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Abstract

Background: Understanding trends in the distribution of body mass index (BMI) is a critical aspect of monitoring
the global overweight and obesity epidemic. Conventional population health metrics often only focus on
estimating and reporting the mean BMI and the prevalence of overweight and obesity, which do not fully
characterize the distribution of BMI. In this study, we propose a novel method which allows for the estimation of
the entire distribution.

Methods: The proposed method utilizes the optimization algorithm, L-BFGS-B, to derive the distribution of BMI
from three commonly available population health statistics: mean BMI, prevalence of overweight, and prevalence of
obesity. We conducted a series of simulations to examine the properties, accuracy, and robustness of the method.
We then illustrated the practical application of the method by applying it to the 2011–2012 US National Health and
Nutrition Examination Survey (NHANES).

Results: Our method performed satisfactorily across various simulation scenarios yielding empirical (estimated)
distributions which aligned closely with the true distributions. Application of the method to the NHANES data also
showed a high level of consistency between the empirical and true distributions. In situations where there were
considerable outliers, the method was less satisfactory at capturing the extreme values. Nevertheless, it remained
accurate at estimating the central tendency and quintiles.

Conclusion: The proposed method offers a tool that can efficiently estimate the entire distribution of BMI. The
ability to track the distributions of BMI will improve our capacity to capture changes in the severity of overweight
and obesity and enable us to better monitor the epidemic.
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Introduction

Overweight and obesity are growing health problems

worldwide. In 2013, nearly one third of the world’s

population was either overweight or obese [1]. Concern

regarding the rising disease burden associated with

obesity has become nearly universal, and widespread

calls have been made for more consistent and accurate

monitoring in all populations [2].

Conventional strategies for monitoring population-level

overweight and obesity rely on obtaining point estimates,

including mean body mass index (BMI) or prevalence of

overweight (BMI ≥ 25) and obesity (BMI ≥ 30) [3, 4]. Mean

and prevalence are succinct metrics which provide useful

insight into distinct aspects of a population’s distribution

of BMI. In addition, these measures are easily interpreted

by the general public. However, to rigorously monitor the

rapidly evolving obesity epidemic, simply observing mea-

sures of mean and prevalence is not adequate. Specifically,

as the proportion of overweight and obesity increases, the

distribution of BMI will become skewed. This, in turn,

affects the ability of mean to accurately reflect the central

tendency of the distribution [5–7]. If the goal is simply to

obtain a more accurate estimate of central tendency, it

may be sufficient to replace mean by median. However, as

the epidemic intensifies, there is a growing interest in un-

derstanding the shift in the BMI distribution and in track-

ing changes across subclasses of obesity which include
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class I (BMI: 30–34.9), class II (BMI: 35–39.9), and class

III obesity (BMI ≥ 40) [8]. Furthermore, understanding

population distribution of BMI is critical to estimating the

associated disease burden. To calculate the population

attributable fraction of diseases related to high BMI, for

instance, one would need to have an accurate measure of

exposure represented by population BMI distribution [9].

Therefore, there is a practical need to look beyond mea-

sures of mean and prevalence and to monitor the distribu-

tion of BMI as a whole.

Monitoring the population distribution of BMI is a chal-

lenging task. Existing national surveillance systems do not

always include a sample size sufficient for precise approxi-

mations of BMI distributions by subpopulation, such as by

sex and age [10]. A direct solution would be to increase

sample sizes of a survey. However, given the need for

regular and timely monitoring, increasing sample sizes will

be costly and may not be sustainable in the long run. It

would, therefore, be highly desirable to develop a strategy

that can effectively use available point estimates from sur-

veys to infer the underlying distribution.

In this study, we propose a novel method that utilizes an

optimization algorithm to approximate the distribution of

BMI using the three commonly available population-level

metrics: mean BMI, prevalence of overweight, and preva-

lence of obesity. The paper is organized as follows: We first

provide a brief description of the proposed method. We

then describe the simulation experiment used to validate

the method and present the results. To illustrate the utility

of the method, we apply it to the 2011–2012 US National

Health and Nutrition Examination Survey (NHANES) and

compare our estimate with the true distribution of BMI.

