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In the era of big data, data-driven methods mainly based on deep learning have been widely used in the 
eld of intelligent fault
diagnosis. Traditional neural networks tend to be more subjective when classifying fault time-frequency graphs, such as pooling
layer, and ignore the location relationship of features. 	e newly proposed neural network named capsules network takes into
account the size and location of the image. Inspired by this, capsules network combined with the Xception module (XCN) is
applied in intelligent fault diagnosis, so as to improve the classi
cation accuracy of intelligent fault diagnosis. Firstly, the fault
time-frequency graphs are obtained by wavelet time-frequency analysis. 	en the time-frequency graphs data which are adjusted
the pixel size are input into XCN for training. In order to accelerate the learning rate, the parameters which have bigger change
are punished by cost function in the process of training. A�er the operation of dynamic routing, the length of the capsule is used
to classify the types of faults and get the classi
cation of loss. 	en the longest capsule is used to reconstruct fault time-frequency
graphs which are used to measure the reconstruction of loss. In order to determine the convergence condition, the three losses are
combined through the weight coe�cient. Finally, the proposed model and the traditional methods are, respectively, trained and
tested under laboratory conditions and actual wind turbine gearbox conditions to verify the classi
cation ability and reliable ability.

1. Introduction

	e rolling bearing is the most commonly used part in
mechanical equipment. In the working process, the bearing
may be damaged due to improper assembly, poor lubrication,
water, and foreign body invasion, corrosion, overload, etc. [1].
Due to the processing technology, working environment, and
other reasons, the fault signal is nonlinear and nonstationary,
whichmakes the dynamic mutation of the fault signal unable
to be detected e
ectively. So, it is di�cult to identify the fault
type of bearing accurately and stably. Compared with other
machine parts, the rolling bearing works badly, which causes
the probability of failure to be high and the unpredictability
strong. 	erefore, the fault diagnosis of rolling bearings is of
great signi
cance to ensure the safety of equipment, personal
property, and maintenance cost [2].

In recent years, methods based on signal processing [3]
or deep learning [4, 5] are widely used to solve practi-
cal engineering problems [6–9]. Moreover, in the 
eld of
compound fault diagnosis of rotating machinery, with the
continuous exploration of many researchers, novel intelligent
fault diagnosis methods emerge in an endless �ow. For
example, the methods based on the entropy [10, 11] of
signal processing includemaximumkurtosis spectral entropy
deconvolution (MKSED) [12], multipoint optimal minimum
entropy deconvolution adjusted (MOMEDA) [13], modi
ed
multiscale symbolic dynamic entropy (MMSDE) [14], and
minimum entropy deconvolution [15]. In addition, there
are other ways, such as improved ensemble local mean
decomposition (IELMD) [16, 17], kernel regression residual
[18], and modi
ed variable modal decomposition (MVMD)
[19, 20]. Methods based on big data and machine learning or
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deep learning include support vectormachine (SVM) [21, 22],
extreme learning machine (ELM) [23], kernel extreme learn-
ing machine (KELM) [24], deep belief network (DBN) [25],
and convolutional neural network (CNN) [26, 27]. In general,
these methods can solve most classi
cation problems well.
But for composite fault diagnosis, their fault test accuracy
rate is not too high. Moreover, this kind of algorithm always
fails when there is not enough data to meet the convergence
condition or causes over
tting phenomenon, which will lead
to low test accuracy [28].

For example, the traditional convolution neural network
requires a lot of training samples to meet the convergence
condition. Moreover, people may subjectively reduce the
dimension of 
lter [29] on the pooling of convolution neural
network layer, which can result in a substantial loss on the
pooling layer information and even causes a phenomenon
that the input has a small change but the output is hardly
changed. However, as for time-frequency graphs, a very small
change may be the di
erent type of bearing fault type or
the large change of fault size. To summarize, the traditional
convolutional neural network is di�cult to achieve a high
fault test accuracy.

Based on these disadvantages of traditional convolu-
tional neural network, the capsule neural network (CapsNet)
architecture was proposed by Hinton and his assistants in
November 2017 [30], which can retain the exact position,
inclination, size, and other parameters of the feature in
the time-frequency graphs when training the deep learning
method, so as to make the slight changes in the input also
bring about slight changes in the output. In the famous
handwritten digital image data set (Minst), CapsNet has
reached the most advanced performance of the current deep
learning algorithms. CapsNeth architecture is made up of
capsules rather than neurons. A capsule is a small group
of neurons that can learn to examine a particular object
in an area of an image. Its output is a vector, the length
of each vector represents the estimated probability of the
existence of the feature, and its direction records the object
of attitude parameters, such as accurate position, inclination,
and size. If the feature changes slightly, the capsule will output
a vector with the same length but slightly di
erent direction,
which is helpful to improve the test accuracy of bearing fault
diagnosis.

	e input of the deep learning algorithm in the fault
diagnosis is fault time-frequency graphs and the two com-
mon time-frequency analysis methods are short-time Fourier
time-frequency analysis and wavelet time-frequency anal-
ysis. Short-time Fourier transform (STFT) used to play a
dominant role in the 
eld of signals and is an indispensable
analysis method [31]. However, due to its own limitations, it is
unable to deal with the nonstationary signals in real life, and
there is a contradiction between noise suppression and signal
protection in the process of signal denoising. A�er the idea
of wavelet transform, the wavelet transform replaces the posi-
tion of Fourier transform in signal processing. Firstly, wavelet
has very good time-frequency characteristics and can decom-
pose many di
erent frequency signals in nonstationary sig-
nals into nonoverlapping frequency bands, which can solve
the problems encountered in signal 
ltering, signal-noise

separation, and feature extraction well [32]. Secondly, due to
the time-frequency characteristic of localization, the choice
of wavelet basis is �exible and the calculation speed is very
fast, whichmakeswavelet transformapowerful tool for signal
denoising. Wavelet denoising can e
ectively remove noise
and retain the original signal, thus improving the signal-to-
noise ratio of the signal. 	erefore, the continuous wavelet
transform can e
ectively separate the e
ective part of the
signal from the noise, greatly improve the feature extraction
performance of fault diagnosis [33], and 
nally improve the
fault recognition rate.

