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ABSTRACT

We describe a novel procedure for generating and optimizing pattern descriptors that can be used to find structural motifs in
DNA or RNA sequences. This combines a pattern-description language (based primarily on secondary structure alignment and
conservation of some key nucleotides) with a scoring function that relies heavily on estimated folding free energies for the
secondary structure of interest. For the cloverleaf secondary structure characteristic of tRNA, we show that a fairly simple
pattern descriptor can find almost all known tRNA genes in both bacterial and eukaryotic genomes, and that false positives
(sequences that match the pattern but that are probably not tRNAs) can be recognized by their high estimated folding free
energies. A general procedure for optimizing descriptors (and hence for finding new structural motifs) is also described. For six
bacterial, four eukaryotic, and four archaea genome sequences, our results compare favorably with those of the more complex
and specialized tRNAscan-SE algorithm. Prospects for using this general approach to find other RNA structural motifs are
discussed.
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INTRODUCTION

The art and science of drawing connections between se-

quence and structure tend to be very different for RNA

from what they are for proteins. There are several reasons

for this. First, the presence of a 20-letter “alphabet” for

protein sequences means that frequency counts or simple

pattern matching can often be a useful strategy for identi-

fying secondary structure or searching for similarities

among sequences; these strategies are much less useful with

the four-letter alphabet of nucleic acids. Second, there are

many more proteins than RNA fragments whose structure

has been determined, so that much more is known about

sequence–structure relations. Even at the secondary struc-

ture level, it is most often the case that RNA hydrogen-bond

(base-pairing) patterns have to be inferred from analysis of

sequence covariation among related members of some fam-

ily, rather then being observed directly in crystal or NMR

structures, as is often the case in proteins.

Nevertheless, interest in identifying structural similarities

in RNA from sequence is strong, and there are an increasing

number of cases in which enough is known to make at least

secondary structure identification a plausible goal. The ap-

proach taken here involves encoding secondary structure

patterns into a “profile” or “motif,” and searching through

genome databases to find sequences that have the capability

of adopting the given secondary structure pattern. This is

the analog of the protein “threading” or “inverse folding”

problem, in which sequences are checked for compatibility

with a given, known fold (Mirny et al. 2000; Panchenko et

al. 2000; Skolnick et al. 2001). The simplest level of “com-

patibility” for RNA is just to require complementary (e.g.,

Watson-Crick) base pairs in the duplex regions of a sec-

ondary structure model. This model, however, would be

overwhelmed by false positives in a genome-wide search for

all but the most complex secondary structures, and it as-

sumes that any mismatch within a stem region is fatal.

More than a decade ago, Gautheret and coworkers cre-

ated rnamot, a program to allow sequence searches to be

carried out against a descriptor that combines secondary

structure information with simple pattern matching for

conserved nucleotides (Gautheret et al. 1990; Laferrire et al.

1994). Macke et al. (2001) later extended this idea in the

program RNAMotif, which provides an expanded syntax

for describing motifs, along with an implementation of

nearest-neighbor rules and other schemes for ranking hits

(Mathews et al. 1999; Zuker et al. 1999; Zuker 2000). The

RNAMotif program is very useful in finding instances of a

pattern in a genome sequence, but a general procedure for

creating and optimizing profiles has not been available. In

practice, larger RNA motifs (>100–200 nt) are typically
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identified by straightforward sequence similarity searches,

and smaller motifs by specialized models that are trained on

known examples (Durbin et al. 1998). It has proved difficult

to design “physical” and understandable profiles that find

structural motifs without simultaneously matching large

numbers of false positives; and in the absence of large num-

bers of RNA crystal structures, it has been even more dif-

ficult to know what to look for in the first place. Here we

describe an approach to both of these problems, showing

that existing estimates of folding free energies are in fact

very useful as threading potentials, and presenting a heu-

ristic for generating threading motifs starting from just a

few examples. To illustrate this, we show how a nearly com-

plete catalog of tRNA genes can be extracted from the ge-

nome sequences of 14 organisms, starting just from gener-

alizations assembled 25 years ago about the cloverleaf sec-

ondary structure of bacterial tRNAs.