We conclude by discussing the potential extension, limita-

tions, and implications of the method.

Methods

Rationale

The characteristics of a continuous distribution are defined

by its probability density function (pdf). Depending on the

distribution, the parameters involved in the pdf vary. For

instance, a normal distribution has a pdf defined by a meas-

ure of central tendency (μ) and a measure of dispersion (σ2)

parameters. On the other hand, a beta distribution has a

pdf defined by two shape parameters, namely α and β.

Although estimates of these parameters are not always im-

mediately available, they can be easily derived from any two

pieces of known statistical information.

In the case of BMI, three statistics which are commonly

available from existing surveys are mean BMI, prevalence

of overweight, and prevalence of obesity. They respectively

provide information on central tendency and specific quin-

tiles. Based on this information and assumptions about the

potential family of distributions, parameters can be ob-

tained analytically. For example, if a normal distribution is

assumed, μ can be immediately inferred from the sample

mean. σ2 (assuming that sample variance information is not

immediately available) can be calculated based on the mean

and quintiles using inverse z scores. Suppose prevalence of

obesity is 0.025; if BMI is normally distributed, the corre-

sponding z-value would be 1.96. Using the standard z-score

calculation formula, z ¼ X−μ
σ
, with z = 1.96, X = 30, μ be-

ing the sample mean, σ2 can be calculated. Once μ and

σ2 are defined, the shape of the distribution is fully

realized.

The issue with assuming a normal distribution, however,

is that as the epidemic shifts, the shape of the BMI distribu-

tion will begin to skew. In other words, to accurately cap-

ture this shift, the distribution assumed needs to be flexible

enough to represent both symmetric and asymmetric pat-

terns. Some of the potential distribution candidates include

log normal, and the gamma, beta, and inverse Gaussian dis-

tributions. To determine which would best approximate

the distribution of actual data, we briefly examined national

survey data from the most recent years from six countries

with measured height and weight for men and women. The

skewness of BMI distributions in these survey data ranged

from 0.68 to 1.43, and the kurtosis ranged from 3.94 to

8.96 (see Table 1). While log normal and the gamma distri-

butions offer fit to a variety of unimodal distributions, some

of the shapes generated by these two distributions have ex-

treme skewness and kurtosis which are not suitable for the

situation at hand. Moreover, for both log normal and the

gamma distributions, skewness and kurtosis are defined by

a single parameter, which limits their flexibility in capturing

distribution of particular shapes. Inverse Gaussian distribu-

tion offers reasonable fit to skewed data with varying levels

Table 1 Skewness and kurtosis of BMI distributions from six
countries

ISO3 Survey Year Sex Skewness Kurtosis

UGA DHS 2011 Male 0.82 4.87

UGA DHS 2011 Female 1.37 8.96

IND DHS 2005 Male 1.26 7.17

IND DHS 2005 Female 1.43 7.29

SAU Saudi Arabia HIS 2013 Male 0.77 4.22

SAU Saudi Arabia HIS 2013 Female 0.68 3.94

DOM DHS 2013 Male 1.10 5.72

DOM DHS 2013 Female 0.90 4.37

GBR Health Survey for
England

2011 Male 0.94 5.56

GBR Health Survey for
England

2011 Female 1.02 4.47

USA NHANES 2011 Male 1.13 5.59

USA NHANES 2011 Female 1.27 5.84
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of kurtosis. However, in situations where the data distribu-

tion is relatively symmetric, Inverse Gaussian may not be

flexible enough to capture them. In contrast, with certain

constraints imposed (see next section), the beta distribution

offers a variety of symmetric light-tailed and asymmetric

heavy-tailed distributions which possess skewness and kur-

tosis within the observed range. The proposed method

capitalizes on the flexibility of the beta distribution to esti-

mate the entire BMI distribution based on information

about the mean and quintiles. Further detail is provided in

subsequent sections.