In addition, improving the network structure can
improve the learning ability and reliable ability of the neural
network. For example, using the Inception of modules and
convolution in GoogLeNet can help neural network in
di
erent areas to capture more target-oriented characteristic,
accelerate the calculation speed, and increase the depth of
the neural network [34, 35]. Besides, Xception module is
the extreme version of Inception [36]; Xception module
completely decoupled across the channel correlation and
spatial correlation and has achieved the classi
cation
accuracy of 94.5% in the classi
cation of ImageNet database
[37].

In terms of the convergence condition of the deep learn-
ing algorithm, most of them only consider the classi
cation
loss as the only index of convergence and do not consider the
in�uence on the model when the parameters change a lot or
the reconstruction loss, which may make the model di�cult
to converge or require a lot of time to converge [38].However,
most samples are collected under ideal working conditions
in the laboratory, which may lead to the contingency when
verifying the feasibility of the deep learning method. In other
words, this deep learning method can only diagnose the
gearbox under the speci
cworking conditions [39, 40], which
means that the reliably is very poor.

Based on the above, a novel intelligent fault diagnosis
method of capsules network combined with the Xception
module was proposed and the weight coe�cient of loss was
taken into account, in order to improve the convergence
speed of the neural network classi
cation, robustness, and
learning ability. In order to verify XCNmodel of classi
cation
ability and reliable ability, the ideal laboratory condition
of samples and the actual work condition of samples were
chosen to train and test, respectively, and compare with other
deep learning methods.

2. The Basic Theory of the Model

2.1. Wavelet Transform and Time-Frequency Transform.
Compared with the short-time Fourier transform (STFT)
method, the wavelet basis of continuous wavelet transform
is no longer a trig function of in
nite length, but a wavelet
basis function of 
nite length that will decay. 	e wavelet
basis can be stretched, which solves the problem that the
time resolution and the frequency resolution cannot be both
[41], so it can better and e
ectively extract the e
ective
information in the bearing fault time domain signal.

Assuming the function �(�) ∈ �2(�), its Fourier trans-
form �(�) satis
es the condition
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where the function �(�) is called the parent wavelet or wavelet
basis. A�er scaling and shi�ing the parent wavelet, a wavelet
function cluster can be generated, whose expression is as
follows:

��,� (�) = 1√��(� − �� ) (2)

where � is the scale factor and � is the translation factor. 	e
scale factor � is used to scale the wavelet basis, while the scale
factor � is used to change the position of the window on the
time axis.

	e continuous wavelet transform of the signal �(�) is
de
ned as

��� (�, �) = 1√� ∫
∞

−∞
� (�) � (� − �� )�� (3)

However, most of the fault signals of the rolling bearings
are impulse fault signals, whose time-domain waveform is
damped and freely attenuated vibration, while the time-
domain waveform feature of Morlet wavelet is vibration
attenuation from the central position to both sides. And
their signals are similar [42, 43]. 	erefore, the Morlet of
continuous wavelet transform is selected as a wavelet basis,
and its function is as follows:

� (�) = �−�2/2���0� (4)

A�er determining the wavelet base and scale, the actual
frequency sequence � is combined with the time series to
draw the wavelet time-frequency graphs.

2.2. 
e Principle of Capsule Network. Capsule network is a
novel type of neural network proposed by Hinton and his
assistant in October 2017, which uses the module length of
the activation vector of the capsule to describe the probability
of the existence of the feature, and uses the direction of the
activation vector of the capsule to represent the parameters
of the corresponding instance [30].

Unlike previous neural networks which are composed
of nerve neurons, capsule neural networks are composed
of many capsules with speci
c meanings and directions.
Activation of neuronal activity within the capsule represents
various properties of a speci
c feature presented in the
image. 	ese properties can include many di
erent types
of instantiation parameters, such as posture (position, size,
and direction), deformation, velocity, re�ectivity, tone, and
texture.

At the network level, the capsule neural network is
composed of many layers.	e lowest level capsules are called
vector capsules, and they use only a small portion of the
image as input, respectively. 	e small area is called the
perceptual domain and it attempted to detect whether a
particular pattern exists and how it is posed. At higher levels,
capsules called routing capsules are used to detect larger and
more complex objects.

	e output of the capsule is a vector, the length of each
vector represents the estimated probability of the existence
of the object, and its direction records the object of attitude
parameters. If the object changes slightly, the capsule will also
output a vector with the same length but slightly di
erent
direction. So, the capsules are isotropic. For example, if
the capsule neural network outputs an eight-dimensional
capsule, its vector length represents the estimated probability
of the existence of the object, and its direction in the eight-
dimensional space represents its various parameters, such as
the exact position of the object or the number of rotation
angles. 	en, when the object rotates by a certain angle or
moves by a certain distance, it only changes the direction
of the output vector, not its length, so it has little e
ect on
the recognition rate of capsule neural network. Moreover,
this phenomenon is not found in traditional neural networks,
such as convolutional neural networks.

Convolution neural network, such as the traditional
neural network, mostly through pooling mechanisms which
choose the maximum value of the region or in a 
xed area
average, extracts main features to next layers, which makes
the neural network of subjectivity much bigger. 	erefore,
the pooling operation may reduce the recognition rate of the
neural network greatly. 	e capsule neural network proposed
a very signi
cant mechanism called the dynamic routing
mechanism. In the capsule neural network, the output of
the capsule is set as a vector, which makes it possible to use
a powerful dynamic routing mechanism to ensure that the
output of the capsule is sent to the appropriate parent node
in the above layer. Initially, the output is routed to all possible
parent nodes a�er the coupling sum is reduced by a factor of
1. For each possible parent node, the capsule calculates the
prediction vector by multiplying its own output by a weight
matrix. If the scalar product of this prediction vector and
the output of a possible parent node are larger than others,
there is top-down feedback, which has the e
ect of increasing
the coupling coe�cient of this parent node and reducing the
coupling coe�cient of other parent nodes. 	is increases the
contribution of the capsule to that parent node and further
increases the scalar product of the capsule prediction vector
and the output of that parent node. So, this operation is more
e�cient than the primitive form of routing implemented
through pooling, where all feature detectors in the next layer
are ignored, except for the most active feature detectors in
the local layer. In Hinton's paper, he demonstrated that [30].
	en, he imported the images inMinst into the capsule neural
network with dynamic routing and the convolution neural
network with pooling, respectively, 
nally 
nding the capsule
neural network in the digital recognition accuracy compared
to convolution neural network, and capsule neural network is
signi
cantly higher than the convolutional neural network on
the highly overlapping digital image recognition. So dynamic
routing mechanism is a very e
ective way.

