form-finding depends on the initial in-

put parameters, that is, the geometry of the structure and

the level of the self-stress in the elements [25, 26]. Com-

monly, both the geometry and the self-stress are unknown

variables of the problem. If only the latter is known, i.e. the

internal forces in the elements in the self-equilibrium state

are defined, the problem reduces to the seeking of the nodal

coordinates of the structure, which can be determined from

the analysis of the equilibrium states. On the other hand,

if the geometry of the tensegrity structure is known, that

is, the nodal coordinates and the connectivity between ele-

ments are prescribed, the problem turns out to be the initial

self-stress identification (force-finding problem) [27].

In the latter case, however, difficulties arise with the

evaluation of the level of the self-stress and then of suitable

self-stress vectors which taking into account both the uni-

lateral behaviour of the elements and the self-equilibrium

of the tensegrity structure [28]. This happens, especially, for

tensegrity structures with multiple independent self-stress

states [29]. Indeed, in general, the independent self-stress

modes obtained from the null-space of the equilibrium ma-
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trix do not meet the predefined unilateral behaviour of the

elements [30]. Thus, it is necessary to determine a special

combination of such independent self-stressmodes in order

to define possible feasible self-stress states [31].

It is worth to recall that, a feasible self-stress state is a

self-stress state consistent both with the self-equilibrium

of the tensegrity structure and the unilateral behaviour of

the elements, that is, cables in tension and struts in com-

pression [27]. If a feasible self-stress state also satisfies the

symmetry properties of the structure, it takes the name of

feasible integral self-stress state [32].

In the recent past, various efficient analytical or numer-

ical form-finding methods [33] have been proposed: among

the others, Force Density Method (FDM) [34ś36], program-

ming method [37ś40], dynamics relaxation method [41,

42], finite-element method [43, 44], optimization-based

method [45ś47].

In the present work, the FDM has been used in order

to tackle the self-equilibrium problem for tensegrity struc-

tures.

The concept of the force density, originally proposed

in [48], corresponds to the ratio between the internal forces

in the elements and their lengths. Such quantities are

clearly affected by the sign, i.e. positive for cables and neg-

ative for struts. By considering the force densities of the

elements, the non-linear problem of the equilibrium can

be neatly linearized [49].

Many researchers have made considerable efforts for

improving the application of the FDM to the form-finding

of tensegrity structures. Among them, Xian et al. [50] pro-

posed an optimization approach based on the FDM and

the mixed-integer nonlinear programming for the design

of tensegrity structures. The member connectivity, as well

as the nodal coordinates and force densities, are simulta-

neously used as design variables.

Cai et al. [51] studied the form-finding problem of

tensegrity structures with multiple equilibriummodes by

means of an equivalent optimization problem of an energy-

based objective function with Lagrange multipliers. Differ-

ent structural modes corresponding to different symmetry

grouping conditions were achieved.

Also, Cai and Feng [52] proposed an efficient form-

finding method based on the optimization method; here,

the force densities of the elements of a tensegrity structure

are obtained by minimizing a special objective function,

which satisfies the non-degeneracy necessary condition for

the force density matrix.

Zhang and Ohsaki [34] presented a numerical method

for the form-finding of tensegrity structures. In particular,

eigenvalue analysis and spectral decomposition were car-

ried out iteratively to find the feasible set of force densities

that satisfies the requirement on the rank deficiency of the

equilibrium matrix with respect to the nodal coordinates.

In addition, Zhang et al. [25] presented a highly effi-

cient form-finding method for tensegrity systems based on

the structural stiffness matrix defined as the derivative of

the out-of-balance force vector with respect to the nodal

coordinate vector.

Lee et al. [53] have studied the truncated polyhedral

tensegrity structures by means of a generalized form-

finding procedure by using the FDM combined with a ge-

netic algorithm. Additionally, Gan et al. [54] suggested a

novel and versatile numerical technique for determining a

self-stress state in a combination with a genetic algorithm

as a form-finding procedure for an irregular tensegrity struc-

ture.

Yuan et al. [55] presented a novel and versatile form-

findingmethod for tensegrity structures based onnonlinear

equilibrium equations where the nodal coordinates vectors

are variables. The input parameters for the form-finding

method are the topology, the initial configuration of the

structure, the rest lengths, and the axial stiffness of ele-

ments.

Koohestani [56] utilized the Faddeev-LeVerrier algo-

rithm to generate relationships between force densities of

elements, providing explicit analytical conditions for self-

stressed states. Thismethod only requires sumandmultipli-

cations as major computational operations and overcomes

complicated triangular factorizations and eigenvalue de-

compositions of the symbolic force density matrix.

Moreover, Gomez Estrada et al. [57] proposed a numer-

ical form-finding procedure which only requires the spec-

ification of the type of each member, i.e. cable or strut,

and the connectivity of the nodes. Iterative adjustment of

the member forces are made until the state of self-stress is

found.

Moreover, for describing the mechanical behaviour of

tensegrity structures [58ś60], the static and kinematic in-

determinacy evaluation can be effectively used as amethod

for structural identification. For defining the contribution

of each element to the total degree of indeterminacy of

the structure, also taking into account the influence of the

material properties, it can be used the distributed static

indeterminacy (DSI) value [61]. Thus, DSI can represent the

mechanical behaviour of flexible structures in the primary

design. Moreover, in [61] a unified method for the DSI eval-

uation is proposed, both for kinematically determinate and

indeterminate structures. It has been highlighted that since

DSI takes into account symmetry properties, a simple but

efficient grouping criterion of the elements of the structure

can be established for improving the efficiency of the force-

finding method.
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Notice that DSI values are related to both geometric and

stiffness symmetry properties of the structure; moreover,

stiffness symmetry (depending on the axial stiffness of the

elements) can be inconsistent with the geometric symmetry

(depending only on the position of the elements).

The application of DSI suggested in [61] concerns the

use of DSI as simple and efficient grouping criterion into a

specific Force Density Method called Double Singular Value

Decomposition (DSVD) [62]. Moreover, DSI valueswere used

as symmetry indicators for generating an initial group clas-

sification of the elements of a cable-strut structure for per-

forming a DSVD [63]. However such initial group clustering

of elements only reduces the iteration time of seeking a

proper grouping scheme for the DSVD.

