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A novel fault diagnosis method based on variational mode decomposition (VMD) and multikernel support vector machine
(MKSVM) optimized by Immune Genetic Algorithm (IGA) is proposed to accurately and adaptively diagnose mechanical faults.
First, mechanical fault vibration signals are decomposed intomultiple IntrinsicMode Functions (IMFs) by VMD.�en the features
in time-frequency domain are extracted from IMFs to construct the feature sets of mixed domain. Next, Semisupervised Locally
Linear Embedding (SS-LLE) is adopted for fusion and dimension reduction.�e feature sets with reduced dimension are inputted to
the IGA optimized MKSVM for failure mode identi	cation. �eoretical analysis demonstrates that MKSVM can approximate any
multivariable function. �e global optimal parameter vector of MKSVM can be rapidly identi	ed by IGA parameter optimization.
�e experiments of mechanical faults show that, compared to traditional fault diagnosis models, the proposedmethod signi	cantly
increases the diagnosis accuracy of mechanical faults and enhances the generalization of its application.

1. Introduction

To ensure the safe and reliable operation of mechanical
equipments, vibrations are usually analyzed to diagnose
mechanical faults [1–3]. Accurate diagnosis helps to make
reasonable maintenance decision. However, the diagnosis
accuracy is generally low andmanual intervention of diagno-
sis is usually needed [4, 5], due to the features of large rotating
machinery, including multicomponent coupling vibration,
strong vibration noise interference, and the instability and
nonlinearity of signals, as well as the low noticeability of early
fault signals.

As an adaptive method which processes signal in time-
frequency domain, empirical mode decomposition (EMD)
[6] can decompose the complicated and unstable signal into
several nearly stable IMFs. �erefore, it has been widely
applied to the diagnosis of mechanical fault [7]. For example,
Loutridis [8] used EMD method for gear fault diagnosis.
Cheng et al. used EMD method to diagnose bearing failures
[9]. However, EMDmethod is essentially a binary 	lter bank.

�e frequency domain splitting feature of EMD makes it
disadvantageous in dealing with fault signals [10]. Since the
band center and bandwidth of fault signal are unknown,
strong interference may be introduced if the fault signal
falls in the broad bands of the 	rst component. If the fault
signal is in the bands of higher-order components, important
information on the feature may be missed as the signal is
	ltered out by the narrow band of low-order components.
Dragomiretskiy and Zosso, in 2014, proposed a new adaptive
signal processing method called VMD [11]. �is method is
able to determine the frequency center and bandwidth of
each component in the process of acquiring decomposed
components by iteratively searching the optimal solution of
variational models, thus adaptively realizing the frequency
domain split and the e�ective separation of each component.

In pattern recognition, support vector machine (SVM)
[12] is based on Vapnik-Chervonenkis dimension theory
and structural risk minimization principle. SVM 	nds the
optimal compromise betweenmodel complexity and learning
ability using limited sample information. It overcomes the

Hindawi Publishing Corporation
Shock and Vibration
Volume 2016, Article ID 3196465, 11 pages
http://dx.doi.org/10.1155/2016/3196465



2 Shock and Vibration

drawback that traditional machine learning models are easy
to get trapped in local minima. It has enormous potential to
accurately classify the faults into multiple levels. �erefore,
SVM has been widely applied to all kinds of nonlinear
pattern recognition problems [13]. However, in complicated
cases, especially when the data are heterogeneous [14] and
samples are unevenly distributed [15], or samples are in
large scales [16], SVM [17] begins to lose its advantages in
accomplishing the tasks. MKSVM is a new machine learning
model which combines all individual kernels by weights
based on traditional single kernel SVM. MKSVM inherits
the generalization and learning ability of single kernel SVM.
Meanwhile, it reasonably adjusts theweight of each individual
kernel and improves the adaptability and robustness of single
kernels [18]. However, in the fault identi	cation process
usingMKSVM, the identi	cation performance ofMKSVM is
directly in�uenced by the choice of the function parameters
of individual kernels and their weights. Traditional methods,
including trial and error or traversing optimization, are not
only complicated in computation, but also unable to acquire
global optimal solution. �erefore, the adaptive diagnosis
ability of MKSVM still needs further improvements. IGA
[19] 	nds optimal solutions by synthetically considering the
information interaction between antibodies of populations.
Based on genetic algorithm [20], it integrates a series of
mechanisms of biological immune system, such as antigen
recognition, antibody diversity, density control, and elitist
strategy. It greatly helps to avoid immature convergences and
meanwhile preserves the global stochastic parallel searching
character of genetic algorithm at the same time [19, 21].
Taking computational e�ciency, stability, and global opti-
mality factors into consideration, IGA is used to optimize
the penalty parameter, weight factor, and kernel parameters
of MKSVM, in order to improve the accuracy and stability
of fault diagnosis, as well as to enhance the applicability of
MKSVM.