Take a three-layer capsule neural network architecture
for identifying digital images in Minst, which is shown
in Figure 1. 	e architecture can be simply represented as
consisting of only two convolutional layers and one fully
connected layer. Conv1 is activated by 256, 9×9 convolution
kernels, stride 1, and ReLU function. 	e layer converted the
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Figure 1: 	ree-layer capsule neural network.
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Figure 2: Inception module.

pixel intensity into a matrix. 	en, the matrix is used as the
activated part of the local feature detector input by the basic
capsule.	e length of the activation vector for each capsule in
the DigitCaps layer represents the probability of the speci
c
object and is used to calculate the classi
cation loss.��	 is a weight matrix for each input in the Primary
Capsule, and ‖�2‖ is the length of the longest capsule.

2.3. Xception Module. In order to obtain a deeper feature
graph, the traditional neural network tends to increase the
number of layers of convolution, which will bring too many
parameters and make it di�cult to train. More importantly,
it increases the time and space consumption. Moreover, the
convolution kernel of the same layer in the traditional convo-
lutional neural network is single, but the correlation between
di
erent channels in the time-frequency graphs is not very
much, which requires the use of di
erent convolution kernel
for di
erent channels.

To solve these problems, Inception provides a di
erent
way to extract deeper feature maps. By using convolution
kernels of di
erent sizes in the same layer, di
erent sizes of
sensing 
elds can be obtained to improve the classi
cation
e
ect. Its architecture is shown in Figure 2.

An input feature graph is processed by the convolution
kernel of 1×1, 3×3, and 5×5 at the same time, and the
obtained features are combined, which can extract many
kinds of features and obtain better results. However, there
is a serious problem with this structure that the number
of parameters is much larger than that of using a single

convolution kernel, and such a huge amount of calculation
will make the model ine�cient. 	is was inspired by the 1×1
convolution kernel in the Network. In Network, 1×1 convolu-
tion kernel is added to Inception. Its architecture is shown in
Figure 3.

To take an example which is shown in Figure 4, assuming
that the dimension of the input feature graph is 256, the
output dimension is also 256. 	ere are two operations.

	e 
rst is that the 256-dimensional input goes through
a convolution layer of 3×3×256 directly. And the output is a
256-dimensional feature graph, so the number of parameters
is 256×3×3×256=589824.

	e second is that 
rstly the 256-dimensional input
passes through a convolution layer of 1×1×64, then through
a convolution layer of 3×3×64, and 
nally through a
convolution layer of 1×1×256. 	e output dimension is
256, but the number of parameters is 256×1×1×64+64×3×
3×64+64×1×1×256=69632. 	at reduces the number of
parameters for the 
rst operation to one in nine.

For convolution, the convolution kernel can be viewed
as a three-dimensional 
lter: channel dimension and spatial
dimension (width and height of the feature graph). 	e
conventional convolution operation is actually the joint map-
ping of channel correlation and spatial correlation. Incep-
tion module is based on the assumption that the channel
correlation and spatial correlation between the channels in
the convolutional layer can be decoupled. So, mapping the
channel correlation and spatial correlation can get better
results separately.
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Figure 4: Comparison of the convolution process with and without 1×1 convolution.
Based on the Inception hypothesis, it can be found that

when the number of channels increases, it is more reasonable
to assume that cross-channel correlation and spatial correla-
tion mapping are completely separated.

Based on the above 
ndings and assumptions, the Xcep-
tion module was proposed. Firstly, it uses 1x1 convolution
map to map cross-channel correlation, and then there is
an independent spatial convolution on each output channel
of 1×1 convolution to map spatial correlation. 	e channel
correlation convolution of 1×1 is carried out, and the number
of convolution kernels with di
erent types of subsequent
convolving is the same as the number of output channels
of 1×1 convolution. Various feature maps are output during
the whole Xcepiton module process, and each output can be
represented by the following function:

�
	 = � (�
	) (5)

�
	 = ∑
�
�
−1� × �
�	 + �
	 (6)

where �
	 is the output of the convolution channel � of the
convolution layer �, �
	 is the net activation of the convolution

channel � of the convolution layer �, �
�	 is the weight

coe�cients between the layer � and the layer �, and �
	 is the
threshold o
set term of the channel � of the convolution layer�.

	en, all outputs are connected together through a full
connection operation; its function is as follows:

�
 = � (�
) (7)

�
 = �
�
−1 + �
 (8)

And the gradient descent method is used to reduce the error
of the whole process; its function is as follows:

∇� (�
) = !�!�
 (9)

where ∇�(�
) is the error �(�
) with the changing of �
.
Although the architecture of the Xception module is

basically the same as Inception, the improvement of Xception
module performance is not due to the increase of model
capacity but due to the more e�cient use of model param-
eters.

Because the parts of the image with a long distance do not
matter much, di
erent convolution kernels are adopted in the
Xception module. Inspired by convolution decomposition,
it is used for di
erent convolution kernels. For example,
the 7×7 convolution kernels are decomposed into two one-
dimensional convolution kernels 1×7 and 7×1. And the
3×3 convolution kernel is same for two one-dimensional
convolution kernels 1×3 and 3×1. Such operation can not
only accelerate the calculation but also further increase the
network depth, which is helpful to improve the learning
ability of the neural network. 	is is because what is useful
is the homology of the information, not the invariance, and
the sorting of the information rather than the discarding
of the information. In addition, it also routes every part of
the input into neurons that know how to process it, which
means 
nding the best path. However, pooling operation
determined by human factors performs poorly in handling
dynamic routing, so it is not good for the establishment of
neural network.
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Building an improved Xcepiton module without pooling
layer is shown in Figure 5.