Moreover, once obtained the self-stress states in the

elements, it is possible to determine the Force Density ma-

trix [64], whose characteristics are crucial for studying the

self-equilibrium problem and the stability conditions for

tensegrity structures [65, 66].

Many authors studied different kinds of problems re-

lated to the form-finding of the tensegrity structures based

on the properties of the Force Density matrix.

Chen et al. [65] pointed out an improved symmetry

method for the analytical form-finding of tensegrity struc-

tures based on the group representation theory and the

FDM. This approach requires only to specify the symmetry

properties and the connectivity of the structure. However,

with the increase of the element type, the computational

complexity of the determination of the Force Densitymatrix

increases.

Based on the characteristic polynomial of the sym-

bolic Force Density matrix, a general analytical scheme for

tensegrity form-finding analysis was proposed by Zhang et

al. [66]. Also for this case, the proposed method requires

high computational efforts as the geometrical complexity

of the structure increases

Tran and Lee [67] presented a numerical method for

form-finding of tensegrity structures in which the topology

and the types of members are the only required informa-

tion; the eigenvalue decomposition of the Force Density

matrix and the single value decomposition of the equilib-

rium matrix are performed iteratively.

Another relevant issue concerns stability conditions.

In this case, the Force Density matrix plays a fundamental

role in the analysis of the necessary and sufficient condi-

tions for the super-stability, i.e., the property for a tensegrity

structure to be stable irrespectively of the selection of ma-

terials and of the level of self-stress in the elements [68].

Indeed, a d-dimensional tensegrity structure is said to be

super-stable if the Force Density matrix is positive semi-

definite and its rank deficiency is equal to d+1, and it has a

non-degenerate geometry in the d-dimensional space [68].

In the literature, to the best of the Author’s knowledge,

the force-finding problem for tensegrity with multiple in-

dependent self-stress modes has been carried out by using

cumbersome approaches: optimization techniques, mixed-

integer nonlinear programming strategies, spectral decom-

positions, stiffness matrix evaluations and numerical itera-

tive procedures.

Thus, as mentioned above, a more efficient algorithm

for determining the feasible integral self-stress states for

tensegrity structures by using the DSI values needs to be

investigated. In particular, it should be avoided the sec-

ond Singular Value Decomposition (SVD) for reducing time-

consuming inherent the grouping operation.

In this paper, an innovative and efficient method for

determining feasible integral self-stress states for tensegrity

structures is proposed by considering the Distributed Static

Indeterminacy (DSI) evaluation. The only required initial

data are the topology of the structure, i.e. the connectivity

relations between the elements and their types (cables or

struts), and the nodal coordinates.

Two advantages of the proposed approach can be re-

marked. First, a unique (SVD) of the equilibrium matrix

has to be carried out for determining the independent self-

stressmodes,which span the null-space of thismatrix, then

through the DSI evaluation it is possible to determine the

feasible self-stress states. To this aim, a linear combina-

tion of the independent self-stress modes consistent with

the flexibility properties of the elements of the tensegrity

structure can be evaluated. From this stems the second ad-

vantage consisting in the possibility of obtaining different

feasible self-stress states according to the design needs by

choosing the material parameters of the elements, that is

the Young’s modulus and the cross-sectional area.

Such innovative method can be especially useful for

the analysis of tensegrity structures with multiple inde-

pendent self-stress states. Unlike the existing methods in

literature [27, 69, 70], in the proposed approach the com-

bined conditions coming from the stiffness symmetry and

the geometry symmetry of the tensegrity structure can be

satisfied without using further grouping operations, which

usually are inferred from a visual inspection of the struc-

ture.

Furthermore, it can be noted that the Force Density

matrix is strictly related to the connectivity properties of

the system, i.e. the relations between the elements of the

structure and the nodes, and to the level of the self-stress

in the elements.

The approach here proposed effectively allows for de-

termining the Force Density matrix and its properties with
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a low computational cost. It reveals to be useful for all

the analysis for the tensegrity structures above recalled:

the form-finding analysis, the investigation of the super-

stability conditions, and the study of the relations between

elements and of the self-stress level according to the actual

axial stiffness of the elements.

The paper is organized as follows: Section 2 briefly in-

troduces the basic idea of the FDM. In Section 3, the concept

of the DSI is recalled and its application to the tensegrity

structures is explained. Section 4 is devoted to the descrip-

tion of the novel method here proposed. Section 5 recalls

the definition of the Force Density matrix and illustrates its

formulation according to the proposed approach. Finally,

for validating the method several well-known tensegrity

structures are studied in Section 6.

2 Force Density Method

In this Section, we briefly recall the self-equilibrium prob-

lem for tensegrity structures. The following assumptions

are made:

• elements (struts and cables) are rectilinear and con-

nected only at their ends by pin-joints;

• nodal coordinates and nodal connectivity are given;

• no external loads are applied;

• the cross-sectional area A of each element remains

unchanged under the pre-stress.

We consider a tensegrity structure with e elements (st
struts and c cables, that is, st + c = e) connected to n nodes

(e < 3n). Nodal coordinates are expressed in a Cartesian or-

thogonal reference system O{ex, ey, ez} and are collected

in three vectors x, y and z ∈ R
n, respectively.

By the Graph Theory [71], member connectivity rela-

tions can be expressed by means of the so-called Connec-

tivity matrix C ∈ R
exn [36]. In particular, if the member k

connects the node i to the node j, then the k-th row of C

has only two non-zero entries in the i-th and j-th position

(i < j), which are equal to 1 and −1 respectively. Hence:

[C]k,p =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

+1 if p = i

−1 if p = j

0 otherwise

(1)

k = 1, . . . , e, p = 1, . . . , n.