�e rest of this paper is organized as follows. In Section 2,
the theories of EMD and VMD are introduced. In Section 3,
the theories of SVM and MKSVM are 	rstly reviewed.
�en, the IGA optimized MKSVM (IGA-MKSVM) method
is presented. In Section 4, the fault diagnosis strategy based
on VMD and IGA-MKSVM is discussed. Finally, the e�ec-
tiveness of the proposed method is veri	ed by experiments.

2. VMD Method

2.1. EMD. IMF components obtained by EMD should meet
the following criteria: (1) In a data sequence, the number
of extreme points and the number of zero crossing points
are equal, or up to a di�erence of 1; (2) at any data point,
the average of the local maximum envelope and the local
minimum envelope is 0. �e basic algorithm of EMD is as
follows.

Step 1. First, determine the local extremes of signal�(�).�en
use a cubic spline to connect all the local maximum points to
form the upper envelope. A�er that, use another cubic spline
to connect all the local minimum points to form the lower
envelope. �e upper and lower envelopes should enclose all

data points. �e average of the upper and lower envelopes
is denoted as �(�). ℎ(�) refers to the new signal, which is
obtained by subtracting�(�) from �(�):

ℎ (�) = � (�) − � (�) . (1)

Repeat Step 1 by � times until ℎ1�(�) becomes the basic
IMF component.

Step 2. De	ne �1(�), �1(�) = ℎ1�(�), which is the 	rst mode
component obtained by processing the raw data. It should
contain the shortest periodic component of raw signals. �e
residual component �1(�) can be calculated as follows:

�1 (�) = � (�) − �1 (�) . (2)

Step 3. Since the residual component �1(�) still contains
information of long periodic components, �1(�) is still treated
as new signal data. Repeat the above steps for the residual
component ��(�), and the following results can be obtained:

�1 (�) − �2 (�) = �2 (�) ,�2 (�) − �3 (�) = �3 (�) ,...
��−1 (�) − �� (�) = �� (�) .

(3)

Step 4. �eoriginal signal �(�) is 	nally decomposed into the
sum of several IMF components ��(�) and a residual ��(�):

� (�) = �∑
�=1
�� (�) + �� (�) . (4)

2.2. VMD. In VMD algorithm [11, 22], an intrinsic mode
function is rede	ned as anAM-FM signal, which is expressed
by


� (�) = �� (�) cos (
� (�)) , (5)

where ��(�) is the instantaneous amplitude of 
�(�); ��(�) is
the instantaneous frequency of 
�(�) and ��(�) = 
��(�) =�
(�)/��. ��(�) and ��(�) are slowly varying with respect to
the phase ��(�). �at is, in the interval of [� − �, � + �] (where� = 2�/���(�)), 
�(�) can be viewed as a harmonic signal with
amplitude ��(�) and frequency ��(�).

To obtain IMF components, VMD algorithm does not
use the cycled screening stripping signal processing mode
of EMD. Instead, VMD moves the signal decomposition
process into the variational framework. It realizes adaptive
signal decomposition by searching the optimal solution of
the constrained variational model. �e frequency center
and bandwidth of each IMF component are updated in
the iterative solving process of the variation model. �e
signal band is adaptively split according to the frequency
domain features of the signal. Finally the narrow band IMF
components are obtained.
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Assuming the original signal �(�) is decomposed into �
IMF components, the corresponding constrained variational
model is expressed as follows:

min
{�� ,��}

{∑
�

���������	 [(� (�) + ���) ∗ 
� (�)] �−���	
��������
2

2
}

s.t. ∑
�

� = � (�) ,

(6)

where {
�} = {
1, . . . , 
�} represents the � IMF components
decomposed by VMD; {��} = {�1, . . . , ��} represents the
frequency centers of all IMF components.