3. Establishment of a Novel Capsule Neural
Network with Xception Module (XCN)

3.1. Input and Dynamic Routing of Capsule Neural Network.
When the time-frequency graphs of bearing fault are rec-
ognized by the capsule neural network, the selection of the
structure parameters of the capsule neural network has a
signi
cant in�uence on the recognition results. 	erefore,
only when the appropriate parameters are selected can the
classi
cation and recognition performance of the capsule
neural network for bearing faults be truly re�ected. 	e
input of the capsule neural network is time-frequency graphs
whose size can be chosen as a variety of sizes. In this paper,
for the sake of simplicity, the pixel size of all time-frequency
graphs was chosen as 256×256. 	en, multiple normal time-
frequency graphs and failure time-frequency graphs were
imported into the XCN model.

	e length of the output vector of the capsule was used
to represent the probability that the entity represented by the
capsule exists in the current input. In addition, a nonlinear
squashing function was used to ensure that the short vector
is compressed to nearly 0 and the long vector is compressed
to slightly less than 1:

V	 =
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 (10)

where V	 is the vector output of the capsule � and "	 is its total
input.

In addition to the 
rst layer of the capsule body, the total
input "	 of the capsule is a weighted sum of the prediction
vector �	|� of all the capsules from the next layer, which is
generated by multiplying the output �� of the following layer
of capsules by the weight matrix��	.

"	 = ∑
�
#�	 ∧�	|� (11)

#�	 = exp (��	)∑� exp (���) (12)

∧�	|� = ��	�� (13)

where #�	 is the coupling coe�cient determined by the
iterative dynamic routing process. 	e sum of coupling
coe�cients between the capsule � and all capsules in the
higher layer is 1, which is determined by routing so�max.	e
initial logic � �� of routing so�max is the logarithmic prior
probability; that is, the capsule � should be coupled with the
capsule �. 	e logarithmic prior probability of the same time
can be used as the discriminant learning of all other weights.
	ey depend on the location and type of the two capsules,
not on the current input image. 	en, the initial coupling
coe�cient achieves iterative re
nement by measuring the
consistency between the current output V � of each capsule� in the higher layer and the predicted �	|� of the capsule �.
Consistency is the index dot product � �� = V � × �	|�. 	is
consistency is considered to be a logarithmic likelihood ratio
and is added to the initial logic � �� before new values are
calculated for all coupling coe�cients between capsule � and
higher level capsules.

In the convolutional capsule layers, each capsule outputs
a vector local network to each type of capsule in the higher
layer and uses a di
erent transformation matrix for each part
of the network and each type of capsule.

	is operation, which Hinton calls dynamic routing
between capsules, is used in the propagation of Primary caps
layer toDigital caps layer. Figure 6 shows the dynamic routing
mechanism.

Details of dynamic routing algorithm are shown in Pro-
cedure 1.

3.2. Output Vector Processing Method. 	e time-frequency
graphs are imported into the XCN model. Finally, capsule
vectors with many di
erent meanings are obtained. 	e
modules of all capsule vectors are calculated and the corre-
sponding fault type of the capsule vector with the maximum
module value is obtained.



Complexity 7

(1) procedure Routing (∧�	|�,r,l)(2) for all capsule i in layer l and capsule j in layer(l+1): �ij ←* 0(3) for r iterations do(4) for all capsule i in layer l: #i ←* "-��.��(��)(5) for all capsule j in layer(l+1): "	 ←* ∑� #�	 ∧�	|�(6) for all capsule j in layer(l+1): V	 ←* "/��"ℎ("	)(7) for all capsule i in layer l and capsule j in layer(l+1): �ij ←* �ij + ∧�	|�.V	
return V	

Procedure 1: Routing algorithm.

Capsule i Capsule j

Upper layersPrevious layers

W
ij , cij

Figure 6: Dynamic routing mechanism.

In order to know the fault identi
cation rate of XCN
model intuitively, the speci
c capsules are generated fault
time-frequency graphs through reconstruction. In the pro-
cess of training, all the vectors in the Digital Caps layer except
the correct capsule vector are shielded; that is, only the correct
capsule is kept and the other capsules are set to zero.	en, the
Digital Caps layer is used to reconstruct the input graph. 	e
output of the digital capsule is fed into a decoder composed
of three inverse routing iterations which are formed of the
full connection layer, and the linear unit activation function is
added in each layer of the full connection layer to ensure that
the feature graph of the output of each layer is positive. 	en,
the original fault time-frequency graph and the reconstructed
fault time-frequency graph are fused into a 256×256 target
graph. 	e reconstructed �ow chart is shown in Figure 7.

In order to measure the di
erence between reconstructed
graph and truth graph in texture details and structure and
minimize the loss of texture details and structure information
of reconstructed graph, in this paper, the reconstruction loss
function of XCNmodel uses�2 norm tomeasure the distance
between reconstructed graph and truth graph.	e formula is

�
 = � (: (;) − ;); = ‖: (;) − ;‖2; (14)

where; represents the input original graph, :(;) represents
the reconstructed graph, and �
 represents the reconstruction
loss.

3.3. Adjustment of Capsule Neural Network. Cross entropy
measures the di
erence information between two probability

distributions by describing the distance between them. 	e
method of capsule neural network to solve the multiclassi-

cation problem is to set output capsules >, where > is the
number of categories, and each capsule represents a di
erent
category. For each sample, an n-dimensional array formed
of the length of each output capsule can be obtained by
the capsule neural network. Each dimension in the array
corresponds to a category. Ideally, if a sample belongs to the
category ?, the output value of the output node corresponding
to that category should be 1, while the output value of all other
nodes should be 0.

