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Abstract

We report a novel method for estimating fluorescence impulse response function (fIRF) from
noise-corrupted time-domain fluorescence measurements of biological tissue. This method is
based on the use of higher-order Laguerre basis functions (LBFs) and a constrained least-square
(CLS) approach that addresses the problem of overfitting due to increased model complexity. The
method was extensively evaluated on fluorescence data from simulation, fluorescent standard
dyes, ex vivo tissue samples of atherosclerotic plaques, and in vivo oral carcinoma. Current results
demonstrate that this new method allows for rapid and accurate deconvolution of multiple channel
fluorescence decays without adaptively adjusting the Laguerre scale parameter. The appropriate
choice of the scale parameter is essential for accurate estimation of the fIRF. The method
described here is anticipated to play an important role in the development of computational
techniques for real-time analysis of time-resolved fluorescence data from biological tissues and to
support the advancement of fluorescence lifetime instrumentation for biomedical diagnostics by
providing a means for on-line robust analysis of fluorescence decay.

1. Introduction

Fluorescence lifetime spectroscopy and imaging techniques have demonstrated potential for
characterization of biological tissues. Recent studies have shown that these techniques can
provide useful label-free optical molecular contrast for clinical and biomedical research
(Cubeddu et al., 2002; Elson et al., 2006; Galletly et al., 2008; König, 2008; Sun et al.,
2009b; Marcu et al., 2009; Uehlinger et al., 2009; McGinty et al., 2010). The fluorescence
decay profiles of biological tissues, however, are often complex. This is due to not only the
presence of many distinct fluorophores in tissues but also a range of fluorophore
environments that can affect their fluorescence lifetime (Lakowicz, 2006). Computational
methods for fast and accurate analysis of fluorescence intensity decay profiles from time-
resolved measurements of tissues play an important role in the advancement of these
techniques as practical tools in biomedical diagnostics.

In the context of time-domain fluorescence techniques, the measured fluorescence response
from biological tissues to a light excitation pulse stimulus is a convolution of fluorescence
impulse response function (fIRF) representing the intrinsic tissue fluorescence with the
instrument impulse response function (iIRF) representing the distorted light pulse due to
instrument electronics and other delay components. Time-resolved fluorescence
spectroscopy (TRFS) and fluorescence lifetime imaging (FLIM) techniques for tissue
characterization require simultaneous and reliable recovery (i.e. deconvolution) of intrinsic
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fIRFs from multiple spectral and spatial channel (e.g. wavelengths, locations)
measurements.

Numerous mathematical tools have been devised for the recovery of fIRF. These include
integral transform approaches, such as Fourier (Andre et al., 1979) and Laplace (Gafni et al.,
1975) transforms, method of moments (Isenberg et al., 1973), method of modulating
function (Valeur, 1978), Prony method (Zhang et al., 1996; Niesner et al., 2004),
expectation-maximization method (Ng et al., 2009), as well as least-square deconvolution
(LSD) methods including both nonlinear and ordinary least-square. Many of these
deconvolution techniques are most useful when the underlying fIRF are modeled as a
summation of exponential decay functions (i.e. multi-exponential expansion). However,
LSD is not limited to the functional form of fIRF models and has been commonly adopted
when models other than multiple component exponentials are of interests (Ware et al., 1973;
Murata et al., 1995; Lee et al., 2001). In addition, LSD has been shown to be reliable and
robust to measurement noise in a variety of simulation and experiment settings (McKinnon
et al., 1977; O'Connor et al., 1979). In general, LSD searches for fIRF that best fits to the
observed data after re-convolving with iIRF in the least-square sense.

The use of multi-exponential expansion to represent the fIRF has been critically reviewed in
literature (e.g. Lakowicz, 2006). For tissue characterization difficulties arise in two aspects.
First, multi-exponential fIRF models are nonlinear in their parameters and therefore, least-
square estimation of exponential expansion parameters (including expansion coefficient and
decay constant from individual component) involve nonlinear optimization problems that
usually have non-unique solution and is computationally expensive. Second, the number of
exponential decay components used cannot be justified from a physical perspective for
complex biological fluorescence systems. Except for limited situations, parameters
associated with each exponential component cannot be interpreted in terms of underlying
fluorophores content. As previously noted (Lee et al., 2001), many fluorescence systems
may contain unlimited number of exponential decays.

Alternatively, the intrinsic fIRF can be expanded onto an ordered basis set of orthonormal
functions, namely, Laguerre basis functions (LBFs), as illustrated and validated in our
previous studies (Maarek et al., 2000; Jo et al., 2004; Jo et al., 2006). A finite-dimension
Laguerre basis set is completely specified by two basis parameters: scale, α and dimension,
L (i.e. the number of LBFs within the ordered basis set such that the highest order of LBFs
is L – 1). For given α and L, Laguerre expansions provide linear parameterization of the
fIRF without assumption of its exact functional form. It should be noted that expansion of
impulse response functions with LBFs has a long history in the context of system modeling
and identification (Heuberger et al., 2005). It has been proven to be useful in identifying
biological systems (Westwick and Kearney, 2003). A recent study (Agrawal et al., 2010)
also showed superior sensitivity of Laguerre expansion based techniques in disease
detection.

The practical use of Laguerre expansion of fIRF requires selection of the Laguerre basis set
(α and L). However, the optimal choice of basis parameters is not trivial, since the choices
of scale and dimension parameters are coupled. Marmarelis (Marmarelis, 1993) suggested
selecting a set of LBFs that have “significant” coverage of fIRF and that diminish not long
after fIRF decays to zero. However, this heuristic criterion is often hard to implement when
fIRF consists of complex decay dynamics including a broad range of decays from fast (sub-
nanosecond) to slow (several nanoseconds) components.

Recently, several groups chose to treat the scale parameter as an optimization parameter and
automated its search as part of the LSD (Lee et al., 1994; McCombie et al., 2005; Boukis et
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al., 2006; Dankers and Westwick, 2006; Dabir et al., 2009). The dimension parameter was
selected based on subsequent analysis on information-theoretic metrics, such as Minimal
Description Length (Dabir et al., 2009), or Akaike Information Criteria (Lee et al., 1994).
Alternatively, the selection of α could also be based on information-theoretic metrics (Yuan
et al., 1999) or other sub-optimal criteria (Fu and Dumont, 1993; Tanguy et al., 1995;
Dankers and Westwick, 2010). These approaches to select basis parameters are nonlinear in
nature. Numerically, LSD using Laguerre expansion of fIRF with automatic basis
parameters selection is similar to that using multi-exponential expansion. Iterative nonlinear
optimizations are required, which are often challenging computationally. Moreover, for
TRFS and FLIM applications, when near real-time deconvolution of measurements from
multiple wavelengths/pixels is required, it is impractical to select Laguerre basis set through
nonlinear optimization for individual measurement. A recent work addressed this problem
for FLIM application (Pande and Jo, 2011), where a unique α value was selected for all
pixel measurements by minimizing a global cost function. Obviously, trade-off has been
made for deconvolution across pixels.