Furthermore, the length lk of the k-th member of the struc-

ture can be expressed as:

lk =

√︁

(︀

xi − xj
)︀2

+
(︀

yi − yj
)︀2

+
(︀

zi − zj
)︀2
. (2)

For our purposes, the matrix L ∈ R
exe is defined as the

diagonal matrix by collecting the lengths of the elements.

The self-equilibrium problem can be solved by using

FDM. To this aim, for the k-th element of the structure it is

possible to define the force density qk:

qk =
tk
lk
, (3)

where tk denotes the internal force in the element k (tk
is positive for cables and negative for struts) in the self-

stress state. Force densities of the elements can be grouped

in the vector q ∈ R
e = {q1, q2, . . . , qk}, whose matrix

diagonalization is Q ∈ R
exe, i.e., Q = diag(q).

Considering both Eq. (1) and Eq. (3), the equilibrium

equations for the tensegrity structure in the three directions

ex, ey, and ez can be then expressed in the followingmatrix

linear form [33]:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

CTQCx = 0

CTQCy = 0,

CTQCz = 0

(4)

where the superscript łTž indicates the usual matrix trans-

position operation.

Alternatively, by considering the element internal

forces vector t ∈ R
e = {t1, t2, . . . , tk}, the equilibrium

equations in Eq. (4) can be written as:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

CTdiag(Cx)L−1t = 0

CTdiag(Cy)L−1t = 0.

CTdiag(Cz)L−1t = 0

(5)

By introducing the equilibriummatrixA ∈ R
3nxe [64], Eq. (5)

can be rewritten in a compact form as:

At = 0, (6)

where the equilibrium matrix A can be expressed as:

A =

⎡

⎢

⎣

CTdiag(Cx)L−1

CTdiag(Cy)L−1

CTdiag(Cz)L−1

⎤

⎥

⎦

. (7)

Let rA be the rank of A; if rA < e, non-trivial solutions exist.

These non-trivial solutions correspond to s independent

self-stress modes, which can be viewed as the bases of the

vector space of the internal forces in the elements, with:

s = e − rA ≥ 1. (8)

Hence, it is possible to define a matrix S ∈ R
exs whose i-th

column is the si independent self-stress mode, i.e.:

S = [s1, s2, . . . , ss] =

⎡

⎢

⎢

⎢

⎢

⎣

s11 s21 · · · ss1

s12 s22 · · · ss2
...

... · · ·
...

s1e s2e · · · sse

⎤

⎥

⎥

⎥

⎥

⎦

. (9)
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A general solution of Eq. (6) can be determined as a linear

combination of s independent self-stress modes [29], that

is:

t = Sα, (10)

where αi, i = 1, 2, . . . , s, are arbitrary real coefficients of

the linear combination collected in the vector α ∈ R
s.

If the null-space of the equilibriummatrixA is spanned

by a unique independent self-stress mode, i.e. if s = 1, then

such vector represents the only feasible self-stress state of

the structure. In this case, the matrix S becomes a column

vector. It can be noted that in this case, the independent

self-stress mode should be consistent with the unilateral

behaviour of the elements for determining the feasible self-

stress states.

If there are multiple independent self-stress modes,

i.e. if s > 1, then it is necessary to calculate suitable linear

combinations of these bases bymeans of Eq. (10) since such

modes, usually, do not satisfy the unilateral behaviour of

the elements as well as the symmetry of the structure.

Indeed, independent self-stress modes resulting from

the null-space of the equilibriummatrix usually only satisfy

the nodal equilibrium conditions, thus cannot be utilized

directly. On the other hand, unilateral conditions related

to the mechanical behaviour of struts and cables are not

considered in the formulation of the matrix A.

However, for statically indeterminate structures (s > 1)

exhibiting symmetry properties, as is often the case for

tensegrity structures, many elements can be collected into

suitable groups according to the symmetry [28]. In this

vein, the evaluation of Eq. (10) can be simplified taking

into account the symmetry constraints of the geometry of

the structure, that is, the same self-stress can be assigned

to elements in the same symmetric position. Thus, it can

be viewed as a constraint on the self-stress distribution in

the elements of the structure.

Definitively, the aim is the evaluation of the self-stress

distribution in the elements consistent with the symmetry

properties of the structure and their unilateral behaviour,

that is the feasible integral self-stress states.

3 Distributed static indeterminacy

Let d ∈ R
3n, and e ∈ R

e denote the vector of infinitesimal

nodal displacements and the vector ofmember elongations,

respectively. It is possible to define the relations among

such kinematic variables in terms of the compatibility ma-

trix B ∈ R
ex3n [60] such that:

Bd = e. (11)

From the principle of virtual work, it follows that B = AT

[58]. Let rB be the rank of B (rB = rA); then the numberm of

the possiblemechanisms which span the null-space of B is

m = 3n − rB. Moreover, the number mi of the infinitesimal

mechanisms can be obtained by excluding the rigid-body

motions in the three-dimensional space, i.e., mi = m − 6.

Taking into account the effects of initial elongations ek,

k = 1, 2,. . . , e, under the pre-stress, and by assembling the

initial elongations vector e0 ∈ R
e, constitutive equations

for the tensegrity structures can be then expressed as [61]:

e = e0 + Ft, (12)

where F ∈ R
exe is the diagonal flexibility matrix, whose

k-th diagonal entry is lk/EkAk, with Ek and Ak the Young’s

modulus and the cross-sectional area of the element, re-

spectively.

Moreover, in the standard linear algebraic theory of

vector spaces, it results that all the information required

for the analysis of a framework are contained in the four

fundamental vector spaces associated with the equilibrium

matrixA (for further details about their kinematic and static

interpretation [59]).

In particular, the row-space, the null-space, the

column-space and the left null-space of A, can be asso-

ciated with the equilibrium matrix. In particular, the left

null-space and the null-space of A are spanned by the mi

infinitesimal mechanisms and the s independent self-stress

modes, respectively. For what considered below, it is pos-

sible to recall the well-known properties of orthogonality

among such vector subspaces [59], thus it is possible to

write:

ST (e0 + Ft) = 0, (13)

and substituting Eq. (9) in (13):

ST (e0 + FSα) = 0. (14)

It is possible to recall that for a full rankmatrixP ∈ R
ixj,

with j ≤ i, the square matrix PTP is always positive definite.