Take an example of identifying handwritten Numbers in
Minst, which fall into 10 categories, from 0 to 9. When the
number 1 is recognized, the closer the output 10-dimensional
array of the capsule neural network [0, 1, 0, 0, 0, 0, 0, 0, 0],
the better. 	e ideal probability distribution on handwritten
number classi
cation is de
ned as @(�) and the probability
distribution of the output of the capsule neural network as/(�). 	en the cross entropy of this sample classi
cation is

A(@, /) = −∑@ (�) × log10 / (�) (15)

	e cross entropy represents the uncertainty of the random
variable or the whole system. 	e higher the entropy is,
the greater the uncertainty of the random variable or the
whole system will be. However, cross entropy describes the
distance between two probability distributions. While the
output length of the capsule neural network is not necessarily
a probability distribution nor is necessarily between 0 and
1, so�max regression is a very useful way to transform the
results of the forward propagation of the capsule neural
network into a probability distribution.

Assuming the output of the neural network is B1, B2, B3,⋅ ⋅ ⋅ , B�, the output a�er so�max regression processing is

"-��.�� (B)� = B�� = ���∑�	=1 ��	 (16)

So�max transformed the output of the capsule neural
network into a probability distribution. In thisway, the output
of the capsule neural network is also turned into a proba-
bility distribution, and the distance between the predicted
probability distribution and the actual answer probability
distribution can be calculated by cross entropy.
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Figure 7: Reconstruction mechanism.

	en the cross entropy loss function of the capsule neural
network is

A(@, B) = − �∑
�
@ (��) × log10 B� (17)

where �� is its correct output, @(��) is its probability, and B� is
the actual probability.

In the neural network, the minimal �uctuation of some
parameters of weights will o�en lead to the change of the
value of the loss function, which will lead to the over
tting
of the model or the long convergence time, which will a
ect
the prediction performance. In order to improve this phe-
nomenon, the �2 norm is introduced as the punishment for
the parameters whose weight changes greatly each time the
structure of the capsule neural network is adjusted. �2norm
refers to the sum of squares of the weight of ownership
divided by the number of samples. 	e expression is as
follows:

‖D‖2 = √ �∑
�=1


∑

=1
D2�
 (18)

where D�
 is the weight of the parameter � in the layer ?.
	en, combine the loss function, penalty function of the

XCN model, and the reconstruction loss in the reconstruc-
tion through the regularization term coe�cient F and G, so
that when the gradient of the adjustment function � reaches
the minimum value, it can be considered that the capsule
neural network has been convergent. 	e expression of the
adjustment function � of the capsule neural network is as
follows:

� = A(@, B) + F ‖D‖22 + G�
 (19)

where � is the adjustment function of the capsule neural
network,A(@, B) is the loss function, F and G are the weight

coe�cients, ‖D‖22 is the square of the penalty function, and �

is the reconstruction loss.

In order to ensure the accuracy of the classi
cation
and avoid over-
tting during training, F and G should be
appropriately selected. For example, the size of A(@, B) and‖D‖22 is between 0 and 1. If the loss function is set in a large
proportion, it will lead to the nonconvergence of the training
process of the capsule neural network. If the penalty function
is set in a large proportion, it will lead to the low accuracy

of classi
cation. 	erefore, the weight coe�cient F must be
set a series of values, and then test its performance and
adjust through experiments. Similarly, the selection of the
weight coe�cient G also needs to go through the appropriate
selection.

	e �owchart of XCN model is shown in Figure 8.

3.4. Feasibility Discussion of XCN Model. When the XCN
model is used to identify bearing fault signals, the time-
domain signals collected by the sensor need to be converted
into time-frequency graphs. In the process of fault time-
frequency graphs processing, the signal noise reduction and
feature extraction are carried out 
rstly. And then the time-
frequency graphs with pixel adjustment are taken as the
input of the capsule neural network. In this paper, a capsule
neural network was established with a convolutional layer,
a dynamic routing layer, a full connection layer, and a
reconstructed decoder. In order to improve the depth and
dimension of the neural network, the Xception module was
added to the neural network to improve the fault classi
cation
accuracy.When using XCNmodel to identify time-frequency
graphs, di
erent parameter settings have a great impact
on the identi
cation results of the capsule neural network,
including the number of iterations, batch size, size and
number of convolution kernels, the number of layers of
Xception module, the selection of convolution parameters,
and the weight coe�cient. In order to discuss the feasibility
of the XCN model, the bearing failure data set provided by
Case Western Reserve University was used to train and test
the XCN model. Figure 9 shows the experimental station of
Case Western Reserve University. All the algorithm program
code was written in and run on a computer with CPU
i7-4790K@4.00GHz, RAM 16.00G, GPU Nvidia Geforce
GTX960, and operating systemWin7.

	e experiment was carried out with a 2 HP motor and
fan end bearing data was all collected at 12,000 samples per
second, and the acceleration data were measured near and
away from the motor bearing. In this data set, all the data
are from the bearings damaged by the test bench. In other
words, the load of each bearing is the same (in this paper,
test bearing data under no-load condition was selected),
but the health condition of the bearing is di
erent. For the
acquisition of faulty bearings, three di
erent kinds of damage
were caused to the outer ring, inner ring, or balls of the
bearing by electrical discharge machining and their failure
diameter was selected for a class of test bearing data sets of
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Figure 8: Intelligent fault diagnosis �ow chart based on XCN.

0.007 inches. 	erefore, there are 4 types of time-frequency
graphs of bearings, including the healthy bearings.

In view of the rich information contained in the time-
frequency graphs and the fact that the input of the cap-
sule neural network must be a two-dimensional matrix,
when studying the fault identi
cation performance of the
XCN model, time-frequency conversion processing of time-
domain signals is required 
rstly. In this paper, the time-
frequency conversion method is chosen as the continuous
wavelet transform, and thewavelet basis is theMorletwavelet.

One sample of four di
erent types in the data set is taken
out for continuous wavelet transform, respectively, and the
results are shown in Figure 10.