In general, high dimensional Laguerre basis set (i.e. large number of LBFs) is preferred for
identification of systems with complex fIRF where a broad range of decays is present;
higher the number of LBFs larger the degree of freedom available to capture the
characteristics of a system response with complex decay dynamics. It was also observed that
by incorporating more LBFs, the LSD become less sensitive to the choice of scale parameter
(Dankers and Westwick, 2006). These facts suggest that it is possible to use one Laguerre
basis set with pre-specified α and L values for deconvolving fIRF with a broad range of
decay dynamics, when many LBFs are used. Previous implementation of LSD with
Laguerre expansion, however, relied on the ordinary least-square (OLS) method. Including
too many LBFs (or too many degrees of freedom) often induces “overfitting” (i.e. fitting to
the noise) for measurements with low signal-to-noise ratio (SNR) and results in physically
unrealistic fIRFs.

The main goals of this study are to a) Develop a constrained least-square (CLS) approach for
the deconvolution of fIRF using high-order LBFs. This has the potential to overcome the
limitation of the OLS method since it is insensitive to measurement noise especially when
high-dimensional Laguerre expansion of fIRF is used; b) Introduce a technique for choosing
the appropriate combination of α and L, suitable for fast deconvolution of fluorescence
decays; and c) Validate the accuracy of this new approach on simulated TRFS and FLIM
data and experimental data from TRFS and FLIM measurements of standard fluorescence
dyes and tissue samples.

2. Theory

Both the fluorescence system (tissue) and the instrument system are assumed to be linear
time invariant systems, such that they are entirely characterized by their impulse response
functions. The measured signal as a function of time, y(t) is the convolution of fIRF, h(t)
with iIRF, I(t). In discrete time representation, for N equal sampling time points ti = (i –
1)δt, i = 1,...,N and sampling interval, δt, we have,

(1)

where additive white noise (at time point tk), εk for k = 1,...,N is assumed. We are interested
in estimating fIRF, h(k) from measured iIRF and time-resolved fluorescence signals.

Liu et al. Page 3

Phys Med Biol. Author manuscript; available in PMC 2013 February 21.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



In general, fIRF, h(k) can be parameterized in various ways. For example, expansion of h(k)
onto multi-exponential components is a common strategy in analyzing time-resolved
fluorescence measurement. A stretched-exponential function was also used for its more
accurate description of underlying physical dynamics (Lee et al., 2001). The choice of
parameterization is mainly based on considerations of physical reality and numerical
simplicity. In other words, a good parameterization should accurately represent the
relaxation dynamics of the system while being efficient in the numerical evaluation of such
dynamics.

In previous work, we expanded h(k) onto an ordered set of discrete time LBFs, bl(k;α),

(2)

where L and α are the basis parameters and cl is the lth expansion coefficient. The lth

discrete time LBF is defined as,

(3)

for l = 0,...,L – 1 and 0 < α < 1. It is well known that LBFs form an orthonormal basis set
such that,

(4)

where bl = [bl (1;α),bl (2;α),...,bl (k;α),...,bl (N;α)]T and δll′ denotes Kronecker delta

function. Note that the exact equality (4) holds only for N → ∞, and for finite N .
For a set of L basis functions, define B = [b0, b1,...,bL–1] and we have,

(5)

where I is the identity matrix. Laguerre parameters L and α are suppressed in B.

In this way, fIRF is parameterized by the expansion coefficients c = [c0,c1,...,cL–1]T on a
Laguerre basis set with pre-specified scale and dimension (see section 3.4). Therefore,
deconvolution of fIRF h(t) consists of estimating its Laguerre expansion coefficients c.

2.1 Ordinary least-square deconvolution with Laguerre expansion (OLSD-LE)

Since Laguerre expansion (equation (2)) provides a linear parameterization of fIRF, LSD
can be solved using OLS method. Here we briefly summarize the mathematical formulation
of OLSD-LE. Under the Laguerre expansion, discrete time measured signal (equation (1))
becomes,

(6)

where we defined .
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To simplify notation, we define y = [y(1),y(2),...,y(N)]T , h = [h(1),h(2),...,h(N)]T vl =
[vl(1;α),vl(2;α),...,vl(N;α)]T, ε = [ε1,ε2,...,εN]T such that (6) can be written in a matrix-
vector form,

(7)

Here, we suppressed the dependence of V on basis parameters L and α.

OLSD-LE estimates the Laguerre expansion coefficients c by solving an OLS problem,

(8)

which has solution of . Note that direct matrix inversion is not
recommended in most practical applications. In addition, the OLS estimate of fIRF h is
given by

(9)

Unlike multi-exponential expansion, expansion of fIRFs with LBFs is more justified from its
mathematical simplicity and numerical fitness other than from its description of relaxation
dynamics of physical fluorescing systems. The fIRFs from physical systems are believed to
be “decay” functions that smoothly decay to zero at long enough time delays. However, the
inherent oscillatory nature of LBFs can give rise to unphysical behavior of fluorescence
decay functions using OLSD-LE, for measurements with relatively low SNRs (e.g. SNR <
30dB), especially when higher-order LBFs are used in expansion.

2.2 Constrained least square deconvolution with Laguerre expansion (CLSD-LE)

We introduce here CLSD-LE as a means of addressing the limitations of OLSD-LE when
used for the deconvolution of fIRF. OLSD-LE deconvolution searches for the fIRF
embedded in a linear space spanned by the set of LBFs, which has minimal distance to time-
resolved measurement. The function found, however, does not necessarily agree with the a
priori knowledge of the shape of decay functions of fluorescent physical systems. Thus, we
considered “constraining” the search within the subspace of functions that are physically
realistic and therefore candidates of “decay” functions. To make this argument more
rigorous, in this study, the following definition was used.