Estimation of BMI distribution

To estimate the distribution of BMI, we assume that:

BMI =C1u + C2 C1 > 0,C2 ≥ 10

where C1 is a positive scaling constant and C2 is a shift-

ing constant. Note that a constraint of greater than or

equal to 10 was imposed on C2. Because the lower limit

of a population BMI distribution rarely falls below 10,

imposing this constraint enhances the accuracy of the

optimization results. u is a random variable following

the beta distribution with values ranging from zero to

one.

u ∼ Beta (α, β), α > 1, β > 1

where α and β are the shape parameters. When α > 1, β >

1, and α = β, the beta distribution is unimodal and sym-

metric. When α > 1, β > 1, and α < β , the distribution is

unimodal and positively skewed. In contrast with other

distributions such as log normal and gamma, a beta distri-

bution is relatively light-tailed and provides more stable

estimation at the tails of the distribution.

Estimates of α, β, C1, and C2 are obtained by minimiz-

ing the following function:

D ¼ jjs− tjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s− t
:

ð Þ: s− tð Þ
p

where D refers to the Euclidean distance, which is the

shortest distance between two points, in this case two vec-

tors s and t. s is a vector consisting of the observed mean

BMI ( �X bmi ) and prevalence of overweight and obesity (
�pbmi≥25; �pbmi≥30 ); t is a vector consisting of the predicted

mean BMI ( ~X bmi ) and prevalence (~pbmi≥25; ~pbmi≥30 ) for a

given set of α, β, C1, and C2. The large-scale bound-

constrained optimization algorithm (L-BFGS-B) was

used for the optimization [11]. Other optimization al-

gorithms, including conjugate gradient, Nelder-Mead,

and Broyden-Fletcher-Foldfarb-Shannon algorithms

were considered. However, L-BFGS-B was chosen as it

provided a much more efficient optimization process

and more stable results.

Simulation

A series of simulations were carried out to examine the per-

formance of the method. Data were simulated from three

distributions representing different levels of skewness and

kurtosis similar to those observed in the survey data. The

first set of data were simulated from a normal distribution.

The second and third sets of data were simulated from a

log normal and a gamma distribution, respectively. The

normal distribution represents a symmetric light-tailed dis-

tribution; the log normal distribution represents a slightly

skewed and light-tailed distribution; the gamma distribution

represents a skewed and heavy-tailed distribution. The

intention for simulating from log normal and the gamma

distribution is to test the robustness of the method in hand-

ling extreme scenarios. If the method performs well under

these extreme circumstances, it offers confidence for gen-

eral use. For consistency, we centered and scaled all three

distributions to ensure that they had a mean of 24 and a

standard deviation of four. Table 2 summarizes the charac-

teristics of the distributions. Graphical displays of each

distribution are shown in Fig. 1.

A random sample of 500 observations were drawn from

each of the three distributions. The sample mean and

prevalence of overweight and obesity were calculated. Based

on these three statistics, we applied the proposed method

to approximate the distribution of BMI. The process was

repeated 1000 times for each of the distributions.

To determine how well the empirical distribution esti-

mated from the method approximates the true distribu-

tion, we evaluated the biases and mean squared errors in

four key statistics: mean, standard deviation, the preva-

lence of overweight, and the prevalence of obesity.

Specifically, for mean, the bias is calculated by the dif-

ference between the expected mean BMI derived from

the empirical distribution across the 1000 simulations

and the true mean of 24:

Table 2 Descriptive statistics of the distributions considered for
simulation

Normal Log normala Gammaa

Parameters μ = 24 (mean)
σ = 4 (standard
deviation)

Log(μ) = 0 (log mean)
Log(σ) = 0.1 (log standard
deviation)

κ = 1 (shape)
θ = 2 (scale)

Mean 24

Standard
deviation

4

Skewness 0.007 0.31 1.95

Kurtosis 2.95 3.12 8.47
aData generated from log normal and the gamma distributions were scaled to

have mean of 24 and standard deviation of four
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Bias�X ¼ E �X bmið Þ−μbmi

For standard deviation and prevalence of overweight

and obesity, the biases are calculated in a similar man-

ner, as follows:

Biassd ¼ E Sbmið Þ−σbmi

Biasp̂
≥25

¼ E p̂
≥25ð Þ−p

≥25

Biasp̂
≥30

¼ E p̂
≥30ð Þ−p

≥30

where Sbmi, p̂
≥25 , and p̂

≥30 are the standard deviation,

prevalence of overweight, and prevalence of obesity

estimated respectively from the empirical distribution

for a simulated data set. On the other hand, mean

squared errors are calculated as follows:

MSE �X ¼ E �X bmi−μbmið Þ
2

� �

MSEsd ¼ E Sbmi−σbmið Þ2
� �

MESp̂
≥25

¼ E p̂
≥25−p≥25ð Þ2

� �

MSEp̂
≥30

¼ E p̂
≥30−p≥30ð Þ2

� �

In addition to calculating bias and mean squared er-

rors, the Kolmogrov-Smirnov test was performed to

examine how well the predicted distributions matched

the actual distributions of the sample. We computed the

proportion of the time in which the test falsely rejected

the null hypothesis that the empirical and true distribu-

tion are equal with α = 0.05.

Applied example

Further validation was performed using data from the

2011–2012 NHANES. Specifically, based on mean and

prevalence information by age and sex, we estimated the

distributions of BMI for males and females for each 10-year

age group from 20 to 70+ years old. The empirical

distributions were compared against the distribution of

actual data using the Kolmogrov-Smirnov test.

All analyses were conducted in R 3.0.1.

Results and discussion

Simulation

Overall, the proposed methods performed well across all

scenarios (see Table 3). The biases in the key distribution

parameters were minimal. Specifically, the estimated

means were consistently similar to the true mean of 24,

with biases ranging from −0.036 to −0.006. The biases in

standard deviation estimates were slightly larger, ranging

from −0.121 to −0.026. The prevalence of overweight

and obesity derived from the empirical distribution was

equal to the true values (bias of zero).

Despite the consistency in the point estimates, the

Kolmogrov-Smirnov test indicated that, in some cases, cer-

tain aspects of the true distribution were not captured by

the empirical distribution. When the true BMI distribution

was normal or log normal, the method performed reason-

ably well. Only 2.5 % and 2.3 % of the 1000 empirical distri-

butions, respectively, exhibited a statistically significant

Fig. 1 Distributions used for simulation. The normal distribution (left) represents a symmetric light-tailed distribution; the log normal distribution
(center) represents a slightly skewed and light-tailed distribution; the gamma distribution (right) represents a skewed and heavy-tailed distribution

Table 3 Biases and mean squared errors (in parentheses) in
estimated parameters, and Kolmogrov-Smirnov test results

Normal Log normal Gamma

Bias(MSE) �X −0.006 −0.010 −0.036

(0.058) (0.062) (0.068)

SD −0.121 −0.070 −0.026

(0.035) (0.035) (0.146)

p̂≥25 0.001 0.001 0.016

(0.001) (0) (0.001)

p̂≥30 0 −0.002 0.003

(0) (0) (0)

Kolmogrov-Smirnov
test false rejection rate

2.5 % 2.3 % 24.9 %
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deviation from the true distribution. These rates are consid-

ered to be desirable given the α-level of 5 % [12]. However,

as the distribution becomes more skewed and heavy-tailed,

the discrepancy between the empirical distribution and the

true distribution increases. When the true BMI distribution

was gamma, approximately 24.9 % of the 1000 empirical

distributions exhibited a statistically significant deviation

from the true distribution. Further investigation was carried

out to identify potential causes of the discrepancy. Figure 2

shows a QQ-plot illustrating the quintile at which discrep-

ancies existed between the empirical and true distributions,

with the true distribution being the gamma distribution. As

the plot suggests, the discrepancies were mainly restricted

to the right tail where the method failed to precisely cap-

ture the extreme values. In other words, the presence of

outliers and the sparse data at extreme ends pose chal-

lenges to the accuracy of the method. Nevertheless, it is

worth emphasizing that both the log normal and the

gamma distributions represent a relatively high level of kur-

tosis, meaning that these distributions tend to have heavy

tails with extreme values. Moreover, considering the fact

that the underlying distribution assumed by the method

is distinct from the simulated distributions, the

method’s capability in approximating the central ten-

dency and quintiles of these alternative distributions is

considered robust.