Transfer RNAs form an interesting, but somewhat un-

usual, set of structures (Wolin and Matera 1999). They

form a structural and functional family that is present in

many copies (up to 500 in higher organisms), and much is

known about them (Hani and Feldmann 1998; Marck and

Grosjean 2002). Detailed algorithms have been created and

trained on known sets of tRNA sequences that provide a

putatively complete catalog of tRNA genes. The most ad-

vanced of these is called tRNAscan-SE (Lowe and Eddy

1997), which combines three separate algorithms: (1)

tRNAscan (Fichant and Burks 1991) uses base-pairing rules;

(2) the Pavesi algorithm (Pavesi et al. 1994) searches for

linear sequence signals in the form of eukaryotic RNA poly-

merase III promoters and terminators; and (3) covariance

models use stochastic context-free grammars from multiple

sequence alignments (Eddy and Durbin 1994). The pres-

ence of introns, of course, complicates the search for tRNA

genes (as for other genes), but it appears that the location

and nature of introns in tRNA genes are very limited, and

they are handled in this work in an ad hoc fashion (de-

scribed below) that may be difficult to extend to more com-

plex problems. Nevertheless, the availability of a known

catalog of tRNA genes for a variety of organisms (see http://

rna.wustl.edu/GtRDB) allows us to test alternative methods

by which such information might be found.

RESULTS

General descriptor

Figure 1 shows an RNAMotif descriptor that was applied to

all the genomes studied. (Our procedure for constructing

this descriptor is described below.) The cloverleaf-like sec-

ondary structure, including the required lengths of various

stems and loops, is depicted in Figure 1A. Figure 1A also

shows eight of the conserved nucleotides used in the de-

scriptor, and one mismatch of these nucleotides in each

sequence was allowed. Furthermore, a mispair in each stem

was allowed. In eukaryotic and archaea genomes, an intron
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wc += gu;

descr
   h5(tag=’h1’,len=7,mispair=1,ends=’mm’)
      ss(tag=’s1’,len=2)
      h5(tag=’h2’,minlen=3,maxlen=4,mispair=1,ends=’mm’)
         ss(tag=’s2’,minlen=8,maxlen=11)
      h3(tag=’h2’)
      ss(tag=’s3’,len=1)
      h5(tag=’h3’,len=5,mispair=1,ends=’mm’)
         ss(tag=’s4’,len=7)
      h3(tag=’h3’)
      ss(tag=’s5’,minlen=4,maxlen=22)
      h5(tag=’h4’,len=5,mispair=1,ends=’mm’)
         ss(tag=’s6’,len=7)
      h3(tag=’h4’)
   h3(tag=’h1’)
   ss(tag=’s7’,len=4)

score
{
n = 0;
if (ss[’s1’,1,1] != "u")  n++;
if (ss[’s4’,2,1] != "u")  n++;
if (h5[’h4’,5,1] != "g")  n++;
if (ss[’s6’,1,1] != "u")  n++;
if (ss[’s6’,2,1] != "u")  n++;
if (ss[’s6’,3,1] != "c")  n++;
if (ss[’s6’,5,1] != "a")  n++;
if (h3[’h4’,1,1] != "c")  n++;

if (n > 1) REJECT;

SCORE = efn( h5[’h1’],ss[’s7’] );
}

FIGURE 1. RNAMotif descriptor used to search for potential tRNA genes in bacterial, eukaryotic, and archaea genomes in graphic form (A) and
in text form (B).
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of 8–60 nt was allowed between the sixth and seventh

nucleotides of the anticodon loop, similar to the structural

requirement in the original tRNAscan program (Fichant

and Burks 1991). Figure 1B shows the actual RNAMotif

descriptor in text format used to describe this particular

structure (without the intron).

This general descriptor was not systematically optimized

to provide the most correct hits or lowest false-positive rates

across various organisms. In fact, more specific rules for

mispairs, sequence conservation, and lengths of regions

could conceivably be included to provide better statistics.

However, this simple descriptor provides a straightforward

depiction of the structural motif we are looking for, and

serves to illustrate the use of nearest-neighbor energies as an

additional scoring function, as is discussed below.

Applications to bacteria

The results of RNAMotif searches for sequences in the bac-

terial genomes that matched the general descriptor in Figure

1 are summarized in Table 1, including comparisons to

results using tRNAscan-SE. Overall, 99.3% of the potential

tRNA genes coding for standard amino acids found by

tRNAscan-SE were also found by RNAMotif. Those that

were missed by RNAMotif had multiple mispairs or bulges

in a stem.