To obtain the optimal solution of the above constrained
variational problem, the following augmentedLagrange func-
tion is introduced:! ({
�} , {��} , $)

= %∑
�

���������	 [(� (�) + ���) ∗ 
� (�)] �−���	
��������
2

2

+ ����������� (�) −∑� 
� (�)
����������
2

2

+⟨$ (�) , � (�) − ∑
�

� (�)⟩ ,

(7)

where % is a penalty factor, and $ is the Lagrange multiplier.
�e optimal solution of the constrained variationalmodel

is derived by using alternating directionmultiplier algorithm,
which solves the saddle point of the above augmented
Lagrange function. �e decomposition of the original signal�(�) is then obtained. �e detailed implementation steps are
as follows:

(1) Initialize {
1�}, {�1�}, $1, and * as 0.
(2) * = * + 1; perform the entire cycle.

(3) Perform the 	rst inner cycle and update 
� according
to:

+1� = arg min��

! ({

+1�<� } , {

�≥�} , {�
� } , $
) . (8)

(4) 5 = 5 + 1; repeat step (3) until 5 = � and 	nish the
	rst inner cycle.

(5) Perform the second inner cycle andupdate�� accord-
ing to:

�
+1�
= arg min ! ({

+1� } , {�
+1�<� } , {�
+1�<� } , {�
�>�} , $
) . (9)

(6) 5 = 5+1; repeat step (5) until 5 = �. Finish the second
inner cycle.

(7) Update $ according to $
+1 = $
 + 6(7 − ∑

+1� ).
(8) Repeat steps (2) to (7) until the criterion ∑‖

+1� −

�‖22/∑ ‖

�‖22 < : is satis	ed. Finish the entire cycle

and output the results of� narrow band IMF compo-
nents.

3. IGA-MKSVM

3.1. SVM. Assume two linearly separable sample sets, {(��,;�), > = 1, . . . , *}, �� ∈ @
, ;� ∈ {+1, −1}. �e general form
of decision functions is 7(�) = � ⋅ � + B, and the decision
surface equation is as follows:

� ⋅ � + B = 0. (10)

Normalizing the decision equation so that the samples
of both classes satisfy |7(�)| ≥ 1. �e samples closest to
the decision surface satisfy 7(�) = 1. �e decision surface
correctly classi	es all samples; that is,

;� [(� ⋅ �� + B)] − 1 ≥ 0, > = 1, . . . , *. (11)

Support vectors are samples satisfying (11) and such that(1/2)‖�‖2 is minimum. �ose samples are on the lines ofG1 and G2, as shown in Figure 1, where G is the optimal
classi	cation surface.

Under the constraint of (11), the problem of optimal
classi	cation surface can be expressed as follows:

s.t. ;� [(� ⋅ �� + B)] − 1 ≥ 0, > = 1, . . . , *,
� (�) = 12 ‖�‖2 .

(12)

An optimal hyper surface is found such that the average
classi	cation error for the entire training sample set reaches
minimum. Introducing a nonnegative relaxation factor H and
allowing the existence of misclassi	ed samples, the decision
surface � ⋅ � + B = 0 satis	es

;� [(� ⋅ �) + B] ≥ 1 − H�, > = 1, . . . , *. (13)

A penalty term �∑
�=1 H� is then added to (1/2)‖�‖2, and
the following objective function is introduced:

� (�, H) = 12 ‖�‖2 + �

∑
�=1
H�, (14)

where � is the penalty factor.
Using Lagrange optimization method, the above optimal

classi	cation surface problem is converted into the following
dual problem of convex quadratic programming optimiza-
tion:

max

∑
�=1
I� − 12


∑
�=1


∑
�=1
I�I�;�;� (�� ⋅ ��)

s.t. I� ≥ 0, > = 1, . . . , *

∑
�=1
I�;� = 0.

(15)

By solving the above problem, the optimal decision
function can be described as follows:7 (�) = sgn {(� ⋅ �) + B}

= sgn{ 
∑
�=1
I∗� ;� (�� ⋅ �) + B∗} . (16)
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Figure 1: Schematic of the optimal surface.

3.2. MKSVM. Since di�erent kernel functions correspond to
di�erent decision functions, the selection of kernel functions
is very important in fault identi	cation using SVM, and it
directly a�ects the identi	cation accuracy of SVM.