Applied example

We applied the proposed method to data from the

2011–2012 NHANES. Using only the mean BMI, preva-

lence of overweight, and prevalence of obesity for each

sex and 10-year age group (from ages 20-70+), we ap-

proximated the distributions for each of these sub-

groups and compared them against the distributions of

the actual data. Figure 3 shows the differences between

the empirical and the true data distributions. As indi-

cated by the overlapping lines in the density plots, the

empirical distributions were reasonably accurate at

approximating the distributions of actual data. The

QQ-plots similarly suggest that our method accurately

approximated the distribution of true data with minor

deviations at the tail of the distributions for some age

groups, such as males ages 40–49 and 50–59. The

Kolmogrov-Smirnov test results (Table 4) indicated that

there is no statistically significant difference between

the empirical and true distributions.

Conclusions

In this study, we proposed a novel method to approxi-

mate the entire distribution of BMI using three

commonly available statistics, namely mean BMI and

prevalence of overweight and obesity. We assessed the

method using a series of simulations, and the results in-

dicated that the method performed well in approximat-

ing distributions with a wide range of skewness and

kurtosis. We illustrated the application of the method

using data from NHANES, which similarly demonstrated

the accuracy of the approach.

A major appeal of the proposed method lies in its use

of readily available health statistics. Distributions of BMI

can be approximated without the need to collect a large

amount of data. Moreover, past BMI distributions can be

Fig. 2 An example of a QQ-plot indicating the discrepancy between the empirical and true (the gamma) distributions. Deviation from the 45° line
represents a lack of alignment between the two distributions. Major discrepancies existed at the right tail where the method failed to precisely
capture the extreme values
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retrospectively constructed using historical information

on mean BMI and prevalence of overweight and obesity.

In addition, the current method is robust and can ad-

equately estimate distributions which do not conform with

the underlying distribution (beta distribution) assumed by

the method. As part of the Global Burden of Disease

Study 2013, we applied the proposed method to his-

torical data to reconstruct the BMI distributions by

age and sex for 192 countries from 1980 to 2013.

Without utilizing the new approach, obtaining precise

BMI distributions would have been impossible as in

many countries historical individual-level BMI data

were unavailable [13].

One of the limitations of this method, however, is the

reduction in accuracy when the true distribution contains

outliers. Specifically, our method may be inadequate at cap-

turing outliers at the tails of a distribution. This limitation

may be due to the assumption of the beta distribution in

our approximation strategy. Although the beta distribution

offers the flexibility to model a wide variety of distributional

Fig. 3 Comparison between the empirical distributions and the true data distribution and corresponding QQ-plots. Overlapping lines in the density
plots indicate the empirical distributions were reasonably accurate at approximating the distributions of actual data. The QQ-plots similarly suggests
minor deviations at the tail of the distributions for some age groups
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shapes, it is relatively weak at handling extreme kurtosis.

Alternative distributions such as log normal and the

gamma offer better capability at capturing long, heavy-

tailed distributions. Nevertheless, the lack of finite upper

bounds for these distributions posed challenges in the

optimization process, which led to instability in estimation.

Despite this limitation, results from our simulations

showed that the prevalence of overweight and obesity esti-

mated from the empirical distributions are unbiased. This

implies that, although the method may be limited in identi-

fying the precise BMI value of outliers, it is able to offer an

accurate approximation of the proportion of extreme values.

Additionally, it is worth emphasizing that the design of the

method is very flexible. For this simulation, three values

were utilized in the optimization function. Additional statis-

tics, such as prevalence of underweight and prevalence of

different obesity classes, could be easily incorporated to the

method and improve the accuracy of the distribution

approximation.

In summary, the algorithm proposed in this paper serves

as an efficient method to approximate BMI distributions. In

fact, this algorithm can be applied to estimating the distri-

bution of other continuous risk factors such as blood pres-

sure and glucose level and facilitate more accurate

assessment of associated disease burden. While the method

performed well in various situations, some aspects can be

improved. Future studies can explore non-parametric dens-

ity approximation techniques to expand the flexibility of

the method.
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