In order to reduce the in�uence of noise, the zero mean
normalization method was adopted, which not only ensures
the distribution of the original signal but also eliminates the
in�uence of dimension and converts the data into the same
distribution. 	e formula is as follows:

�∗ = � − HI (20)
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Figure 9: Experimental station of CaseWestern Reserve University.

where � is the input, �∗ is the output of the time-frequency
graph, and H and I are the mean and variance of �,
respectively.

	e input time-frequency graphs pixel size of bearing
failure was selected as 256×256. 	e selection of capsule
vector should be carried out 
rst when the time-frequency
graphs with appropriate pixel adjustment are imported into
the capsule neural network for training. In this paper, the
tonal distribution of time-frequency graphs and its change
speed and direction are selected to transform the character-
istics. Eighty percent of the samples from bearing data set
provided by CaseWestern Reserve University were randomly
selected for training to select parameters, and twenty percent
of the samples were tested to verify the reliability of the
selected parameters.

(1) Selection of Batch Size. Batch size refers to the process
of training the neural network, in which a certain number
of samples are randomly selected for batch training each
time. 	en the parameters of weight are adjusted once until
all training samples are input. 	is process is called the
completion of an iteration. If a larger batch size value is
selected, the memory utilization can be improved through
parallelization, so as to improve the running speed. In
other words, the convergence speed will be faster, but the
times of adjusting the weight will be less, thus reducing the
classi
cation accuracy. While choosing a smaller batch size
can improve classi
cation accuracy, it will lead to longer
computing time. 	erefore, in the case of limited memory
capacity, when selecting the batch size, the requirements
of classi
cation accuracy and computing time should be
weighed to ensure that the time cost can be reduced as
much as possible under the premise of su�cient classi
cation
accuracy. 	e selection principle of batch size number must

rst meet the requirement that the number of training
samples can be divided.	erefore, the selected batch sizes are
2, 4, 5, 8, 10, 20, 25, 30, and 50, respectively. When discussing
the in�uence of batch size on classi
cation results, in order
to simplify the complexity of the discussion, the preliminary
assumption of the number of iterations is 10, the preliminary
assumption of the convolution kernel is 3×3, 5×5, and 7×7
whose number is 1, respectively, and the weight coe�cient
is 0.4 and 0.6, respectively. 	e experiment was repeated for
ten times, and the average value of the classi
cation results
of ten times was taken as the 
nal classi
cation accuracy.
	en the relationship between the classi
cation accuracy and

batch size was shown in Figure 11. As can be seen from
Figure 11, when the batch size is within 10, the change of the
batch size has little in�uence on the classi
cation accuracy,
while when the batch size is larger than 10, the classi
cation
accuracy obviously decreases with the increase of the batch
size. As a result, the total sample batch size mustmeet the 
rst
condition that it can be divided exactly by the training sample
in certain cases. Secondly, choosing the smaller batch size can
increase the recognition rate of fault, which contributes to the
failure of judgment. Such as the trial, when the batch size is
selected as 5, 8, 10, or 20, the classi
cation accuracy is the
highest. Combined with the time cost factor, the batch size
was selected as 20.

(2) Selection of Iteration Times. In essence, iteration is
a process of continuous approximation and 
tting. If the
number of iterations is too small, the 
tting e
ect will be
not ideal. When the number of iterations increases to a
certain degree, the 
tting error will no longer decrease,
but the time cost will increase with the increase of the
number of iterations. 	erefore, it is necessary to select
an appropriate number of iterations, which can achieve a
relatively low time cost under the condition of satisfying a
certain recognition rate. When discussing the in�uence of
iteration times on classi
cation results, in order to simplify
the complexity of discussion, the batch size is selected as 20
according to the previous section, the convolution kernel is
preliminarily assumed to be 3×3, 5×5, and 7×7 whose number
is 1, respectively, and the weight coe�cients are 0.4 and 0.6,
respectively. 	e experiment was repeated for 
ve times, and
the average of the 
ve classi
cation results was taken as the

nal classi
cation accuracy. And the relationship between
the classi
cation accuracy and the number of iterations is
shown in Figure 12. As can be seen from Figure 12, with
the increase of iteration times, the classi
cation accuracy
increases gradually. When the number of iterations reached
6, the classi
cation accuracy was more than 96%; when the
number of iterations was more than 10, the classi
cation
accuracy was more than 98.5%; and with the increase of the
number of iterations, the classi
cation accuracy tended to
be stable. 	erefore, under the conditions of the number of
samples and the size of graphs in this paper, the selection
of 10 iterations can not only meet the requirements of high
classi
cation accuracy, but also reduce the time cost.

(3) Selection of the Size and Quantity of Convolution Kernel.
	e larger the size of the convolution kernel is, the larger
the representable feature space of the network will be and
the stronger the learning ability will be. However, there will
be more parameters to be trained and the calculation will
be more complex, which will lead to the phenomenon of
over
tting easily. Meanwhile, the training time will be greatly
increased. 1×1 convolution can increase across the channel
correlation to improve the utilization rate of XCN model
parameters, which can be used in the Xception module but
does not make sense in the feature extraction. As the size of
an even number of convolution kernels even symmetrically
for zero padding operations, there is no guarantee that the
input graph size and output characteristics graph size remain
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(b) Outer ring fault
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Figure 10: Signal time-frequency graphs of the experimental station of CaseWestern Reserve University.
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12 Complexity

0 5 10 15 20
0

20

40

60

80

100

C
la

ss
ifi

ca
ti

o
n

 a
cc

u
ra

cy
 (

%
)

Relationship between classification accuracy and iteration times

Iteration times

Figure 12: Relationship between classi
cation accuracy and itera-
tion times.