Definition. A real analytic function h(t) for 0 ≤ t < ∞ is a candidate fIRF, if (i) ,
(ii) h′(t) < 0, (iii) h″(t) > 0. where h′(t) and h″(t) are first and second derivatives of h(t).
Note that conditions (i) and (ii) guarantee h(t) to be positive. Therefore the fIRF is
necessarily positive, monotonic decrease, strictly convex and asymptotically goes to zero. It
should also be noted that we required the second derivative of h(t) to be strictly positive so
that there are no “flat” (i.e. zero curvature) line segments on a decay profile. Although, this
definition does not capture all features of a smooth “decay” function, such conditions allow
us to limit our search of fIRF within a smaller subspace of functions that are more physically
realistic and are strong enough for practical uses as demonstrated in this study.

Strict inequality constraints as in the above definition is difficult to handle in most CLS
solvers, so we use the following simplified condition.
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Lemma. Let h‴(t) be the third derivative of h(t). For t ≥ 0, if (a)

, and (b) h‴(t) ≤ 0, h(t) is a candidate fIRF.

This is because, given h‴(t) ≤ 0 for t ≥ 0 , h″(t) is a monotonic nonincreasing function.

Then because , there must exist a t* ≥ 0 such that h″(t) > 0 for t < t* and h″(t) =
0 t ≥ t*. But for the real analytic function h(t), t* must be infinity, because if not, h(t) has to

be linear in t, i.e. , which gives h″(t) = 0 for t ≥ 0. This is in
contradiction to h″(t) > 0 for t < t*. Thus, h″(t) > 0 for 0 ≤ t < ∞. Similarly we can obtain h
′(t) < 0 and h″(t) > 0 for 0 ≤ t < ∞. Therefore, h(t) is strictly convex, positive, and
monotonic decreasing for 0 ≤ t < ∞.

Note that for multi-exponential expansion of fIRF, h(t) is analytic. In addition, constraints
(a) and (b) in Lemma are automatically satisfied. For h(t) expanded on the set of LBFs
(equation (2)), its analyticity and asymptotic behavior are determined by the expansion basis
functions. Following the definition of continuous time LBFs (Abramowitz and Stegun,
1973), it is easy to verify that LBFs are analytic functions and all orders of derivatives of
LBFs go to zero for t → ∞. Thus, in principle, condition (a) is also satisfied for Laguerre
expansion of h(t). In practice, time-resolved measurements for evaluating the fluorescence
decays are always truncated to a finite range. It is important to choose an appropriate
Laguerre basis set such that all its basis functions and corresponding derivatives decay
“sufficiently close” to zero at the end of the measured time series. In other words, constraint
(a) is imposed implicitly in choosing the expansion basis set (see section 3.4.1).

Then, h(t) further subject to constraint (b) can be found by solving the following CLS
problem for Laguerre expansion coefficient c,

(10)

where D(3) is the third order forward finite difference matrix (Abramowitz and Stegun,

1973) of size (N – 3)×N. Note that in discrete time representation, . The
constraint in CLS problem (10) is the discrete-version of the non-positivity condition for the
third derivative of fIRF, i.e. constraint (b) in Lemma.

Introducing Lagrangian multiplier λ and defining D = D(3)B and defining results in the
Lagrangian dual problem (Boyd and Vandenberghe, 2004) to (10),

(11)

where C is the Cholesky decomposition of positive definite matrix . This non-
negative least square (NNLS) problem is easily solved using the Active Set Method
(Lawson and Hanson, 1974). The CLS estimate of fIRF is,

(12)

where  and  is the solution to NNLS problem (11).
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2.3 Average lifetimes

In the context of TRFS and FLIM, of particular interest is the average lifetime known as the
conventional parameter capturing the characteristics of the fluorescence decay. This can be
estimated from the deconvolved decay function ĥ(k) as (Lakowicz, 2006),

(13)

Note that definition in equation (13) is consistent with conventional definition of lifetimes
when time-resolved fluorescence signals are analyzed using multi-exponential expansion.
For a one-component fluorescence system, whose decay function is a single exponential
function, this is the time required for the fluorescence intensity to decrease to 1/e of its
maximum value. In the presence of multi-exponential decay components, the average
lifetime defined in equation (13) is the mean of lifetimes from individual exponential
components weighted by their fractional contributions (see section 3.1.1). However, the
estimation of average lifetimes using equation (13) does not require the knowledge of
lifetimes from individual species and their corresponding fractional contributions.

3. Methods

3.1 Simulated data and validation methods

3.1.1 Generation of simulated data—A series of computer simulated data were used
for the quantitative analysis of CLSD-LE method. We simulated fluorescence systems
consisting of exponential decay components (single or multiple). Time-resolved
measurements were generated according to the convolution of simulated multi-exponential
fIRF and a pre-measured iIRF.

(14)

for k = 1,...,800 (i.e. 800 sampling time points with sampling interval 0.05 ns), where and Aj
and τj are the amplitude and lifetime for the jth exponential component respectively, and M
is the total number of exponential components. The fractional contribution for jth component
is given by (Lakowicz, 2006)

(15)

for j = 1,...,M and . The average lifetime for multi-exponential IRF can be
computed from

(16)

For a given set of fractional contributions and lifetimes of exponential components, it is
possible to compute the ratio of amplitudes (Aj) between any two components. Since our
main interest is the estimation of average lifetime, which is not related to absolute
fluorescence intensities, the synthetic time-resolved measurements were normalized such
that the peak intensity has the value of one.
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3.1.2 Comparison of CLSD-LE versus other deconvolution techniques—The
advantage of using the CLSDLE method is demonstrated here by comparing its performance
with the OLSD-LE and the conventional LSD with bi-exponential expansion of fIRFs (LSD-
BE) (Lakowicz, 2006). In this comparison, random samples were generated with additive
white Gaussian noise level ranging from 20 dB to 50 dB. At each noise level, a set of 1000
time-resolved signals was generated according to equation (14). For each signal, the number
of exponential components M was randomly picked from 1 to 6. For each component, a
random fractional contribution (uniformly distributed between 0% and 100%) and a random
lifetime value (uniformly distributed between 1 ns and 6 ns) were assigned.

Subsequently, the simulated data were deconvolved using CLSD-LE, OLSD-LE and LSD-
BE methods. The average lifetime of the deconvolved fIRFs were computed using and
compared against the ground truth calculated from equation (16). The bias and variance
properties of average lifetime estimates from these three methods were compared.