Moreover, letQ∈ R
ixi symmetric and positive definite, then

PTQP is a symmetric, non-singular, positive definite matrix.

Thus, thematrixSTFS is a symmetric, non-singular, positive

definite matrix.

Therefore, from Eq. (14) it is possible to determine the

vector α as:

α = −
(︁

STFS
)︁−1

STe0. (15)

Hence, the element internal forces vector t can be obtained

by substituting Eq. (15) into Eq. (10):

t = −S
(︁

STFS
)︁−1

STe0. (16)



A novel method for determining the feasible integral self-stress states for tensegrity structures | 75

By introducing the diagonal stiffness matrix K ∈ R
exe, such

that K = F−1, (the k-th diagonal entry of K is EkAk/lk)

Eq. (15) can be rewritten as:

t = −K

[︂

FS
(︁

STFS
)︁−1

ST
]︂

e0 = −KΩ e0, (17)

where the square matrix Ω ∈ R
exe(= FS(STFS)−1ST) corre-

lates different aspects of the structure: the geometrical con-

figuration, the topology and the stiffness properties of the

elements, defined by the designers. Since the matrix STFS

in Eq. (15) is always positive definite; Eq. (17) is applicable

for both kinematically determinate and indeterminate struc-

tures. Equation (17) is a constitutive equation describing

the relation between the internal forces in the elements and

their initial elongation. From the definition of the square

matrix Ω, it results that Ω is an idempotent singular matrix,

that is, Ω2 is equal to Ω, hence its eigenvalues are either

0 or 1. Furthermore, the rank of Ω is equal to the sum of

its eigenvalues, or equivalently, is equal to its trace. The

sum of all the main diagonal elements γi (i = 1, 2, . . . , e)

is equal, thus, to the total degree s of static indeterminacy

of the structure. Such diagonal entries γi, collected into the

vector ω ∈ R
e, are defined in the literature as Distributed

Static Indeterminacies (DSI) [63]: indeed γi represents the

contribution of the i-th element of the structure to its total

degree of static indeterminacy.

Moreover, it is possible to show that elements having

the same symmetry properties have the same DSI values;

indeed, DSI can be viewed as an indicator of the symmetry

properties of the structure [61].

Finally, if the flexibility matrix F is equal to the iden-

tity matrix I, then the matrix Ω becomes the matrix Ωm =

S(STS)−1ST ∈ R
exe, whose diagonal terms can be collected

in the vector ωm ∈ R
e. It can be noted that the matrix Ωm,

in addition to the above-recalled algebraic properties of

the matrix Ω, is characterized by the further property of

being always symmetric. In this particular case, the matrix

Ωm is not affected by the axial stiffness properties of the

elements; hence, it is strictly related to the self-equilibrium

conditions of the structure.

4 The new approach for the

determination of the feasible

integral self-stress states

We consider a test vector tp ∈ R
e, consistent with the sign

of the internal forces in the elements, i.e. positive in the

cables and negative in the struts, built as follows:

tp,i =

{︃

+1 if element i is a cable

−1 if element i is a strut
, i = 1, . . . , e. (18)

By considering a single element of the structure subjected

to an initial elongation, it results that shortening generates

tension, while extension creates compression. Thus, an

initial elongations vector e0 can be associated with the test

vector tp:

e0 = −F tp. (19)

Substituting Eq. (19) into Eq. (17), we have:

t = KΩF tp. (20)

It is easy to prove that KΩF is equal to ΩT (see Appendix

A); therefore, Eq. (20) can be rearranged as:

tn = ΩT tp. (21)

From the definition of thematrixΩ and fromEq. (18), the in-

ternal forces vector tn obtained from the Eq. (21) takes into

account both the unilateral behaviour of the elements and

the self-equilibrium conditions of the structure. Moreover,

as it results from the numerical experiments performed in

Section 6, symmetric assignments of the axial stiffness of

the elements lead to a symmetric distribution of the internal

forces in the elements. Thus, such a vector represents a fea-

sible integral self-stress vector for the tensegrity structure.

Moreover, it is worth to observe that, since the definition of

the matrix Ω, the Eq. (21) is strictly related to the material

properties of the elements, represented by the matrix F.

In order to verify the accuracy of the numerical analy-

ses performed in Section 6, the vector εu ∈ R
e represents

the unbalanced residual normalized internal forces defined

as:

εu = At, (22)

and its Euclidean norm can be used to evaluate the numer-

ical errors.

The proposedmethod, coded usingWolframMathemat-

ica 11.0, can be outlined as follows. Assigned the element

connectivity, by means of the matrix C, and the geometry

of the structure in terms of the nodal coordinate vectors x,

y and z, then:

Step 1: Assemble the equilibrium matrix A by using

Eq. (7).

Step 2: Define the material parameters of the elements,

that is, the Young’s modulus Ek and the cross-

sectional area Ak, and then construct the flexi-

bility matrix F.
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Step 3: Collect the prototype vector tp, according to the

unilateral behaviour of the elements, by means of

Eq. (18).

Step 4: Determine the null-space of the equilibrium ma-

trix A and then assemble the self-stress matrix S.

Step 5: Calculate the matrix Ω and thereafter evaluate the

feasible self-stress states tn by using the Eq. (21).

Step 6: Compute the norm of the unbalanced residual nor-

malized internal forces vectors in order to verify

the accuracy of the analyses.

It is worth to note that for tensegrity structures with a

unique independent self-stress mode, that is s = 1, the fea-

sible self-stress states calculated by using the Eq. (21) is ob-

viously not affected by the assignments of the axial stiffness

of the elements. Conversely, for tensegrity structures with

multiple independent self-stress modes, that is, for s > 1,

different choices of the axial stiffness of the elements lead

to different linear combinations of the above-mentioned in-

dependent self-stress modes, hence, to different self-stress

states.