the same. In order to ensure that the size of the input and
output characteristics graph is changeless, the convolution
kernel size is chosen as the positive odd except 1. In the case
of reaching the same receptive 
eld, the smaller the size of
the convolution kernel, the faster the operation. To simplify
the complexity of the discussion, the maximum convolution
kernel is selected as 9×9, the number of di
erent convolution
kernels is selected as 3, and the number of a single convo-
lution kernels is no more than 2. 	e size and number of
convolution kernels of each convolution layer constitute a set
of parameters, in which the optimal combination will largely
determine the performance of the neural network. 	e batch
size is selected as 20 according to the previous section, the
number of iterations is 10, and the weight coe�cient is 0.4
and 0.6, respectively. 	e experiment was repeated for 
ve
times, and the average value of the 
ve classi
cation results
was taken as the 
nal classi
cation accuracy.	e relationship
between the classi
cation accuracy and the size and quantity
of the convolution kernel is shown in Figure 13. In Figure 13,
3/5/7 represents the convolution kernel combination of 3×3,
5×5, and 7×7. And label 1-2-1 indicates that, in the convolution
kernel combination, the number of the 
rst convolution
kernel is 1, the number of the second convolution kernel is
2, and the number of the third convolution kernel is 1. And
the same is true for other labels. According to Figure 13,
when the combination of convolution kernels is 3/5/7, overall
classi
cation accuracy is higher than other combination. In
addition, in the combination of 3/5/7 and label is 2-2-1,
the classi
cation accuracy reaches 98.9%, which shows that
the 3×3, 5×5, and 7×7 convolution kernels are better than
other combinations to extract features. Furthermore, in the
convolution kernels, combination of 3×3 and 5×5 is able to
extract features more than 7 x 7 convolution kernels.

(4) Selection of Weight Coe�cients F and G. 	e weight value
of the weight coe�cient F represents the size of the degree
of punishment on the XCN model when the parameters
are adjusted every time. And choosing the appropriate
weight coe�cient F can enhance the robustness of the XCN
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Figure 13: Relationship between classi
cation accuracy and the
number of convolution kernels and the number of dimensional
iterations.

model. 	e weight of the weight coe�cient G indicates the
proportion of reconstruction loss. And choosing the appro-
priate weight coe�cient G can enhance the classi
cation
accuracy of XCN model. 	e loss function A(@, B), the
penalty function ‖D‖22, and the reconstruction loss �
 are all
from 0 to 1, because it reduces the impact of dimensionality,
so the range of the weight coe�cients F and G is selected
to be from 0 to 1. In order to simplify the complexity of the
discussion, the weight coe�cients F and G are reserved as one
decimal place. According to the above section, the batch size
is selected as 20, the number of iterations is selected as 10,
the convolution kernel combination is selected as 3/5/7, and
the quantity allocation is selected as 2-2-1. 	e experiment
was repeated for 
ve times, and the average value of the
classi
cation results of 
ve times was taken as the 
nal
classi
cation accuracy. 	en the relationship between the
classi
cation accuracy and the weight coe�cient is shown in
Figure 14. It can be seen from Figure 14 that, with the increase
of F, the classi
cation accuracy tends to increase. With the
increase of G, the classi
cation accuracy 
rst increases and
then decreases. When the selection F is 0.7 and G is 0.6, the
classi
cation accuracy reaches 98.5%, while the classi
cation
accuracy of XCN is the highest.

In order to verify the reliability of the selected parameters,
the parameters of the XCN model are selected according
to the above conclusions as follows: batch size 20, iteration
number 10, convolution kernel combination 3/5/7, quantity
allocation 2-2-1, and weight coe�cients 0.7 and 0.6, respec-
tively. 	e test was repeated for ten times, and the test results
are shown in Table 1.

As can be seen from Table 1, under the selected XCN
model parameters, when the time-frequency graphs of three
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Table 1: Training accuracy and test accuracy of each type of fault.

	e fault types Average accuracy of training sample set (%) Average accuracy of test sample set (%)

Inner ring fault 99.8 99.2

Outer ring fault 100 99.7

Ball fault 98.5 96.3
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Figure 14: Relationship between classi
cation accuracy and weight coe�cients F and G.
kinds of fault signal were identi
ed, the test accuracy and
the training accuracy are similar. And the diagnosis accuracy
is 96.3% in the diagnosis of outer ring fault, which may be
related to time-frequency methods, samples, or other issues,
and the rest were over 99%, which shows the reliability of
parameter selection and XCN feasibility of the model.

3.5. Reliably of the XCN Model

Experiment 1 (the test bearing data set of Western Reserve
University). In order to verify the superiority of the pro-
posed method, the XCN model proposed in the previous
section is compared with other deep learning algorithms
for nearly three years: DWAE+ELM [23] which is based on
deep wavelet autoencoder with extreme learning machine,
CapsNet which is based on standard capsule neural net-
work, MPE+ISVM+BT [22] which is based on multiscale
permutation entropy and improved support vector machine
based binary tree, AE+ES+CNN [26] which is based on
an acoustic emission analysis-based bearing fault diagno-
sis invariant under �uctuations of rotational speeds using
envelope spectrums and a convolutional neural network, and
DBN [25] which is based on the standard deep belief network.
Finally, the test accuracy of each algorithm is shown inTable 2
and Figure 15.

As can be seen from Table 2 and Figure 15, the fault
diagnosis accuracy of these six models in the bearing data set
tested by the Western Reserve University is generally higher
than 90%, and the diagnostic accuracy of XCN model is
signi
cantly higher than the other models. 	e recognition
rates of XCN model in outer ring fault, inner ring fault,
and ball fault are 99.2%, 99.7%, and 96.3%, respectively.
By comparing XCN model with CapsNet, it can be seen

that the former has higher diagnostic accuracy than the
latter in the three fault types, which proves that Xception
can help improve the classi
cation accuracy of CapsNet. By
comparing XCN model with the other four models, except
in the outer ring fault diagnosis, the classi
cation accuracy
of SVM is 100% higher than XCN, and the classi
cation
accuracy of XCN is all higher than other methods.	erefore,
it can be preliminarily concluded that XCN has certain
advantages over other methods in bearing fault diagnosis.