Upon initial examination of Table 1, it appears that

a significant number of sequences were found using

RNAMotif that were not considered tRNA genes by

tRNAscan-SE. This was expected from the generality of the

descriptor used to pick out these sequences. However, the

nearest-neighbor energies for almost all of these false posi-

tives were noticeably higher than the other sequences (Fig.

2). One false positive in the E. coli O157:H7 genome stands

out as an exception (Fig. 2B), with a relatively low nearest-

neighbor energy of −19.9. In addition to having a low near-

est-neighbor free energy, this sequence, whose correspond-

ing cloverleaf structure is shown in Figure 3, has the po-

tential of being a true tRNA gene that was missed by

tRNAscan-SE for the following reasons: (1) Several nucleo-

tides whose sequences were not included in the descriptor

nevertheless followed the conserved patterns (Fig. 3, shown

in red). (2) The anticodon sequence is TCG, which codes

for arginine. (3) Its sequence spans a region of the genome

(bases 5995–6077 of the NCBI entry AE005323) sandwiched

between two tRNA genes spanning bases 5912–5987 and

6085–6161. (There is, however, no TTTT terminator se-

quence between this tRNA gene and the next tRNA gene.)

This may not have been found by tRNAscan-SE because the

fifth position of the TPC loop is a G instead of the con-

served A, or because of an A–A mispair in the aminoacyl

stem and an A–C mispair in the TPC stem.

The RNAMotif descriptor could be further optimized for

a particular species. For example, the descriptor in Figure 4

was optimized for the K-12 and O157:H7 strains of E. coli,

such that the same tRNA genes were found as in the general

descriptor, but the only false positive observed was the one

in the O157:H7 strain with low (−19.9) nearest-neighbor

energy (see above). A main difference between this descrip-

tor and the general descriptor in Figure 1 is that the G–U

base pairs are not allowed in the E. coli descriptor. The E.

coli tRNAs (including those predicted by tRNAscan-SE) do

not use G–U base pairs, although such G–U base pairs are

found in the tRNAs of many other organisms. Although a

descriptor with the same secondary structure as Figure 1

without any requirements in conserved nucleotides (and

allowing a mispair in each stem) gave >25,000 false posi-

tives in the E. coli genomes when G–U base pairs were

allowed, the number of false positives was reduced to ∼80
when G–U base pairs were not allowed. Some of the re-

quirements for conserved nucleotides are also different (cf.

Figs. 1 and 4). It was found that all of the E. coli tRNAs

predicted by tRNAscan-SE contained CCA at the 3� end.

Not all of the tRNAs for other prokaryotic organisms stud-

TABLE 1. RNAMotif results for bacterial genomes

Organism

No. std

tRNAa

No.

psdgb
No.

SeCc

No.

undetd
No. false pos.

w/ introne
No. false pos.

w/o intronf

E. coli K-12 85/86 0/1 1/1 0/0 N/A 15

E. coli O157:H7 95/95 0/1 1/1 0/0 N/A 20

B. subtilis 86/87 0/0 0/0 0/0 N/A 18

A. aeolicus 43/43 0/0 0/1 0/0 N/A 4

H. influenzae Rd 56/56 0/1 1/1 0/0 N/A 7

M. pneumoniae 35/36 0/0 1/1 0/0 N/A 6

If two numbers are reported, the left number corresponds to the number of sequences found by tRNAscan-SE that are also found by RNAMotif,
and the right number corresponds to the total number found by tRNAscan-SE.
atRNA genes coding for standard amino acids.
bPseudogenes.
cSelenocysteine tRNA genes.
dtRNA-like genes with undetermined anticodons.
eNumber of hits found by RNAMotif only that contained introns.
fNumber of hits found by RNAMotif only that did not contain introns.
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ied here contained this sequence; in fact, this sequence was

present in only 80% of the Bacillus subtilis tRNAs. In or-

ganisms that do not encode the 3�-terminal CCA (eukary-

otes, some archaea, and many eubacteria), the CCA-adding

enzyme, ATP(CTP):tRNA nucleotidyltransferase, catalyzes

the synthesis and regeneration of the 3�-terminal CCA se-

quence of tRNA (Sprinzl and Cramer 1979; Deutscher 1982;

Shi et al. 1998). This sequence was therefore not included in

the general descriptor.