Conclusively, it can be noted that symmetric distribu-

tions of the axial stiffness of the elements correspond to

symmetric internal forces in the elements, thus lead to fea-

sible integral self-stress states consistent both with the stiff-

ness symmetry and the geometrical symmetry properties

of the structure.

5 An eflcient approach for

determining the Force Density

Matrix

In this section, we briefly recall the definition of the Force

Density matrix [64], always a square symmetric matrix. In

particular, by using the Eq. (4), the equilibrium equations

for the tensegrity structure, projected in the three directions

ex,ey, andez, can be then expressed in the followingmatrix

linear form:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

Dsx = 0

Dsy = 0,

Dsz = 0

(23)

withDs ∈ R
exe the Force Densitymatrix, defined as follows:

Ds = CTQC. (24)

A non-degenerate tensegrity structure is super-stable, if

the rank deficiency nD of the Force Density matrix, that is

the number of its null eigenvalues, is equal to d + 1(λ1 =

. . . = λd+1 = 0), and the remaining eigenvalues are strictly

positive (0 < λd+2 ≤ . . . ≤ λe).

Eq. (24) represents the standard formulation of the

Force Density matrix Ds. The major difficulties in evalu-

ating Ds trough Eq. (24) comes from the determination of

the components of the diagonal matrix Q, especially for

tensegrity structures with multiple independent self-stress

states, as explained in the previous section.

We recall that independent self-stress modes, usually,

are not consistent with the signs of the internal forces in

the elements, i.e. positive for cables and negative for struts,

since the self-equilibrium conditions do not take into ac-

count the unilateral behaviour of the elements. Moreover,

it can be observed that for a tensegrity structure with multi-

ple independent self-stress states the Force Density matrix

obtained by considering a single independent self-stress

mode should be indefinite, that is, it is neither positive

semi-definite nor negative semi-definite.

For these reasons, here an alternative formulation of

the Force Density matrix Ds is proposed. Indeed, by recall-

ing the algorithm for the determination of the feasible inte-

gral self-stress states proposed in the previous section, and

by using the Eq. (21) and Eq. (3), it is possible to rewrite Ds

as follows:

Ds = CTQC = CTdiag
(︁

L−1tn

)︁

C (25)

= CTdiag
(︁

L−1ΩT tp

)︁

C,

where it is recalled that the diagonal matrix Q is equal to

diag(L−1tn).

Since our approach allows for efficiently evaluating the

feasible integral self-stress states of a tensegrity structure

(see Sect. 4), it can now effectively employed also for calcu-

lating the Force Density matrix that can be determined by

performing a unique SVD of the equilibrium matrix of the

structure and by evaluating the DSI values of the elements.

Notice that, different choices of the feasible self-stress

states lead to different Force Density matrices and, thus, to

different eigenvalues.

Since the geometry and the connectivity properties of

the structure are given, the equilibriummatrixA, see Eq. (7),

remains unchanged, that is, such matrix is constant in the

force-finding problem in the Eq. (6).

Thus, the force-density problem in the Eq. (23) can be

seen as an alternative representation of the self-equilibrium

problem represented by Eq. (7).

Hence, rank deficiency, as well as, the sign of non-zero

eigenvalues of the Force Density matrix, evaluated by using

Eq. (25), remain unvaried irrespective of any feasible self-

stress state considered.



A novel method for determining the feasible integral self-stress states for tensegrity structures | 77

Hence, by using the Eq. (25) it is possible to effectively

evaluate the matrix Ds also for verifying the super-stability

conditions for tensegrity structures.

6 Numerical examples

In this section, three well-known tensegrity structures have

been studied in order to compare the results available in

the literature with the results obtained bymeans of the new

method here proposed. In particular, we analyze the follow-

ing tensegrity structures: the Quadruplex; the Snelson’s X

beam with three modules; the Octahedral cell.

Different assignments of the Young’s modulus and the

cross-sectional area of the elements were made in order

to calculate the corresponding different feasible self-stress

states by evaluating theDSI vectorω and the corresponding

internal force vector t.

Specifically, for each of the three tensegrity structures,

the analysis was conducted by considering five different

conditions:

1) the case in which the flexibility matrix is

equal to the identity matrix, that is, F = I; in

this case, the DSI vector coincides with ωm

and the corresponding internal force vector

is denoted by tnm;

2) a possible assignment of the axial stiffness

of the elements which lead to the results re-

ported by the literature; in such case, the

vector named ω (literature) and the vector

termed t (literature) were calculated

3), 4) and 5) two symmetric distribution (called n1 and n2)

of the axial stiffness of the elements and a

not-symmetric distribution (called n3) of the

axial stiffness of the elements, which yield to

thedetermination of theDSI vectorsωn1,ωn2,

ωn3 and of the related internal force vectors

tn1, tn2, tn3, respectively.

Furthermore, for both the Snelson’s X beam with three

modules and the Octahedral cell (tensegrity structures with

multiple independent self-stress modes) three further dis-

tributions of the axial stiffness of the elements, which also

allow for determining results equal to those reported by the

literature, have been considered.

Moreover, for the tensegrity structures analysed, the

Force Density matrices have been calculated. Their rank

deficiencies, as well as, their eigenvalues have been deter-

mined in order to evaluate the super-stability conditions of

the structures.

Finally, in order to compare the results corresponding

to different stiffness properties, the internal force vectors

have been normalized, and the force densities of the ele-

ments have been normalized respect to the force density of

the elements belonging to the first group.

6.1 Quadruplex

The tensegrity Quadruplex analyzed, see Figure 1, consists

of n = 8 nodes and e = 16 elements, i.e. 4 struts and 12 cables,

Figure 1: Quadruplex, perspective view. Thick cylinders represent

the struts. Different colours have been assigned according to the

value of the internal forces in the elements, which are labelled

according to the connectivity matrix

Table 1: Axial stiffness of the elements of the Quadruplex

F = I literature n1 n2 n3

Element EkAk (N) EkAk (N) EkAk (N) EkAk (N) EkAk (N) Element

struts (1-4) 1645.33 106 106 106 106 struts (1-3)

cables (5-12) 1000 49·103 49·103 24.5·103 1.5·106 strut (4)

cables (13-16) 1137.05 49·103 24.5·103 49·103 24.5·103 cables (5-10)

49·103 cables (11-12)

49·103 cables (13-15)

39.2·103 cable (16)
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and its geometrical configuration can be found in [61]. In

particular, the top square base and the bottom square base

are rotated with respect to each other by a twist angle equal

to π/4; such bases are inscribed in a circle of radius equal

to 707 mm, the height of the prism is equal to 1000 mm. In

Table 1 are shown the assignments of the axial stiffness of

the elements of theQuadruplex,whereas the corresponding

DSI values of the elements are shown in Figure 2.