�e kernel functions of SVMmainly include local kernel
functions and global kernel functions. �e Gaussian kernel
function is a typical kernel function, which is described as
follows:

�RBF (��, ��) = exp(−������� − �������2�2 ) . (17)

Polynomial function is a typical global kernel function,
which is described as follows:

�ploy (��, ��) = (�
� − �� + 1)� . (18)

Local kernel functions have strong learning ability but
weak generalization ability; while global kernel functions
have strong generalization ability but weak learning ability.
In order to achieve better learning and generalization abilities
of SVM, MKSVM is constructed based on local kernels and
global kernels:

�mix (��, ��) = $�RBF (��, ��)
+ (1 − $)�ploy (��, ��) , (19)

where �� and �� are feature vectors of input space; � and � are
kernel parameters of Gaussian kernel and polynomial kernel,
respectively; $ (0 < $ < 1) is a weight factor. MKSVM
combines the advantages of each single kernel and has better
classi	cation and identi	cation performance.

3.3. IGA-MKSVM. IGA treats the object problem to be
solved as biological invasion antigen and the feasible solution
of the problem as antibody. �e searching process of the

optimal solution can be viewed as the process of seeking
maximum antigen a�nity antibodies by biological systems.
�e inhibition and promotion of antibodies can ensure the
diversity of antibodies in the population and improve the
local searching ability of GA. Crossover and mutation of
antibodies can ensure that the antibody population evolves
towards the direction of high 	tness and maintain the
diversity of the population. �e memory unit accelerates
searching by constantly updating with better solutions, which
improves the global searching capability of the algorithm.�e
�owchart of IGA algorithm is shown in Figure 2. Refer to
[18, 19] for more details of IGA.

In IGA-MKSVM, IGA algorithm is used to optimize the
weight factor, penalty parameter, and kernel parameter. First,
an antibody gene vector L is de	ned, which is composed of
the weight factor of MKSVM $, penalty parameter �, and
parameters � and � of kernel function:

L = [$, �, �, �] . (20)

To minimize the square error between the actual output
and the expected output of MKSVM, the 	tness function7(��) of MKSVM is de	ned based on the classi	cation
accuracy of training sample M(��):

7 (��) = M (��) . (21)

�e �owchart of IGA-MKSVM algorithm is shown in
Figure 2, and the detailed steps are as follows:

(1) Initialize the population and determine the popula-
tion size, 	tness threshold, and maximum iteration
number. Determine the initial vector of each antibody
within the ranges of penalty parameter and kernel
parameters.

(2) Compute the 	tness value of each antibody according
to (21) using the current antibody and training sam-
ples.
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Figure 2: Flowchart of IGA.

(3) For the current population, choose the antibody with
the highest 	tness value as the elite antibody, and save
this antibody in a special variable.

(4) If it is the 	rst generation of antibody population, go
to step (7); otherwise, go to the next step.

(5) Determine the 	tness value of each antibody. If no
antibody in the current antibody generation has the
same 	tness value as the elite antibody, then replace
the antibody having the smallest 	tness value in the
current antibody population by the elite antibody
saved in a special variable; otherwise, go to the next
step.

(6) If the maximum 	tness value in the current antibody
population is larger than that of the elite antibody,
then copy the antibody with the maximum 	tness
value into the special variable to replace the current
elite antibody; otherwise, go to the next step.

(7) According to the similarity de	nition, compute the
density and selection probability of each antibody;
perform selection and copy operations for the anti-
body population according to the selection probabil-
ity.

(8) Perform crossover and mutation operation for the
antibody population.

(9) Judgewhether the criterion of termination is satis	ed.
If yes, output the results and the algorithm ends;
otherwise, return to step (2) and continue the cycle.

Table 1: �e dimensionless time domain characteristic index.

Number Feature expression

1 L = 1N
�∑
�=1
��

2 Lrms = √ 1N
�∑
�=1
�2�

3 P = 1N
�∑
�=1
�4�

4 �2� = 1N − 1
�∑
�=1
(�� − L)2

5 L� = [ 1N
�∑
�=1
√SSSS��SSSS]

2

4. Fault Diagnostic Strategy

�e �owchart of fault diagnosis based on VMD and IGA-
MKSVM is shown in Figure 3.