All 95 tRNA sequences in the E. coli O157:H7 genome,

found both by tRNAscan-SE and RNAMotif, were folded

using the program mfold (Zuker 1989; Mathews et al. 1999)

to find the secondary structures with minimum nearest-

neighbor energy. Of these 95 sequences, 32 folded to correct

cloverleaf structures. Figure 5 illustrates a few of the alter-

nate minimum-energy structures for the other 63 struc-

tures. Three of the examples in this figure have correctly

folded aminoacyl arms, which was true in 85 of the 95

structures. The structure in Figure 5B is an example of one

that almost looks like a cloverleaf, with both the aminoacyl

and TPC arms correctly folded. Conversely, the structure in

Figure 5A forms a double helix with bulges, and has com-

pletely lost the cloverleaf resemblance.

Besides the true tRNA sequences, 70 false-positive se-

quences obtained using the general descriptor in Figure 1

for all six bacterial genomes (Table 1) were subjected to

mfold. In other words, these are sequences that could po-

tentially fold into the secondary structural motif depicted in

Figure 1. Of these 70 sequences, none folded to the canoni-

cal secondary structures of a cloverleaf.

A few examples of minimum-energy

structures for these sequences are shown

in Figure 6.

Use of a descriptor with the same sec-

ondary structure as in Figure 1, but that

lacked any sequence requirements and

allowed one mispair in each of the

stems, produced >25,000 false positives.

Several of these false positives had low

nearest-neighbor energies that over-

lapped with a subset of the true tRNAs’

energies (Fig. 7). From this collection of

false positives, 150 lowest-energy se-

quences were subjected to mfold; none

of these folded to the canonical clover-

leaf structure. We also examined the dif-

ferences in nearest-neighbor energies

between the cloverleaf motif and the

minimum-energy secondary structure

for each of these 150 sequences, as well

as for the 95 true tRNA sequences in E.

coli O157:H7 (Fig. 7, bottom). Although

this difference is overall larger for the

false-positive sequences, there is a re-

gion of overlap between the false posi-

tives and true tRNAs. Hence, the nearest-neighbor clover-

leaf energy (Fig. 7, top) serves as a good discriminator of

FIGURE 3. A sequence (and the corresponding cloverleaf structure)
found by RNAMotif in the Escherichia coli O157:H7 genome that was
not found by tRNAscan-SE. (Green) Conserved nucleotides included
in the RNAMotif descriptor; (red) conserved nucleotides that were not
included in the RNAMotif descriptor but were matched by this se-
quence; (blue) a conserved nucleotide that is violated by this sequence.
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false positives, whereas the energy gap between the clover-

leaf structure and the minimum energy structure (Fig. 7,

bottom) does not.

Applications to eukaryotes

The results of RNAMotif searches for sequences in the eu-

karyotic genomes that matched the tRNA general descriptor

are summarized in Table 2. The descriptor used here differs

from that of the bacterial genomes only by allowing an

8–60-nt intron between the sixth and seventh nucleotides of

the anticodon loop. Of the potential tRNA genes coding for

standard amino acids found by tRNAscan-SE, 96.4% were

also found by RNAMotif. Furthermore, of the 220 tRNA

genes with introns that were predicted by tRNAscan-SE,

218 were found by RNAMotif.

The number of false positives increased dramatically with

the inclusion of an intron in the descriptor, as the number

of false positives with introns is 15–20 times larger than the

number of false positives without introns (Table 2). Exami-

nation of the nearest-neighbor energies (Fig. 8) shows that

true tRNAs still gave generally lower energies than false

positives. However, regions of overlapping energies occur,

especially in Arabidopsis thaliana and Caenorhabditis el-

egans. Most of the low-energy false positives are sequences

with introns. In fact, none of the false positives without

introns has nearest-neighbor energies below −10.8 kcal/

mole.

Several tRNA sequences found by tRNAscan-SE have

nearest-neighbor energies above around −15 kcal/mole,

relatively higher than most other true tRNA sequences (Fig.

8). These tRNA structures contain multiple G–U base pairs,

and sometimes a mispair in each stem. Comparison of the

tRNAs in prokaryotes and eukaryotes (predicted by

tRNAscan-SE) shows that the tRNAs in eukaryotes are

more likely to contain deviations such as mispairs, inser-

tions, bulges, and mismatches to conserved nucleotides.

This is the main cause for a larger percentage of tRNA

genes in eukaryotes found by tRNAscan-SE, but missed by

RNAMotif, relative to bacteria. Some of these deviations are

systematic for a particular tRNA in a particular organism.