As it can be observed, by increasing the axial stiff-

ness of an element of the structure, its DSI value decreases

whereas theDSI values of the other elements increase.More-

over, symmetric assignments of the axial stiffness, namely

the first four cases analysed, lead to a symmetric distribu-

tion of DSI values. The rank of the equilibrium matrix A is

15, thus the structure has one self-stress mode, i.e. s = 1,

and it possesses 3 infinitesimal mechanisms. Furthermore,

by using Eq. (21), it is possible to evaluate the feasible self-

stress states, see Figure 3. The figure clearly shows that,

as expected, the normalized internal force vectors do not

change as the axial stiffness’s of the elements vary, also for

not-symmetric distribution of the axial stiffness.

As it can be noted in Figure 3, the elements of the

Quadruplex can be collected in three groups according to

their internal forces, aswell as to their force densities: struts

(1-4), cables (5-12) and cables (13-16). In particular, the nor-

malized force density of the elements of the first group is

Figure 2: DSI of the elements of the Quadruplex for different assignments of the axial stiffness

Figure 3: Internal forces in the elements of the Quadruplex as the axial stiffness of the elements vary
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Figure 4: Eigenvalues of the Force Density matrices of the Quadruplex

Table 2: Norm of the unbalanced residual normalized internal forces vectors of the Quadruplex

tnm t (literature) tn1 tn2 tn3

[[εu]] 5.54·10−16 5.73·10−16 5.76·10−16 6.03·10−16 5.82·10−16

equal to −1, the normalized force density of the elements

of the second group is equal to about 0.7071, and the nor-

malized force density of the elements of the third group is

equal to 1.

Moreover, from the analysis of the Force Density ma-

trix, it results that the Quadruplex is a super-stable tenseg-

rity structure. Indeed, its Force Density matrix is a positive

semi-definite matrix with four zero eigenvalues, as shown

in Figure 4. Obviously, the corresponding eigenvalues eval-

uated in the five different assignments of the axial stiffness

of the elements are identical.

Finally, the norms of the unbalanced residual normal-

ized internal forces vectors are calculated in order to verify

the accuracy of the method. As it is shown in Table 2, such

norms are close to zero.

6.2 Snelson’s X beam with three modules

The Snelson’s X beam shown in Figure 5 is made of three

modules; its topology and geometry are described in [27].

The Snelson’s elementary module has dimensions in x and

y directions equal to 3000 mm and 2000 mm, respectively.

The tensegrity structure has 8 nodes and it is composed of

16 elements, 10 cables and 6 struts. From the analysis of

the null-space of the equilibrium matrix A, it results that

its rank is equal to 13, thus the tensegrity structure has 3

independent self-stress states. Moreover, the number of the

Figure 5: Snelson’s X beam with three modules, perspective view.

Thick cylinders represent the struts. Different colours have been as-

signed according to the value of the internal forces in the elements,

which are labelled according to the connectivity matrix

infinitesimal mechanisms is equal to 0, that is the Snel-

son’s X tensegrity beam analyzed is kinematically determi-

nate. The normalized feasible self-stress states evaluated

by means of the algorithm presented in [32] are displayed

in Figure 5.

In Table 3 are listed the assignments of the axial stiff-

ness of the elements of the Snelson’s X beam, whereas the

related DSI values of the elements are shown in Figure 6.

In order to evaluate how the internal forces vary as

the stiffness properties of a single group of the elements

change, the case n1 and the case n2 differs only for the fact

that in the case n2 the stiffness assigned to the cables 9-10

is greater than the stiffness assigned to the same elements

in the case n1.
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Table 3: Axial stiffness of the elements of the Snelson’s X beam with three modules

F = I literature n1 n2 n3

Element EkAk (N) EkAk (N) EkAk (N) EkAk (N) EkAk (N) Element

cables (1-4) 3000 9.714·106 3.238·106 3.238·106 9.714·106 cables (1-2)

cables (5-6) 3000 6.48·105 3.238·106 3.238·106 3.238·106 cables (3-6)

cables (7-8) 2000 18.78·106 3.238·106 3.238·106 6.476·106 cables (7-9)

cables (9-10) 2000 24·106 3.238·106 16.19·106 12.952·106 cable (10)

struts (11-14) 3605.55 19.428·107 19.428·107 19.428·107 16.19·107 struts (11-12)

struts (15-16) 3605.55 19.428·107 19.428·107 19.428·107 19.428·107 struts (13-16)

Figure 6: DSI of the elements of the Snelson’s X beam with three modules for different assignments of the axial stiffness

Table 4: Axial stiffness of the elements of the Snelson’s X beam with

three modules which lead to the results obtained in the literature

exS1 exS2 exS3

Element EkAk (N) EkAk (N) EkAk (N)

cables (1-4) 1.44·106 3.238·104 19.428·106

cables (5-6) 4.69·105 8.42·103 5.11·106

cables (7-8) 64.76·106 16.19·106 16.19·106

cables (9-10) 64.76·106 16.19·106 3.238·106

struts (11-14) 25.9·107 97.14·106 19.428·107

struts (15-16) 25.9·107 12.95·107 97.14·106

As well as for Quadruplex, by increasing the axial stiff-

ness of cables 9-10, their DSI values decrease, whereas DSI

values of the other elements increase.

It is worth to note that the feasible self-stress states

obtained in literature, see [27], can be obtained for several

distributions of the stiffness of the elements; three exam-

ples are listed in Table 4 (named exS1, exS2, exS3).