3.1.3 Comparison of CLSD-LE with different Laguerre basis sets—Most of the
previous studies using OLSD-LE relied on lower-dimensional ( L ≤ 5 ) Laguerre expansions
of fIRF to guard against “overfitting” to noisy measurements. The purpose of this
comparison is to show that for systems with multiple fluorescence components, by
employing CLS, higher-order LBFs could be used for deconvolving fIRF without
“overfitting”. In addition, we show that, the CLSD-LE is capable of recovering a wide range
of fIRFs with a fixed (and non-optimal) scale parameter and a basis dimension.

We considered fIRF consisting of one fast-decay component (with lifetime τ1 and fractional
contribution f1) and one slow-decay component (with lifetime τ2 and fractional contribution
f2 = 1 – f1). Time-resolved data according to equation (14) were simulated for f1 from 0% to
100% (10% interval). For each f1, 1000 realizations of 25 dB additive noise were also
generated to quantify the bias and variance of estimated average lifetimes. To demonstrate
the limit of different Laguerre basis sets, two combinations of τ1 and τ2; were used for the
above simulations, i.e. (1) τ1 = 0.5 ns and τ2 = 6 ns (2) τ1 = 1 ns and τ2 = 6 ns.

CLSD-LE with basis dimension L ∈ {4,8,12} were used to deconvolve simulated time-
resolved data. For Laguerre basis set with L = 4, α was adaptively selected along with the
expansion coefficients using optimization (see section 3.4.3). For L = 8 and L = 12, α values
were fixed at 0.96 and 0.94 respectively (see section 3.4). CLSD-LE with these three
Laguerre basis set are denoted as CLSD-LE(4,optimal), CLSD-LE(8,0.96) and CLSD-
LE(12,0.94) respectively.

3.2 Experimental data and validation methods

The proposed CLSD-LE method was also validated on experimental TRFS and FLIM data
from standard fluorescent dyes, tissue biomolecules, and biological tissues measured in vivo
and ex vivo.

3.2.1 Instrumentation—Two instrumental systems were used for the acquisition of
experimental data used for the validation of the deconvolution method presented in this
study. These systems were described in detail elsewhere (Sun et al., 2009a; Sun et al.,
2011b). A brief description of these systems is given in the following:

TRFS Instrumentation: The system consisted of a pulsed nitrogen laser (337 nm, 800 ps
pulse width, 2 μJ/pulse excitation energy, 30 Hz repetition rate) excitation source, and a
gated MCP-PMT (180 ps rise time, 1.5 GHz bandwidth) detector. Sample fluorescence was
excited and collected using a single fiber optic. Sample fluorescence signals were spectrally
resolved using a monochromator before reaching the detector. The PMT signals were
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recorded and temporally resolved using a digital oscilloscope (20 GHz sampling rate, 2.5
GHz bandwidth). Time-resolved fluorescence response pulses were recorded within 360-600
nm wavelength range (5 nm spectral resolution).

FLIM instrumentation: This consisted in a novel scanning FLIM system that shared the
same laser excitation source, detector and digitizer as the TRFS system. However, only
discrete spectral bands of time-resolved fluorescence data (390±20 nm, 450±23 nm, 540±23
nm, and 630±26 nm) were measured by using dedicated filters for faster acquisition speeds
(few microseconds) at one spatial point measurement. Sample scanning was achieved via a
precision positioning stage that enabled linear scanning (x- resolution 0.081 mm and y-
resolution 0.2 mm) for dynamic acquisition of fluorescence data.

3.2.2 Fluorescent dyes and biomolecules—TRFS measurements were conducted in a
mixture of two different fluorophores in solution: 2 mM reduced nicotinamide adenine
dinucleotide (NADH, Sigma-Aldrich) in phosphate buffered saline (PBS, Sigma-Aldrich)
solution was mixed with 1 mM fluorescein (Sigma-Aldrich) PBS solution. The two
fluorophores are characterized by fluorescence emission peak of 460 nm and 520 nm,
respectively, and distinct lifetimes (Dabir et al., 2009; Arık et al., 2005). The solution was
measured in a polymethyl methacrylate (PMMA) UV transparent cuvette. Data were
collected for the 480-600 nm wavelength range.

FLIM measurements: were conducted in spatially distributed capillary tubes filled with
four fluorophores: NADH (2 mM, in PBS), coumarin 1 (C-1, Sigma-Aldrich, 1 mM, in
methanol), coumarin 120 (C-120, Sigma-Aldrich, 1mM, in methanol), and elastin (dry
powder form, from bovine neck ligament (E1625-5G), Sigma-Aldrich). The fluorophores
were sealed in separate capillary tubes (negligible fluorescence, 0.75 mm inner diameter)
and placed along y-direction approximately 2 mm apart in x-direction (center-to-center) with
an increasing lifetime sequence. Time domain signals were dynamically acquired over
9.72×4.1 mm2 area with an x-scan step size 0.081 mm and y-scan step size 0.1 mm. The
final FLIM images consisted of 120 pixels in x-direction and 41 pixels in y-direction.

3.2.3 Biological tissue in vivo and ex vivo measurements—To validate the CLSD-
LE method on data from biological tissue samples, we utilized existing TRFS and FLIM
data in our laboratory from tissue measurements conducted in support of other studies. In
brief, TRFS data were based on measurements conducted in vivo on a hamster buccal pouch
carcinogenesis model (Syrian/golden hamsters) as described by Sun et al. (2009b) and
Farwell et al (2010). Data were collected from the inverted cheek pouch with the fiberoptic
probe positioned perpendicular to the regions of interest (normal or tumor) using the TRFS
apparatus described above. Tissue time-resolved emissions were recorded for 360-600 nm
wavelength range. FLIM data were based on measurements conducted on ex-vivo human
carotid atherosclerotic plaque samples as reported by Sun et al. (2011a).

3.3 Assessing the quality-of-deconvolution

3.3.1 Bias and variance of estimating average lifetimes—Simulated data allow for

direct comparison of estimated average lifetimes  (equation (13)) from noise corrupted
data with known “true” average lifetime, τavg (e.g. equation (16)). For a set of Ns randomly
generated fluorescence decays, the estimation errors in estimating average lifetimes were

computed as { , for n = 1,...Ns}. Bias and variance of the average lifetime
estimator  are therefore the sample mean and variance of the estimation errors,
respectively. In general, less bias and variance are preferred. In addition, the mean squared
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error (MSE) were computed as the sample mean of { , for n = 1,...Ns} and were also
compared.