For example, 4 of the 15 methionine tRNAs in A. thaliana

have a cytosine instead of the conserved uracil in the second

nucleotide of the anticodon loop. Similarly, in 11 of the 14

alanine tRNAs in Schizosaccharomyces pombe, the TPC loop

is closed by an A–T base pair instead of the conserved G–C

base pair. The reasons for the evolution of these variations

may shed light on functions for these nucleotides specific

for a particular organism.

Applications to archaea

The results of RNAMotif searches for sequences in the ar-

chaea genomes that matched the tRNA general descriptor

are summarized in Table 3. Of the potential tRNA genes

coding for standard amino acids found by tRNAscan-SE,

98.3% were also found by RNAMotif. The descriptor used

for the archaea genomes included a potential intron, as in

the descriptor for the eukaryotic genomes. None of the

genes found by tRNAscan-SE but missed by RNAMotif

contained introns.

The nearest-neighbor energies for false positives and true

tRNA sequences with the cloverleaf structures are plotted in

Figure 9. In general, the true tRNA sequences tend to have

overall higher nearest-neighbor energies than the false posi-

tives, with energies below −20 kcal/mole. However, one

sequence in Methanobacterium thermoautotrophicum that

was found both by tRNAscan-SE and RNAMotif had a rela-

tively high nearest-neighbor energy of −12.93 kcal/mole.

On examination of the results, it was found that tRNAscan-SE

had predicted 68 nt in the intron for this sequence,

8 more than the maximum length of the intron in the

RNAMotif descriptor. RNAMotif found this sequence, nev-

ertheless, because of alternate base-pairing schemes and in-

creased length of the variable loop in the RNAMotif sec-

ondary structure relative to the tRNAscan-SE secondary

structure. Using the same secondary structure predicted by

tRNAscan-SE (with the 68-nt intron) gave a lower nearest-

neighbor energy of −19.6 kcal/mole.

The inclusion of introns, as discussed above and seen in

Tables 2 and 3, increases the number of false positives.

Furthermore, it decreases the reliability of using nearest-
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neighbor energies to assess the possibility that a sequence

truly adopts a particular fold. One such example is the

lowest-energy false-positive sequence found by RNAMotif

in the Pyrococcus abyssi genome, with a nearest-neighbor

energy of −21.34 kcal/mole. RNAMotif predicts that this

sequence has a 45-nt intron and a 20-nt variable loop,

spanning bases 578160–578296 of the genome. However,

two true tRNAs were found by both RNAMotif and

tRNAscan-SE that overlap with the false-positive sequence,

spanning bases 578139–5781215 for one and 578219–

578296 for the other. This serves as a warning for using

nearest-neighbor energies for assessing the folds, especially

when a lengthy insertion sequence (with unknown second-

ary structural features of its own) is used as part of the

descriptor.

DISCUSSION

Use of nearest-neighbor energy as a
scoring function

The results in this study illustrate that

nearest-neighbor energies can poten-

tially be used as a novel scoring function

for these secondary structure pattern-

matching programs, and can be used

alone or in conjunction with scoring

functions based on sequence conserva-

tion. Although these energies appear to

be robust in distinguishing between

false-positive and true tRNAs in bacteria

as well as in eukaryotes and archaea, this

trend should not be considered a set

rule. Nearest-neighbor energies are only

rough estimates of the thermodynamics

of secondary structural formation, and

do not take into account tertiary inter-

actions. Furthermore, the fact that a

particular secondary structure adopted

by a sequence has low energy does not

indicate how close this secondary struc-

ture is to the global minimum-energy

structure.

The results from mfold show that

only about a third of the true tRNA se-

quences adopt cloverleaf structures

as their lowest-energy configurations.

(This fraction may be somewhat im-

proved if a more sophisticated approach

is used for modified nucleotides; see

Mathews et al. 1999). This points to

limitations in the nearest-neighbor en-

ergy function, and indicates that the

function could be further improved by

examination of resulting mfold struc-

tures for a variety of sequences. The

lowest-energy structures often appear to adopt as long of a

continuous double-helical stem as possible, and this could

be remedied if the energy function also had the ability to

include known tertiary interactions specified by the user. In

addition to tertiary interactions, the efn2 nearest-neighbor

energy function presently cannot be used for pseudoknot

structures. Because several biologically important RNA seg-

ments have been found to adopt pseudoknot structures

(Hilbers et al. 1998; McCarthy 2000), including the ability

of mfold and RNAMotif to assess these structural motifs

provides an exciting future direction (Rivas and Eddy 1999;

Diamond et al. 2001; Mathews and Turner 2002).