The analyses of the feasible self-stress states obtained

by using the proposed method lead to the normalized in-

ternal forces in the elements shown in Figure 7.

It can be observed that for F = I, for the case named

n1, as well as for the case n2, although the distribution of

the axial stiffness of the elements is different, the elements

of the tensegrity structure can be collected in the same

groups according to the normalized internal forces. This

happens because the matrix Ω takes into account not only

the stiffness symmetry but also the geometric symmetry

properties of the structure.

By considering both the case n1 and n2, it can be seen

that by increasing the axial stiffness of the cables 9-10, their

internal forces increase. Simultaneously, the tensile inter-

nal forces in the cables 1-4 and in the cables 7-8, as well as

the compressive internal forces in the struts 11-14 decrease.

At the same time, the tensile internal forces in the cables

5-6, as well as, the compressive internal forces in the struts

15-16 increase.

Such sensitivity analyses can be easily conducted by

varying the Young’s modulus and the cross-sectional area
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Figure 7: Internal forces in the elements of the tensegrity Snelson’s X beam with three modules as the axial stiffness of the elements vary

(note that the origin of the vertical axes is 0.13)

Table 5: Force densities of the elements of the Snelson’s X beam with three modules, normalized with respect to the force density of the

first group

F = I literature n1 n2 n3

Element qk qk qk qk qk Element

cables (1-4) 1 1 1 1 1 cables (1-2)

cables (5-6) 0.92 1 0.87 0.92 1.02 cables (3-4)

cables (7-8) 1 1 1 1 0.95 cables (5-6)

cables (9-10) 1.92 2 1.87 1.92 1 cable (7)

struts (11-14) −1 −1 −1 −1 1.02 cable (8)

struts (15-16) −0.92 −1 −0.87 −0.92 1.95 cable (9)

1.97 cable (10)

−1 struts (11-12)

−1.02 struts (13-14)

−0.95 struts (15-16)

Table 6: Norm of the unbalanced residual normalized internal forces vectors of the Snelson’s X beam with three modules

tnm t (literature) tn1 tn2 tn3

[[εu]] 2.54·10−16 4.74·10−16 2.35·10−16 2.15·10−16 3.04·10−16

either of a unique element of the structure or of a single

group of the elements.

Moreover, the same behaviour can be noted by exam-

ining the force densities of the elements, listed in Table 5,

normalized respect to the force density of the first group.

Such feasible force densities are in perfect agreement with

the results obtained in [27] (refer to Table III in the refer-

ence).

The eigenvalues of the Force Density matrices Ds, cal-

culated by using the Eq. (25), are shown in Figure 8. It can

be observed that these matrices are semi-positive definite

and their rank deficiencies are equal to 5. However, such

Snelson’s X beam has a degenerate geometry in a three-

dimensional space, thus, it is not super-stable.

The norms of the unbalanced residual normalized inter-

nal forces vectors [[εu]] are shown in Table 6, and it can be
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Figure 8: Eigenvalues of the Force Density matrices of the tensegrity Snelson’s X beam with three modules

observed that such values are extremely close to 0, which

demonstrates the accuracy of the proposed method.

6.3 Octahedral cell

The Octahedral cell, shown in Figure 9, is made of 6 nodes

and 15 elements, 12 cables and 3 struts. Its topology and

geometry are illustrated in [29, 72]. In particular, the length

of the vertical strut (strut 15) is equal to 1000 mm, whereas

the lengths of the horizontal struts (struts 13-14) are equal to

about 666.667 mm. The feasible self-stress states presented

in the literature [29, 72] are also shown in Figure 9.

The analysis of the equilibrium matrix A conducts to 3

independent self-stress modes, that is s = 3, and 0 infinites-

imal mechanisms, thus the Octahedral cell is a statically

indeterminate and kinematically determinate tensegrity

structure.

In Table 7 are listed thedistribution of the axial stiffness

of the elements of the Octahedral cell, whereas the related

DSI values of the elements are illustrated in Figure 9ś10. In

particular, the case n2 differs from the case n1 only for the

axial stiffness of the cables 1-4.

Figure 9: Octahedral cell, perspective view. Thick cylinders repre-

sent the struts. Different colours have been assigned according to

the value of the internal forces in the elements, which are labelled

according to the connectivity matrix

Also for the Octahedral cell, it can be observed that

by increasing the axial stiffness of the cables 1-4 their DSI

values decrease, whereas DSI values of the remaining el-

ements increase. Moreover, also in this case, the feasible

self-stress states reported in the literature can be obtained

Table 7: Axial stiffness of the elements of the Octahedral cell

F = I literature n1 n2 n3

Element EkAk (N) EkAk (N) EkAk (N) EkAk (N) EkAk (N) Element

cables (1-4) 471.405 3.238·106 3.238·106 16.19·106 9.714·106 cables (1-2)

cables (5-12) 600.925 19.99·106 3.238·106 3.238·106 3.238·106 cables (3-12)

struts (13-14) 666.667 48.57·106 65.94·106 65.94·106 65.94·106 strut (13)

strut (15) 1000 48.57·106 65.94·106 65.94·106 32.97·106 struts (14-15)
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Figure 10: DSI of the elements of the Octahedral cell for different assignments of the axial stiffness

Figure 11: Internal forces in the elements of the Octahedral cell as the axial stiffness of the elements vary (note that the origin of the vertical

axes is 0.13)

Table 8: Axial stiffness of the elements of the Octahedral cell which

also lead to the results obtained in the literature

exO1 exO2 exO3

Element EkAk (N) EkAk (N) EkAk (N)

cables (1-4) 3.238·105 5.05·106 1.619·106

cables (5-12) 16.19·106 48.57·106 43.472·106

struts (13-14) 97.14·106 12.952·107 19.428·107

strut (15) 40.534·106 12.952·107 11.333·107

for several assignments of the axial stiffness of the elements

of the structure. In particular, in Table 8 are listed three

possible assignments (termed exO1, exO2, exO3).