3.3.2 Summary statistics of residuals—The convolution of estimated fIRF ĥ(i) and
instrumental response gives the fitted values of time-resolved signals in time domain, i.e.

(17)

for k = 1,...,N. Quantitative assessment of the quality of deconvolution can be based on the
analysis of residuals between measured time domain signals and fitted values, i.e. r(k) = y(k)
– ŷ(k), for all sampling times tk. Standardized residual (i.e. residuals normalized to an
estimate of its standard deviation) and residual autocorrelations as a function of time lags are
often used for diagnosing abnormalities of deconvolving single time domain signal. In
practice, we consider a deconvolution “good enough”, if the fitting residuals follow closely
to the underlying noise model and are absent of autocorrelation structures.

For simultaneously assessing the quality of fit from multi-channel measurements, we used
summary statistics for residuals as described below.

χ2 goodness-of-fit: Ideally, the residuals should not contain any unfitted component other
than random noise. A direct measure of unfitted component against noise is based on χ2

statistic,

(18)

where N is the total number of time sampling points, L is the number of fitting parameters
(i.e. number of coefficients in Laguerre expansion), and σ2 is the variance of noise. For ideal
fit, χ2 / DOF is close to one, reflecting sample variance of residuals is comparable to noise.
The χ2 statistic relies on a good estimate of noise variance, σ2 and was only used in
simulation study where noise variance was given.

Lilliefors test statistic: Because the instrumental random noise is assumed to be drawn
from a normal distribution, the Lilliefors test of normality for residuals is used. The
Lilliefors test statistic, (similar to the Kolmogorov-Smirnov test statistic), is defined as,

(19)

where the empirical distribution function for residuals, Fres (x) , is defined as

 , with I[·] an indicator function. FNormal (x) is the cumulative
distribution function of normal distribution with mean and variance estimated from the
sample of residuals. The Lilliefors test statistic measures the deviance of sampling
distributions of residuals from normal distribution. Under the null hypothesis that the fit
residuals follow normal distribution, TLillie is distributed as the Lilliefors distribution.

Ljung – Box test statistic: The independence of residuals is tested using the Ljung-Box test
statistic given by
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(20)

where ρ(k) is the sample autocorrelation at time lag tk . The Ljung – Box test measures the
distance from zero of autocorrelation functions average over a number of time lags. Under
the null hypothesis that residuals are independently distributed, TLB follows χ2 distribution
with degree-of-freedom (d.o.f.) 20.

Detailed discussion of the Lilliefors and Ljung-Box summary statistics is out of the scope of
this paper. It should be noted that, although formal summary statistics provide an efficient
way of detecting abnormalities within deconvolution residuals (i.e. unfitted components
other than measurement noise), no real measurement noise strictly follows an independent
normal distribution. Non-normality and correlation can either be caused by limited
bandwidth of detector frequency responses, or be intrinsic to signal sampling schemes, such
as those based on time-correlated single-photon counting (TCSPC) technique. Therefore
deconvolution residuals should be appropriately weighted (e.g. in case of Poisson
distribution of measurement noise) or down-sampled (e.g. in case that sampling frequency is
higher than the maximum detector frequency response) before being tested against the
hypotheses of normality and independence.

3.4 Choosing Laguerre parameters

In principle, if fIRF is expanded on an infinite number of LBFs ( L → ∞ ) over infinite long
time intervals, the choice of scale parameter is arbitrary ( 0 < α < 1 ). In practice, only finite
number of expansion terms can be used and the measured time series are always truncated
for numerical analysis. Thus, appropriate selection of Laguerre basis set is critical for
practical use of Laguerre expansion of fIRFs.

In the following it is always assumed that the time domain fluorescence measurements have
been properly truncated prior to any deconvolution process. This means, for a TRFS or
FLIM data set (consisting of multiple fluorescence emissions from fIRFs with multiple
decay components), a finite time interval should be selected such that measured signal
intensity from the overall “slowest” decay component within the data set is truncated not
long after it decays to zero.

3.4.1 Upper bound of α—To ensure the mutual orthonormality of Laguerre basis set with
L LBFs over a finite number of sampling points, it is necessary to choose α values such that
BT B is close to identity matrix (equation (5)). This requires that the condition number of

matrix BT B being close enough to one (e.g. cond  ≤ 1.01), which set an upper bound

of α , αup , because cond  is a non-decreasing function of α . Moreover, the mutual
orthonormality within Laguerre basis set also guarantees its basis function and
corresponding derivatives reach zero (approximately) by the end of a truncated time interval.
Thus, constraint (a) in the Lemma is implicitly imposed by choosing Laguerre basis sets that
preserve the orthonormality over the time interval of interests. Table 1 summarizes the upper
bounds of α values for two truncated time intervals (20 ns and 40 ns) with sampling rate
0.05 ns and 0.125 ns, for basis sets with 4, 8 and 12 LBFs.

3.4.2 Practical consideration—For deconvolution of tissue fIRF from TRFS and FLIM
measurements, selection of Laguerre parameters of L and α was based on two more
practical considerations: first, fluorescence average lifetime values for common tissue
endogenous fluorophores often range from sub-nanosecond (lipid constituents) to
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approximately 6 ns (structural proteins such as collagen); second, it is often desired to
simultaneously deconvolve multi-channel signals from spectral and spatial scans. Our goal
in designing the appropriate basis set for CLSD-LE is to find a basis set with a fixed number
of LBFs and scale parameter, that is “sufficiently accurate” for recovering fIRFs with
lifetimes ranging from 0.5 ns to 6 ns.

In this study, Laguerre basis set was selected using the following simulation. The discrete
time-resolved signals were simulated from single exponential fIRF according to equation
(14) with the lifetime value τ within the desired range (from 0.5 ns to 6 ns). For each τ
value, 200 realizations fluorescence signals with 25 dB additive normal noise were
generated. All simulated signals were deconvolved using CLSD-LE with Laguerre basis sets
of various combinations of α and L values. In this work, we limited L values to be 4, 8 and
12. For each L, scale parameter α values were chosen from 0.9 to its corresponding upper
bound for 800 sampling points (i.e. αup =0.98, 0.96 and 0.94 for L=4, 8 and 12
respectively). Bias and variances in average lifetimes from CLSD-LE with different
Laguerre bases were computed for each “true” lifetime. Figure 1a depicts the bias surface
and variance surface on the support of “true” lifetime values and α values for L = 8. This
process was repeated for 40 dB additive noise.