A major advantage of using nearest-neighbor energies as

a scoring function lies in its generality to all standard sec-

ondary structural motifs, such that it can be used even when
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no alignments or sequence profiles for a target RNA struc-

ture exist. In terms of a well-studied family such as the

tRNAs, it can be used as an additional stage of assessment.

For example, the sequences found by tRNAscan-SE and

RNAMotif with high nearest-neighbor energies pose a

warning, and should be examined in more detail. Con-

versely, the sequences missed by tRNAscan-SE (but found

by RNAMotif owing to their low nearest-neighbor energies)

should also be given special attention, because they have a

higher probability of being true tRNAs

missed by tRNAscan-SE. Most of the

high-energy tRNA structures found in

this study contained mispairs and nu-

merous G–U base pairs, and the lowest-

energy structures were mainly charac-

terized by large G–C base-pair content.

In addition, the energy function in-

cludes more subtle rules for stacking,

base-pairing, and loop formation. These

energy rules therefore provide a more

universal and systematic scoring func-

tion than a simple count of G–U base-

pair and mispair frequencies.

Generation of motifs

The tRNA structures and sequence pro-

files are perhaps the most well-studied

among RNAs; hence, they are appropri-

ate for method validation and testing of

descriptors. However, the procedures

for optimizing RNAMotif descriptors

should be able to apply more generally

to RNAs in which less information is

available.

We propose here a general procedure

for optimizing RNAMotif descriptors in

the absence of sequence profiles. First, a

descriptor of the secondary structure is

created from a crystal/NMR structure or other experimental

evidence of base-pairing schemes and lengths of loops. This

initial descriptor does not include any sequence require-

ments or mispairs. Searches with this descriptor are ex-

pected to miss those sequences that contain some variability

in the lengths of secondary structural elements, or those

that contain mispairs. These searches may also find false

positives because of the lack of sequence requirements, and

those are more likely to give high nearest-neighbor energies.

TABLE 2. RNAMotif results for eukaryotic genomes

Organism

No. std

tRNAa

No.

psdgb
No.

SeCc

No.

undetd
No. false pos.

w/ introne
No. false pos.

w/o intronf

S. cerevisiae 270/273 0/0 0/0 2/2 1238 63

S. pombe 186/200 0/0 0/0 0/0 1254 61

A. thaliana 401/409 1/409 0/0 0/1 9212 549

C. elegans 558/586 0/586 1/1 2/3 10363 562

If two numbers are reported, the left number corresponds to the number of sequences found by tRNAscan-SE that are also found by RNAMotif,
and the right number corresponds to the total number found by tRNAscan-SE.
atRNA genes coding for standard amino acids.
bPseudogenes.
cSelenocysteine tRNA genes.
dtRNA-like genes with undetermined anticodons.
eNumber of hits found by RNAMotif only that contained introns.
fNumber of hits found by RNAMotif only that did not contain introns.
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FIGURE 6. Examples of lowest nearest-neighbor energy secondary structures from mfold, for
sequences found only by RNAMotif.
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Alignment of only those sequences with low nearest-neigh-

bor energies, which are thus the best candidates, may be

used to discover conserved nucleotides, which can be in-

cluded in the descriptor for the next round of searches. The

next descriptor is made stricter from the sequence require-

ments, but can also be relaxed structurally at the same time

(increase the range of lengths of secondary structure ele-

ments or allow mispairs) to find the

more structurally divergent sequences.

These steps can be repeated and opti-

mized. Of course, in the absence of ex-

perimental data for comparison, it is

difficult to quantitate when one has

reached the optimal descriptor that can-

not be improved further, or what is the

definitive cut-off value for the nearest-

neighbor energies in distinguishing be-

tween true and false positives (as this

cutoff will be different for different mo-

tifs). This procedure, however, provides

a means of finding sequences that are

most likely to form a specified structure,

and has the potential of discovering in-

formation on sequence conservation in

the absence of a pre-existing family of

sequences.

To test this procedure on the search

for tRNA in the E. coli O157:H7 ge-

nome, we started with the descriptor

shown in Figure 10A. This descriptor

contains no sequence requirements, and

no mispairs are allowed. It corresponds

closely to what was known about bacte-

rial tRNAs in the late 1970s (Jack et al.