(1) First, decompose the obtained fault vibration signals
of rotating machinery by VMD, and generate ! IMF
components that contain most fault information.

(2) Extract 5 statistical features in time domain and 7 sta-
tistical features in frequency domain. �ese features
constitute a ! × 12 combined domain feature set with
high dimension.�e indices of the 5 time domain and
7 frequency domain features are presented in Tables 1
and 2.
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Original vibration signals Training fault samples New fault samples

Nonlinear dimensionality
reduction by using SS-LLE

MSVM parameters 

optimized by IGA

Signal decomposition by

using VMD

Supporting methods

Dimensionality reduction

IMFs in di�erent frequency bands

High-dimensional fault samples

Low-dimensional fault samples

Fault type identi�cation

Fault types

Figure 3: �e process of fault diagnosis based on VMD and IGA-MSVM.

CouplingDriving motor Normal bearingTest bearing Torque load

Figure 4: Experimental devices.

(3) Use the SS-LLE algorithm to merge the combined
high-dimensional feature set and reduce its dimen-
sion and then input the feature set to IGA-MKSVM
as feature vectors.

(4) Use training samples to train the IGA-MKSVM and
obtain the optimal weight factor $, penalty parameter�, and kernel function parameters � and �. �en, use
the optimal parameter vector to reconstruct the fault
diagnosis model and identify failure modes of test
samples. Finally, output the diagnostic results.

5. Examples of Application

5.1. Experiment Set-Up and Signal Acquisition. �e experi-
mental test system is composed of a speed motor, a driving
belt, a coupling, a test bearing, a magnetic brake, an acceler-
ation sensor, and a signal record analyzer.�e bearing model
is N205. �e experimental devices are shown in Figure 4.

�ree N205 bearings were used to simulate di�erent
damages, including the outer ring damage, rolling damage,

and inner ring damage. Bearing damages were implemented
by processing a slot in di�erent parts of bearings with a
laser cutting machine. �e width of the slot is 0.3mm,
and the depth is 0.1mm. Di�erent bearing faults are shown
in Figure 5. Four modes of bearing vibration signals were
collected. �ey are (I) normal, (II) inner ring damage, (III)
outer ring damage, and (IV) rolling body damage. �e main
experimental parameters are tabulated in Table 3.

ICP accelerometers and data acquisition equipment
DP/INV306U were used to collect the vibration signals of
bearings. �e sampling frequency is 10 kHz. In the input
terminal, a low pass 	lter was used for antialiasing. For each
operating status, 120 sample groups were collected, with a
total of 10000 points for each sample group. �irty sample
groups were randomly selected as training samples, and the
other 90 sample groups were test samples. Figure 6 shows the
time domain waveforms of the four modes.

VMD decomposition was performed for the four modes
of vibration signals. �e decomposition results of VMD and
EMD for normal vibration signals of bearings are shown in
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Outer race fault Rolling element fault Inner race fault

Figure 5: Rolling bearing fault.
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Figure 6: �e original signal waveforms in di�erent status of rolling bearing.

Table 2: �e characteristic parameters in frequency domain.

Number Feature expression

6 U1 = ∑��=1 V (5)�
7 U2 = ∑��=1 (V (5) − U1)2� − 1
8 U3 = ∑��=1 (V (5) − U1)3�(√U2)3
9 U4 = √∑��=1 74� V (5)∑��=1 72� V (5)
10 U5 = ∑��=1 7�V (5)∑��=1 V (5)
11 U6 = √∑��=1 (7� − U5)2 V (5)�
12 U7 = ∑��=1 72� V (5)√∑��=1 V (5)∑��=1 74� V (5)
�(�) is the frequency spectrum of signal �(
), � = 1, 2, 3, . . . , �, � is the
number of spectrum lines, and �� is the frequency of the kth spectrum.

Figure 7. �e decomposition process of vibration signals in
other operating statuses is similar.�e values of the statistical

Table 3: Experimental parameters of rolling bearing.

Experimental parameter Value

Outer ring diameter 52mm

Inner ring diameter 25mm

Rolling ring diameter 7.5mm

�e number of rolling elements 12

Bearing contact angle 0∘
Driving speed 1000 r/min

Bearing type N205

Sampling frequency 10KHz

features in 5 time domains and 7 frequency domains were
extracted for each operating status. �e 	rst 8 IMF compo-
nents containing the most fault information were used as the
feature vector of the diagnostic model. SS-LLE was used for
dimension reduction. A three-dimensional sensitive feature
index chart a�er dimension reduction is shown in Figure 8.