As illustrated in figures 1b, 1c and 1d, for each L value, there is a region (e.g. region
between thick black lines) on α – τ plane where squared biases are less than variances in
estimating lifetimes and the estimation error could be attributed mainly to random
measurement noise. The chosen α and L were considered “sufficiently accurate” for
deconvolving fIRFs with lifetimes in this range in practice. Obviously, acceptable region
shrinks as SNR increases. In addition, the sampling time interval of our current instrument
was around 0.05 ns. Lifetime estimated with biases less than 0.05 ns were also considered
acceptable in practice.

Therefore, CLSD-LE with 4 LBFs and α = 0.96 was only acceptable for lifetimes between
1.5 ns and 4 ns. For simultaneously deconvolving fIRF with lifetimes between 1 ns and 6 ns,
CLSD-LE with 8 LBFs and α = 0.96 were found sufficient. When very fast decay
components (e.g. lifetime less than 1ns) are present, 12 LBFs were needed to provide a
wider coverage in the acceptable region.

3.4.3 Searching for α using optimization—In previous work (Dankers and Westwick,
2006; Dabir et al., 2009) employing OLSD-LE, it was proposed to automate the search of α
as part of the OLS problem (equation (8)) for a fixed L. In current study, this idea is
generalized for CLSD-LE. In fact, the search of the scale parameter α can be automated if it
is treated as a free optimization parameter in CLS problem (equation (10)), in addition to
Laguerre expansion coefficients, c . Specifically, for given L, the optimal α ∈ (0, αup)
minimizes the functional,

(21)

where  is the solution to the NNLS problem (equation (11)). Note that we have made
the dependence of matrices V and D on α explicit. Minimization of Ω(α) consisted of a
nonlinear optimization problem and is often solved iteratively. In this study, the Golden
Section Search Method (Press, 2007) was used to determine the optimal α.

For a given fluorescence measurement, Laguerre basis set with optimal α could be
considered as the “best” expansion basis (in the least-square sense) of fIRF for given L. For
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TRFS and FLIM applications, when near real time deconvolution of measurements from
multiple wavelengths/pixels is required, it is impractical to select basis parameters through
nonlinear optimization for all individual measurement. Therefore, in this study, searching
for LG parameters using optimization only served for comparison purposes.

4. Results

4.1 Validation of CLSD-LE on simulated data and comparative studies

4.1.1 Performance of CLSD-LE deconvolution in comparison with other

deconvolution techniques—Table 2 shows the comparison of OLSD-LE, CLSD-LE
and LSD-BE performance applied to simulated random data. Laguerre expansion basis with
8 LBFs and α = 0.96 was used. Note that the underlying fIRF models used in simulation
have random number of exponential decay components. The average lifetimes estimated
from LSD-BE had the highest bias in the presence of high noise as a result of model
misspecification. However, as the noise level decreased, LSD-BE was capable of
deconvolving fIRF with more than two components. This demonstrates that it is not always
possible to differentiate decay components purely based on the number of terms used in
multi-exponential expansion of fIRFs. OLSD-LE was shown to be more sensitive to noise
(e.g. higher variance in  ) for signals with low SNR. This is an effect of “overfitting” to
noise, when higher-order LBFs ( L = 8 in this case) were used in Laguerre expansion. In
addition, “overfitting” could result in unphysical behavior in the deconvolved fIRFs, such as
oscillations (bumps) and the presence of negative values (figure 2). On the other hand,
CLSD-LE was robust to noise for all simulated SNR levels and had the lowest RMSE for
low SNR (e.g. less than 30 dB).

CLSD-LE took more computation time than OLSD-LE, but it was still about 100 times
faster than the conventional LSD-BE. Moreover, the computation time of CLSD-LE
decreased as SNR increased. This is because, in the Active Set Method for solving NNLS in
this study (equation (11)), more “active” sets are activated when noise level is high, which
results in an increase in computation cost. More importantly, although CLSD-LE was slower
than OLSD-LE, it took less than 1 second for deconvolving 1000 simulated measurements.
The computations in this study were carried out on a PC laptop (Intel Core i7 Q720 1.60
GHz).

4.1.2 Comparing CLSD-LE using different Laguerre basis sets—Shown in figures
3a and 3b are the χ2 values for CLSD-LE with different Laguerre basis sets in cases of
fIRFs with two decay components and varying fractional contributions (Δf = f1 – f2). Note
that for CLSD-LE with 4 LBFs, α was chosen based on optimization (section 3.4.3). It was
observed that even for the optimal α, CLSD-LE with 4 LBFs was not able to sufficiently fit
the data for most of Δf values. In fact, the only situation where CLSD-LE(4,optimal) could
fit the generated data adequately was when the sample fluorescence decays become more
“homogeneous” (i.e. almost purely from either fast- or slow- decay component, or
equivalently |Δf|≈ 100%). The performance of CLSD-LE(8,0.96) depended on the presence
of the short-decay component (i.e. τ1 = 0.5 ns and τ2 = 6 ns, CLSD-LE(8,0.96) “failed” to
fit the data when the fast-decay component started dominant the decay function (e.g. Δf >
0 ). However, in the second case, the lifetime values of fast-decay component were equal to
1 ns, CLSD-LE(8,096) was able to accurately fit the data. For both cases, LCSD-
LE(12,0.94) was able to provide good fit as the χ2 values were close to ideal.

Bias, variance and RMSE of average lifetimes estimators  estimated using these three
basis sets are compared in table 3 (for τ1 = 0.5 ns, τ2 = 6.0 ns ) and table 4 (for τ1 = 1 ns, τ1
= 6.0 ns ). In addition, bias, variance and RMSE of  from the LSD-BE are also provided.
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Since simulated data were generated from a bi-exponential fIRF, LSD-BE was expected to
provide theoretically “the best” estimates for . In both cases, CLSD-LE(4,optimal) gave
the highest bias in estimating averaged lifetimes (i.e. under-estimate the average lifetimes)
which in turn gave the highest RMSE, except for almost “homogeneous” fIRFs, as a result
of insufficient fit to data. On the other hand, even without the optimally selected α, CLSD-
LE(12,0.94) provided similar bias and variance (and RMSE) levels for  to those from
LSD-BE. CLSD-LE(8,0.96) was also able to give the similar bias and variance (and RMSE)
to CLSD-LE(12,0.94) and LSD-BE, given the fast-decay component's lifetime values were
equal to 1 ns. It was also observed that higher model complexity (e.g. Laguerre basis with 12
LBFs) did not introduce higher variance in estimating average lifetimes if CLSD was used.