Experiment 2 (the test bearing data set of wind turbine gear-
box in actual working conditions). For gearbox under the
actual working conditions, there are always somemechanical
working changes, such as speed and load. Due to the lack
of reliable ability, these deep learning methods can only be
e
ective under conditions similar to training data. In other
words, these methods may fail if the working condition of the
gearbox changes.

In order to discuss the reliability of the XCN model
and compare it with other deep learning methods, they
were imported to the samples obtained from the wind
turbine gearbox under actual working conditions to train
and test.Table 3 is the parameters of a wind turbine gearbox
under actual working conditions.

Figure 16 is a real picture of three faults of a wind power
gearbox. 	e sampling frequency is 5333Hz, and the gearbox
transmission ratio is 113.4. 	e three fault types of wind
turbine gearbox are shown in Figure 16.

Firstly, the collected time-domain signals were trans-
formed into time-frequency graphs through continuous
wavelet time-frequency transformation. Secondly, the time-
frequency graphs were imported into the XCN model a�er
adjusting the pixel size. Finally, the same input was imported
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Figure 15: Average classi
cation accuracy of di
erent algorithms based on the test bearing data set of Western Reserve University.

Table 2: Average classi
cation accuracy of di
erent algorithms.

Average accuracy of
test sample set (%)

XCN DWAE+ELM CapsNet MPE+ISVM+BT AE+ES+CNN DBN

Inner ring fault 99.2 95.2 95.6 96.4 95.4 93.1

Outer ring fault 99.7 95.2 95.3 100 92.6 94.3

Ball fault 96.3 95.2 91.9 96.4 92.2 89.3

Table 3: Parameters of wind power gearbox under a certain actual working condition.

Parameters of a wind power gearbox (including three planetary wheels)

Part name Number of teeth Rotate speed (r/min)

Wind turbines / 92

	e ring gear 92 0

	e planets gear 37 -23.78

	e sun gear 16 108

Intermediate gear 91 108

Intermediate gear sha� 20 491.4

Final big gear 96 491.4

Output gear sha� 26 1814.4

into other algorithms such as DWAE+ELM [23], CapsNet,
MPE+ISVM+BT [22], AE+ES+CNN [26], and DBN [25] and
tested the failure diagnosis performance of these methods.

In this experiment, sixty percent of the adjusted time-
frequency graphs were used for algorithm training and forty
percent were used for testing. 	e experiment was repeated

ve times.Table 4 and Figure 17 show the fault identi
cation
rates of the three algorithms.

It can be seen from Table 4 and Figure 17 that XCN
model in these kinds of fault identi
cation is obviously
better than the other methods. In addition, XCN model in
the recognition rate of outer ring fault and inner ring fault
reached 98.7% and 97.2%, respectively, but the recognition
rate of tapered roller fault is only 94.5%, which may be
because the noise is too large and the time-frequency method

is poor. By comparing the fault identi
cation rates of these
algorithms, it can be seen that the XCN model has great
advantages in the fault identi
cation of the wind turbine
gearbox. Moreover, combined with the experiment in the
previous section, it can be shown that the XCN model has
a certain reliable ability rather than being limited to the
working environment of the laboratory.

4. Conclusion

	is paper takes the intelligent diagnosis of bearing faults
as the research object, combines the capsule neural network
which belongs to the category of deep learning with the
Xception module, and then applies it to the fault identi
ca-
tion of the wind turbine gearbox. Firstly, the time-domain
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Table 4: Average classi
cation accuracy of di
erent algorithms.

Average accuracy of test
sample set (%)

XCN DWAE+ELM CapsNet MPE+ISVM+BT AE+ES+CNN DBN

Inner ring fault 97.2 88.6 95.6 87.6 90.4 89.1

Outer ring fault 98.7 91.3 94.3 90.3 92.6 91.3

Tapered roller fault 94.5 88.6 91.9 92.3 87.2 84.3

(a) Inner ring fault (b) Outer ring fault (c) Tapered roller fault

Figure 16: Fault types of wind turbine gearbox under actual working condition.
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Figure 17: Average classi
cation accuracy of di
erent algorithms
based on the test bearing data set of wind turbine gearbox in actual
working conditions.

signals of faulty bearings provided by Case Western Reserve
University were transformed into time-frequency graphs
through a continuous wavelet transform of Morlet wavelet
basis. 	en, the pixel size of the time-frequency graphs was
normalized and adjusted. Secondly, XCN model was trained
to select better model parameters. 	en, the trained XCN
model was tested to study its classi
cation e
ect. As can be
seen from the above, the average classi
cation accuracy is
over 96%. 	irdly, the classi
cation e
ect of XCN model on
the fault of the wind turbine gearbox under actual working
conditions was studied. And the average classi
cation accu-
racy is over 94%, which shows the reliability of XCN model
and provides a novel method for the fault diagnosis of the

gearbox. Finally, other fault diagnosis algorithms based on
big data were applied to the fault diagnosis of wind turbine
gearbox. It can be seen from the experimental results that the
classi
cation accuracy of XCN model is signi
cantly higher
than other algorithms on the three fault types. By comparing
CapsNet and CNN, it can be seen that, except for rolling
fault diagnosis, CapsNet is obviously better than CNN in
the other two types of fault diagnosis, which also indicates
the inadequacy of such subjective operation as pooling. By
comparing XCN and CapsNet, it can be seen that, among the
three fault diagnoses, XCN is obviously better than CapsNet,
which indicates that the Xception module is of great help
to improve the classi
cation accuracy. However, it can also
be seen that, in terms of ball fault diagnosis and tapered
roller fault, the classi
cation accuracy of all algorithms is
low, which may be related to the high noise caused by the
harsh working environment of wind turbine gearbox or the
weak ability of time-frequency conversion method to extract
e
ective features. And it also points out the direction of
future research. In the era of big data, there will be a great
demand for intelligent fault diagnosis methods based on
deep learning. With the development of deep learning, it
will become the main method to solve the gearbox fault
diagnosis.However, there are stillmany problems to be solved
to improve the recognition rate and reliable ability of these
algorithms. In future work, this topic is still a research focus.
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