1976; Kim 1979), and hence serves as an

example of how fragmentary initial in-

formation might be bootstrapped into a

more complete description.

Using this descriptor, 26 tRNAs found

by tRNAscan-SE were missed by

RNAMotif, and 5 tRNAs found by RNA-

Motif were false positives. These 5 false

positives all had nearest-neighbor energies

of 1.1, −6.3, −10.8, −12.7, and −18.0 kcal/

mole, higher than the other true tRNAs

(with nearest-neighbor energies �−21.7

kcal/mole). Next, the 50 sequences giving

the lowest nearest-neighbor energies were

aligned, resulting in 11 nucleotides that

are 100% conserved. These are then in-

cluded in the next round of searches, with

the descriptor shown in Figure 10B. This

descriptor also allows a mispair in each

helix. The resulting sequences produced

no false positives because of the conserved

nucleotide requirements, and the number of tRNAs found by

tRNAscan-SE and missed by RNAMotif was dropped from 26

to 2 because of the allowance of mispairs. This example is a

simple test case for this optimization procedure. Naturally,

other motifs may encounter additional difficulties as the varia-

tion of lengths of structural elements may be less known, and

many more rounds of optimization with different ranges in

FIGURE 7. (Top) Plot of the nearest-neighbor energies of sequences in Escherichia coli
O157:H7 that were found by both tRNAscan-SE and RNAMotif (crosses), and sequences that
were found only by RNAMotif (dots), as they adopt the secondary structure in Figure 1.
(Bottom) The difference in nearest-neighbor energies between a sequence in cloverleaf structure
and in its lowest-energy secondary structure, plotted for true tRNAs (filled circles) and false
positives (open circles). The overlapping region is enclosed in dotted lines.

FIGURE 8. Nearest-neighbor energies of sequences found by RNAMotif as they adopt the
secondary structure in Figure 1, for the following eukaryotic genomes: (A) Saccharomyces
cerevisiae, (B) Arabidopsis thaliana, (C) Schizosaccharomyces pombe, and (D) Caenorhabditis
elegans.
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lengths, mispairs, and strictness in sequence conservation may

be needed. Even in those cases, the nearest-neighbor energy

function provides a universally applicable means of assessing

the probability that a sequence folds into a particular second-

ary structure.

Conclusions

This sort of application tests the efn2 function in new ways.

A good folding function must favor the correct fold over

others, which often have nearly similar secondary struc-

tures; in contrast, a good threading potential for inverse

folding should penalize bad sequences (for a given second-

ary structure), but the amount of the penalty is not impor-

tant, provided that it is large enough to provide a discrimi-

nation between good and bad sequences. As a forward-

folding potential, efn2 is only moderately successful with

known tRNA sequences: About one-third of the sequences

examined were predicted to fold to the correct secondary

structure, and ∼70% of base-pairings were correctly pre-

dicted. The results below show much

better performance of efn2 as a thread-

ing potential: It is able with high fidelity

to identify sequences that should not

fold into a tRNA-like secondary struc-

ture.

The model of tRNAs used here is de-

liberately a very simple one. We have

concentrated on finding sequences that

can adopt a cloverleaf secondary struc-

ture within given ranges of stem and

loop lengths. We have not attempted

to identify or make use of promoter se-

quences, and our model for introns is

very simple and depends on prior

knowledge that could not be readily ob-

tained just from scanning genomic se-

quences. It would clearly be possible to

extend our tRNA model in various directions, and to ex-

amine the biological implications of the results in greater

detail, as, for example, in the analysis of Marck and

Grosjean (2002). However, the broader implications of

our results lie in the generality of the threading potential,

which is based on estimates of folding free energies that are

not specific to tRNA. This implies that the good discrimi-

nation against false positives seen here may be repeated

for other motifs. The upshot should be that relatively sim-

ple descriptors can be usefully scanned against genome se-

quences. Even though such searches will often produce

many hits, false positives can be eliminated by means of

the threading potential that has a sound physical basis. Be-

cause the nearest-neighbor potentials were developed from

the observed thermodynamics of small RNA fragments,

and have nothing specific about tRNA in their parameter-

ization, this indicates that the general procedure outlined

here should be useful in a variety of applications. We will

report results on searches for ribosomal RNA genes else-

where.