As it can be seen in Figure 11, for F equal to the identity

matrix, as well as for the cases named n1 and n2, the ele-

ments of the Octahedral cell can be collected in the same

groups according to the normalized internal forces. In par-

ticular, four groups can be identified: cables 1-4, cables 5-12,

struts 13-14 and strut 15. Such a grouping scheme is consis-

tent with both the geometrical symmetry and the stiffness

symmetry of the structure.
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Table 9: Force densities of the elements of the Octahedral cell, normalized with respect to the force density of the first group

F = I literature n1 n2 n3

Element qk qk qk qk qk Element

cables (1-4) 1 1 1 1 1 cables (1-4)

cables (5-12) 0.65 0.5 0.76 0.92 0.8 cables (5,7,9,11)

struts (13-14) −1.65 −1.5 −1 −1.76 0.81 cables (6,8,10,12)

strut (15) −1.3 −1 −0.87 −1.53 −1.8 strut (13)

−1.81 strut (14)

−1.62 strut (15)

Table 10: Norm of the unbalanced residual normalized internal forces vectors of the Octahedral cell

tnm t (literature) tn1 tn2 tn3

[[εu]] 6.38·10−16 8.05·10−16 6.23·10−16 6.76·10−16 6.27·10−16

Figure 12: Eigenvalues of the Force Density matrices of the tensegrity Octahedral cell

Moreover, by comparing the case n1 with the case n2,

it emerges that by increasing the axial stiffness of the ca-

bles 1-4 their tensile internal forces decrease, as well as the

compressive internal forces in the horizontal struts 13-14

decrease. At the same time, the tensile internal forces in

the cables 5-12 and the compressive internal force in the

vertical strut 15 increases.

The normalized force densities of the elements of the

Octahedral cell consistent with the different assignments

of the axial stiffness of the members of the structure are

listed in Table 9.

By using the Eq. (25) it is possible to determine the

Force Density matrices for each of the feasible self-stress

states; their eigenvalues are shown in Figure 12.

It can be noted that the Octahedral cell is a super-stable

tensegrity structure; indeed, it has a non-degenerate geom-

etry in the three-dimensional space, and its Force Density

matrix is semi-positive definite with rank deficiency equal

to 4. Such conditions occur for each of the axial stiffness as-

signments of the elements, thus for each feasible self-stress

states obtained by using the proposed approach.

Finally, it is possible to calculate the norm of the unbal-

anced residual normalized internal forces vectors [[εu]], see

Table 10, showing the accuracy of the proposed method.

7 Discussion and conclusions

A novel efficient method has been proposed for determin-

ing feasible self-stress states for tensegrity structures by
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investigating the Distributed Static Indeterminacy of the

tensegrity structure.

The proposed methods have some advantages over the

existing form-finding methods; in particular: (i) it allows

for evaluating feasible self-stress states by performing only

a unique Singular Value Decomposition of the equilibrium

matrix A; (ii) it only requires, as preliminary information,

the connectivity of the elements and their type, i.e. cable

or struts, and the nodal coordinates; (iii) it is possible to

obtain several feasible self-stress states as linear combina-

tions of the independent self-stress modes according to the

assignments of the axial stiffness of the elements.

This approach becomes particularly efficient for tenseg-

rity structures with multiple self-stress states, as shown in

the examined examples since it is not necessary to perform

further SVD decompositions or to initialize grouping oper-

ations of the elements.

Indeed, such an approach consists of determining suit-

able linear combinations of the independent self-stress

modes according to the axial stiffness of the elements. Thus,

it overcomes difficulties arising with complicated optimiza-

tion techniques, mixed-integer nonlinear programming

strategies, spectral decompositions, stiffness matrix evalu-

ations and numerical iterative procedures presented in the

literature. This main feature reduces the time consuming

of computational operations.

Moreover, it emerges that different feasible integral

self-stress states can be easily obtained. In fact, feasible

self-stress states consistent with the symmetry properties

of the structures can be simply calculated by considering

symmetric axial stiffness assignments to the elements of

the tensegrity structure.

From the knowledge of the independent self-stress

modes, and the evaluation of the Distributed Static Indeter-

minacy values related to the axial stiffness of each element,

it is possible to address the self-stress identification of the

tensegrity structures. Indeed, the proposed procedure by-

pass the element grouping operations needed in most of

the state-of-the-art methods.

Furthermore, sinceDSI values are indicators that reflect

the combined influence of the geometry, topology and axial

stiffness of each element, different choices of element’s stiff-

ness lead to different feasible self-stress states. In particular,

the load-bearing capacity of an element becomes lower as

its DSI value increases. Thus, once evaluated the DSI of the

elements of the structure, it is possible to calibrate each ax-

ial stiffness for achieving the desiredmechanical behaviour

of the entire structure.

The numerical analyses have shown that the norms of

the unbalanced residual internal forces, evaluated for each

case, are extremely close to zero, thus the accuracy of the

proposed method has been proved.

Furthermore, the proposed approach allows to effec-

tively determine the Force Density matrix of the structure,

in order to evaluate the conditions of the super-stability for

the tensegrity structure.

Moreover, the innovative method can be generalized

by using a parametric description of the geometry of the

structures in order to study how the internal forces in the

elements vary as the geometrical parameters change, also

for large-scale tensegrity structures.
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A Appendix

We can explicitly calculate KΩF in terms of the matrix S. In

particular, we have:

KΩF = KFS
(︁

STFS
)︁−1

ST F = S
(︁

STFS
)︁−1

ST F. (A1)

Then we evaluate the transpose of the matrix Ω:

ΩT =

(︂

FS
(︁

STFS
)︁−1

ST
)︂T

(A2)

=

(︂

(︁

STFS
)︁−1

ST
)︂T

(FS)
T = S

(︂

(︁

STFS
)︁−1

)︂T

STF

= S

(︂

(︁

STFS
)︁T

)︂−1

STF = S
(︁

(FS)
TS

)︁−1
STF

= S
(︁

STFS
)︁−1

STF.

Hence, from Eq. (A1) and Eq. (A2) it is clear that KΩF is

equal to ΩT.
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