Therefore, for practical purposes, we found that except for some sparse cases where short
lifetimes (e.g. 0.5 ns) are present, CLSD-LE(8,0.96) is sufficient for deconvolving fIRFs
with multiple decay components, whose lifetime values range from 1 ns to 6 ns.

4.2 Validation of CLSD-LE on TRFS experimental data

4.2.1 TRFS measurements of fluorescent dye-biomolecule mixtures—TRFS
measurements from the mixture of fluorescein and NADH for 480-600 nm wavelength
range were first deconvolved using LSD-BE. Figure 4a shows lifetime spectra of two decay
components. The slow-decay component had constant lifetimes, 3.9 ± 0.1 ns, for 500-600
nm range which correspond to fluorescein lifetimes. The fast-decay component had constant
lifetimes, 0.44 ± 0.08 ns, for 480-600 nm range which correspond to NADH lifetimes. The
corresponding fractional contributions from both components are given in figure 4b. For
shorter wavelength (e.g. ≤ 490 nm ), the signals were dominated by NADH fluorescence. As
wavelength increased above 490 nm, the fluorescence signals had more contributions from
fluorescein rather than NADH. However, fluorescein contribution reached maximum around
its emission peak wavelength (520 nm) and started to decrease with increased wavelength.
The average lifetime spectrum from LSD-BE is shown in figure 4c.

The average lifetimes from CLSD-LE(4,optimal), CLSD-LE(8,0.96) and CLSD-LE(12,0.94)
are given in figure 4c. As expected, average lifetime estimated from CLSD-LE(12,0.94)
nearly overlapped with LSD-BE estimates. Average lifetimes estimated from CLSD-
LE(8,0.96) were biased for wavelengths shorter than 490 nm and became increasingly
biased for wavelengths above 540 nm as NADH (fast-decay component) fractional
contribution increased. At last, with the optimal value for each wavelength, CLSD-
LE(4,optimal) still resulted in significant differences from LSD-BE estimates for the entire
wavelength range, except for wavelengths at which fluorescence signals were mostly from
one component (e.g. shorter than 490 nm and around 520 nm).

4.2.2 TRFS measurements of oral hamster carcinoma in vivo—Fluorescence
signals from 360-500 nm wavelength range were deconvolved using CLSD-LE(8,0.96). The
integrated intensity spectrum and estimated average lifetime are shown in figure 5a.
Lilliefors test statistic (figure 5b) and Ljung-Box test statistic (figure 5c) were computed for
deconvolution residuals at each wavelength. Note that critical values have to be corrected
(Bonferroni correction) for simultaneous test of normality and independence of
deconvolution residuals from multiple wavelengths using Lilliefors test and Ljung-Box test.
The critical values on significance level 0.001 were also shown in figure 5c. The fact that
most test statistic values from both tests were below the critical value suggests that overall
deconvolution is “good enough”. Figures 5d, 5e and 5f show the deconvolution of
representative time-resolved measurements at three wavelengths 380 nm, 430 nm and 480
nm, respectively, along with standardized residual and autocorrelation function.
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As demonstrated by previous studies (Farwell et al., 2010), the fluorescence of cheek pouch
under UV excitation primarily originated from collagen in sub-mucosa layer and NADH in
cells. This is confirmed by the presence of two emission peaks (390 nm and 460 nm
corresponding to collagen and NADH emissions respectively) in integrated intensity
spectrum (figure 5a). Moreover, average lifetime values were consistent with previously
reported lifetimes of collagen around its emission peak (i.e. 390 nm). As a result of the
decreasing contribution from collagen and increasing contribution from NADH, the average
lifetime values dropped with increased wavelength.

4.3 Validation of CLSD-LE on FLIM experimental data

4.3.1 FLIM measurements of fluorescent dyes and biomolecules—The integrated
intensity of the measured fluorescence signals from wavelength band of 450±23 nm for the
four fluorophores in capillary tubes are depicted in figure 6a. The estimated lifetime maps
from LSD-BE, CLSD--LE(8,0.96) and CLSD-LE(12,0.96) are provided in figures 6b, 6c,
and 6d.

The mean and standard deviation of estimated average lifetime values are compared in table
5. All three deconvolution methods provided similar lifetime values for C-1, C-120 and
elastin which were also consistent with literature values (Rusalov et al., 2004; Pal et al.,
2003; Žukauskas et al., 2008). For free-form NADH which has fast-decay dynamics, the
CLSD-LE(12,0.94) provided smaller average lifetime than CLSD-LE(8,0.96) but closer to
values estimated based on the multi-exponential approach, i.e. LSD-BE. This is in
agreement with the simulations study in previous sections.

4.3.2 FLIM measurements of arterial samples ex vivo—A FLIM scan measurement
region (15×4 mm2) on the ex vivo tissue sample is shown in figure 7a. The image consists of
183 pixels in x-direction and 20 pixels in y-direction. Fluorescence signals from 450±23 nm
wavelength band were deconvolved with fixed Laguerre basis set, CLSD-LE(8,0.96). The
integrated intensity and average lifetime map are shown in figures 7b and 7c respectively.

The Lilliefors test statistic and Ljung-Box test statistic were computed for deconvolution
residuals at each pixel within the range of interest (2253 pixels). The sampling distributions
of Lilliefors test statistic and Ljung-Box test statistic are shown in figures 7d and 7e
respectively. Their corresponding null distributions (i.e. Lilliefors distribution and χ2

distribution with degree of freedom 20, respectively) are also shown in these figures. The
fact that both test statistics followed their respective null distributions is strong evidence that
time-resolved signals across all pixels were adequately fitted. Figures 7f, 7g and 7h show the
deconvolution of signals from three representative locations (lipid-rich, collagen-rich and
elastin-rich respectively as confirmed by histopathologic analysis) along with the
corresponding standardized residual and autocorrelation functions.

5. Discussion and conclusion

In this study, we have demonstrated a deconvolution method using high-dimensional
Laguerre expansion of fIRF. We showed that the use of a large number of LBFs allows for
accurate recovery of tissue fluorescence impulse responses with complex decay dynamics
including a broad range of decay components (fast and slow). Moreover, multiple channel
measurements on systems with a large number of relaxation dynamics could be deconvolved
simultaneously, using the same set of basis functions.