TABLE 3. RNAMotif results for archaea genomes

Organism

No. std

tRNAa

No.

psdgb
No.

SeCc

No.

undetd
No. false pos.

w/ introne
No. false pos.

w/o intronf

S. fulgidus 46/46 0/0 0/0 0/0 108 6

M. thermoautotrophicum 37/39 0/0 0/0 0/0 113 7

P. abyssi 46/46 0/0 0/0 0/0 101 2

P. furiosus 45/46 0/0 0/0 0/0 128 2

If two numbers are reported, the left number corresponds to the number of sequences found by tRNAscan-SE that are also found by RNAMotif,
and the right number corresponds to the total number found by tRNAscan-SE.
atRNA genes coding for standard amino acids.
bPseudogenes.
cSelenocysteine tRNA genes.
dtRNA-like genes with undetermined anticodons.
eNumber of hits found by RNAMotif only that contained introns.
fNumber of hits found by RNAMotif only that did not contain introns.

FIGURE 9. Nearest-neighbor energies of sequences found by RNAMotif as they adopt the
secondary structure in Figure 1, for the following archaea genomes: (A) Archaeoglobus fulgidus,
(B) Pyrococcus abyssi, (C)Methanobacterium thermoautotrophicum, and (D) Pyrococcus furiosus.
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MATERIALS AND METHODS

We used version 2.2 of RNAMotif (Macke et al. 2001; http://

www.scripps.edu/case/rnamotif.me), with a series of descriptors

for the cloverleaf secondary structure of tRNA. The algorithms

used by RNAMotif to locate subsequences in a genome that satisfy

the restraints from the descriptor have been described in detail

(Macke et al. 2001), and the specific descriptors used are discussed

above. We have placed example inputs and outputs for the Esch-

erichia coli O157:H7 strain on an anonymous ftp server, ftp://

ftp.scripps.edu/case/Ecoli.trna.example.tar.gz. For the tRNA de-

scriptors used here, the computation time is very nearly linear in

the size of the genomic sequences being analyzed. The E. coli

example takes ∼6 min on a 195-MHz SGI R10000 computer.

Searches were carried out for six prokaryotic genomes (E. coli

K-12, E. coli O157:H7, Bacillus subtilis, Aquifex aeolicus, Hae-

mophilus influenzae Rd, and Mycoplasma pneumoniae), four eu-

karyotic genomes (Saccharomyces cerevisiae, Schizosaccharomyces

pombe, Chromosomes 1, 2, and 4 of Arabidopsis thaliana, and

Caenorhabditis elegans), and four archaea genomes (Pyrococcus ab-

yssi, Archaeoglobus fulgidus, Methanobacterium thermoautotrophi-

cum, and Pyrococcus furiosus). The genomic sequences were ob-

tained from the NCBI (National Center for Biotechnology Infor-

mation) for all organisms except the following: S. pombe (Sanger

Centre, UK), P. abyssi (Genscope, France), A. fulgidus (The Insti-

tute for Genomic Research), and P. furiosus (Utah Genome Cen-

ter).

It is important to remember that sequences matching a particu-

lar profile only have the possibility of forming the given structure,

that is, they satisfy base-pairing constraints in the stem regions and

length restrictions in loops. The sequences thus identified can be

fed to scoring functions (or threading potentials) to further assess

the fit of the sequence to the proposed secondary structure. Here

we use the efn2 parameters of the Mathews group (Mathews et al.

1999; Zuker et al. 1999) as a threading potential. This function is

based largely on the observed thermodynamics of small RNA frag-

ments (Xia et al. 1998), and estimates the folding free energy of a

given sequence and secondary structure through an additive

model based on nearest-neighbor sequence interactions. It has

been widely used, with some success, to find the lowest-energy

secondary structure for a given sequence, in conjunction with

programs such as mfold (Zuker 2000) or pknots (Rivas and Eddy

1999). Here we are testing efn2 for inverse folding, that is, for

assessing the fit of a sequence to a predetermined (cloverleaf)

secondary structure.

For many of the candidate tRNA sequences, we also used Ver-

sion 3.1 of the mfold program (Zuker 1989), with parameters from

Mathews et al. (1999), to determine the secondary structure with

lowest nearest-neighbor energy. These energies could then be

compared with those obtained for the efn2 function when the

secondary structure is forced to adopt the tRNA-like cloverleaf

pattern.
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