5.2. Experimental Results and Analysis. �e fault samples
a�er dimension reduction were inputted into the IGA-
MKSVM diagnosis model for classi	cation recognition. �e
recognition results are shown in Figure 9. It is clear in
Figure 9 that the average classi	cation accuracy by using
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Figure 7: �e decomposition results of VMD and EMD for a normal vibration signal.

VMDdecomposition is 94.99%. It is higher than that of EMD
decomposition which is 91.38%. �erefore, in the following
experiments, VMD decomposition was used to construct the
combined domain feature sets.

To further verify the advantage and stability of the IGA-
MKSVM fault diagnosis model, the standard MKSVM, SVM
with Gaussian kernel (GSVM), and SVM with polynomial
kernel (PSVM) were choose for comparison. We used fold
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Figure 8: Comparison of dimension reduction a�er the decomposition of VMD and EMD.

Table 4: Comparison of classi	cation accuracy with four di�erent parameters.

Diagnostic model
Average percentage of correct recognition (%)

Normal Outer ring fault Inner ring fault Rolling element fault

IGA-MSVM 100 96.67 93.33 90.00

MSVM 100 86.67 91.11 85.56

GSVM 100 81.11 84.44 74.44

PSVM 100 78.89 82.22 68.89
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Figure 9: Average accuracy of classi	cation by two di�erent
decomposition methods.

cross validation [23] with a total of 5 times of validation. �e
synthetic diagnostic results are shown in Table 4. It is clear
in Table 4 that IGA-MKSVM diagnosis model achieves the

highest fault diagnosis accuracy. �e recognition accuracy
of the standard MKSVM is higher than that of SVM with a
single kernel. Since the MKSVM combines the advantages
of Gaussian kernel and polynomial kernel, it has higher
recognition accuracy than SVM with a single kernel. Mean-
while, by obtaining the optimal control parameters through
IGA, MKSVMmodel integrates the prior knowledge of fault
features and improves the recognition performance.

To verify the robustness and generalization ability of IGA-
MKSVM diagnostic model, stochastic noise signals with % =0.1, 0.2, 0.3 were added to the original signal. �e original
feature vector then becomes L� = [��1, ��2, . . . , ��8], where��� = [1 + % ⋅ rand(1)]��, and �� is the original time domain
feature of IMF. �e noisy feature vector was inserted into the
IGA-MKSVM diagnostic model, standard MKSVM, GSVM,
and PSVM. �e results of them were compared by using
5-fold cross validation. �e diagnostic results are shown in
Table 5, which indicate that the IGA-MKSVM diagnostic
model not only has relatively high diagnosis accuracy, but
also has excellent noise immunity. When the extracted fault
features are interfered at certain extent by noise, the diagnosis
accuracy is still relatively high. In practical engineering appli-
cations, due to the interference of complicated environmental
factors, it is hard to acquire su�cient fault information.
Standard MKSVM and SVM with a single kernel are inad-
equate to engineering applications in such cases. However,
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Table 5: Comparison of the noise immunity by using four di�erent
models for fault diagnosis.

Diagnostic model
Average correct ratio of recognition (%)% = 0.1 % = 0.2 % = 0.3

IGA-MSVM 95.56 91.11 80.00

MSVM 88.89 83.33 71.11

GSVM 81.11 78.89 63.33

PSVM 77.78 68.89 48.89

IGA-MKSVM diagnostic model has noise immunity and
good generalization ability, which is applicable to real fault
diagnosis in engineering applications.

6. Conclusions

To achieve accurate and adaptive identi	cation ofmechanical
faults, a new fault diagnosis method based on VMD and IGA
optimized MSVM is proposed in this paper. IGA overcomes
the immature convergence problem of traditional algorithms
and is able to solve the initial parameter selection problem of
MSVM. From this aspect, it makes MSVM more applicable,
robust, and accurate. Experimental results demonstrate that,
compared to traditional methods, the combination of VMD
method and IGA-MSVM for fault diagnosis produces more
repeatable results, with stronger generalization ability as well
as anti-interference ability, providing a new e�ective method
for mechanical fault diagnosis.
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