The problem of overfitting due to the increased model complexity has been alleviated by
properly incorporating a priori knowledge on the shape of physically realistic fluorescence
decay profiles. We implemented a deconvolution algorithm using a constrained least-square
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method to explicitly take advantage of available a priori information. While the fIRF models
based on superposition of multi-exponential functions are based on “hard” a priori
knowledge of the physics and constituents of the underlying fluorescence systems, the
method presented in this paper only requires the fIRF to smoothly decay to zero with time. It
can be considered as a “soft” a priori assumption on the functional form of IRFs. Specific to
this work, a non-positive third-order derivative of fluorescence decay was used as constraint
to LSD. The method can be extended to constrain higher order derivatives of decay
functions when necessary. The a priori knowledge on the dynamics of underlying
fluorescence systems (i.e. the range of lifetime values) was also used for designing Laguerre
basis sets such that the selected scale and dimension parameters could provide an adequate
representation of the fIRF. The statistical analysis framework presented in this study can
also be generalized to choose Laguerre basis parameters for deconvolving fluorescence
decays from other biological systems with dynamics out of the range of current work.

The proposed method is also orders of magnitude faster than the conventional deconvolution
based on multi-exponential IRF models. The ability of deconvolving multiple spectral and
spatial channel (e.g. wavelengths, locations) measurements within several seconds on a
common personal computer makes it ideal for real-time robust analysis of fluorescence
decays, which supports the advancement of fluorescence lifetime instrumentation for clinical
applications.

By testing the sampling distribution of deconvolution residuals against a null normal
distribution, it is also observed that the noise structure of our current instrument follows
closely a normal distribution. This has not been addressed before. However, a more detailed
study of these noise structures is out of the scope of this paper and is subject to future
analysis.

In summary, we have developed a fast and robust method to estimate the impulse response
function from time-domain fluorescence measurements of biological tissues. This method
has been extensively validated on fluorescence data from artificial simulation, dye phantom
and in vivo/ex vivo tissue samples. This approach facilitates analysis of data resulting from
time –resolved measurements conducted in tissue in vivo in both spectral and spatial
dimensions. Current results support the feasibility of this method for real-time robust
analysis of fluorescence decay data and future development of clinical systems with real-
time diagnostic capabilities.
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Figure 1.
Analysis of bias and variance in estimating average lifetimes for simulated data from fIRF
with true exponential lifetime values between 0.5 ns and 6 ns. (a) representative bias surface
and variance surface from CLSD-LE with Laguerre parameters L = 8 , α ∈ (0.9, 0.96) for
simulated data with additive noise 40 dB; (b) (c) (d) contours (thin black) of bias surface
with levels correspond to estimation bias (in absolute value) of 0.01 ns, 0.05 ns and 0.5 ns;
intersections between variance surface and bias surface for additive noise 25dB (thick red)
and 40 dB (thick black) for CLSD-LE with 4, 8 and 12 LBFs respectively.
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Figure 2.
OLSD-LE and CLSD-LE with Laguerre parameters L = 8 and α = 0.96 for two
representative signals (a) and (b) (noise level 25dB). Deconvolved fIRF are shown as insets.
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Figure 3.
χ2 goodness-of-fit of CLSD-LE(4,optimal), CLSD-LE(8,0.96) and CLSD-LE(12,0.94) for
simulated data from two components fIRFs with different fractional contributions.
Fractional contribution difference Δf varies from -100% to 100%. (a) τ1 = 0.5 ns and τ2 = 6
ns and (b) τ1 = 1 ns and τ2 = 6 ns.
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Figure 4.
Deconvolution for TRFS of a standard fluorophore mixture (2 mM NADH and 1 mM
Fluoresin, 9:1). (a) Estimated lifetimes and fractional contribution spectra for two
components from LSD-BE deconvolution; (b) comparison of average lifetimes from LSD-
BE, CLSD-LE(4,optimal), CLSD-LE(8,0.96) and CLSD-LE(12,0.94).
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Figure 5.
Example of deconvolution based on CLSD-LE(8,0.96) for TRFS of carcinoma (hamster
buccal pouch carcinogenesis model). (a) Integrated intensity and average lifetime spectra for
360-450 nm wavelength range; summary statistics of (b) Lilliefors and (c) Ljung-Box tests
for all wavelengths and respective critical values; (d) – (f) representative deconvolution for
signals measured at 380 nm, 430 nm, 460 nm, respectively.
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Figure 6.
LSD-BE, CLSD-LE(8,0.96) and CLSD-LE(12,0.94) for FLIM measurements of
fluorophores in capillary tubes (NADH, C-1, C-120 and elastin from left to right) at 450 nm
emission. (a) Integrated intensity map (9.72 × 4.1 mm2) for scan measurement; (b), (c) and
(d) estimated average lifetime images (9.72 × 4.1 mm2) from LSD-BE, CLSD-LE(8,0.96)
and CLSD-LE(12,0.94) deconvolution respectively.
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Figure 7.
Example of deconvolution based on CLSD-LE(8,0.96) for FLIM measurement of ex vivo
atherosclerotic plaque. (a) Ex vivo tissue sample and scan area (red dashed box, 15×4 mm2);
(b) Integrated intensity and (c) average lifetime maps for scan measurements at 450 nm;
Sampling distributions of statistics from (d) Lilliefors and (e) Ljung-Box tests (bars) and the
null distributions (red dash lines); (f), (g) and (h) Representative deconvolution for signals
measured from three representative locations (lipid-rich, collagen-rich and elastin-rich
respectively).
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Table 1

Upper bounds of α for L ∈ {4,8,12} for different truncated time intervals and sampling rates.

Time Interval 20 ns Time Interval 40 ns

δt = 0.05 ns δt = 0.125 ns δt = 0.05 ns δt = 0.125 ns

L = 4 0.96 0.90 0.98 0.95

L = 8 0.92 0.81 0.96 0.90

L = 12 0.88 0.73 0.94 0.85

Phys Med Biol. Author manuscript; available in PMC 2013 February 21.
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Table 5

Average lifetime values (ns) for all fluorophores from LSD-BE and CLSD-LE deconvolution.

LSD-BE CLSD-LE(8,0.96) CLSD-LE(12,0.94) Literature

NADH 0.48±0.11 1.11±0.02 0.68±0.14 0.3 ~ 0.5

C-1 2.06±0.14 2.08±0.18 2.09±0.19 2.02

C-120 4.06±0.13 3.96±0.17 3.96±0.17 3.85

Elastin 5.21±0.16 5.09±0.15 5.08±0.15 5.2~7.36
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