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ABSTRACT Aluminum alloys have low weldability by conventional fusion welding processes. Friction

stir welding (FSW) is a promising alternative to traditional fusion welding techniques for producing high

quality aluminum joints. The quality of the welded joints is highly dependent on the process parameters

used during welding. In this research, a new approach was developed to predict the process parameters and

mechanical properties of AA6061-T6 aluminium alloy joints in terms of ultimate tensile strength (UTS).

A new hybrid artificial neural network (ANN) approach has been proposed in which Henry Gas Solubility

Optimization (HGSO) algorithm has been incorporated to improve the performance of Random Vector

Functional Link (RVFL) network. The HGSO-RVFLmodel was constructed with four parameters; rotational

speed, welding speed, tilt angle, and pin profile. The validity of themodel was tested, and it was demonstrated

that the HGSO-RVFL model is a powerful technique for predicting the UTS of friction stir welded (FSWD)

joints. In addition, the effects of process parameters on UTS of welded joints were discussed, where a

significant agreement was observed between experimental results and predicted results which indicates

the high performance of the model developed to predict the appropriate welding parameters that achieve

optimal UTS.

INDEX TERMS Friction stir welding, 6061Aluminum alloy, tensile strength, artificial neural network,

Henry gas solubility optimization, random vector functional link.

I. INTRODUCTION

AA6061 is a precipitation-hardened aluminum alloy. It has a

relatively high strength with good toughness and high corro-

sion resistance. Furthermore, it offers excellent weldability.

Therefore, AA6061 has enormous applications, especially

The associate editor coordinating the review of this manuscript and

approving it for publication was Fan Zhang .

in aerospace, automotive, and marine industries [1], [2].

Intensive structural applications of AA6061 such as truck

roofs, side panels, and ship bodies require feasible and effi-

cient welding techniques. Conventional fusion welding of

aluminum alloys is unsuitable due to creation of intermetallic

compounds, oxide layers, hot cracks in molten weld pool

which consequently deteriorate the joint mechanical prop-

erties such as strength, hardness, toughness, stiffness, and
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ductility [3]. Friction stir welding (FSW)was first introduced

by The Welding Institute, United Kingdom, in 1991, as a

new joining technique [4], which initially applied for joining

aluminum alloys instead of the conventional fusion welding

technique [5]. FSW process has been proposed as a solid

state welding technique to weld similar, dissimilar, and com-

posite materials [6]–[8]. FSW process has many advantages

over conventional fusion welding methods such as avoiding

solidification cracks and porosity as well as the absence of

parent metal melting which make this method capable of

producing defect-free joints with high mechanical properties.

Moreover, the rapid progress in FSW associated technologies

such as welding machines, tool design, and tool materials

is another advantage of FSW over other conventional tech-

niques. FSW has been widely used in car, ship and airplane

industries. In a typical FSW process, a non-consumable rotat-

ing tool is used to join two adjacent workpieces without

melting the workpiece material. The primary motion is pro-

vided by rotating the tool, and the feed motion is provided

by traversing the tool along the joint line. The tool starts

rubbing onto the workpiece surfaces and heat is generated

under friction action. The material around the tool is heated

up and a softened material zone is formed. The softened

material zone is stirred by the rotating tool to create a solid

phase weld.

Rajendran et al. [9] studied the influence of tool tilt angle

(0◦-4◦) on the strength of friction welded AA2014-T6 alu-

minum alloy. It was recommended to use tool tilt angle less

than 3◦ to avoid weld joint defects. The optimum shear

strength of the joint (14.42 kN) was obtained at tool tilt

angle of 2◦. Palanivel et al. [10] investigated the effect of the

tool profile (straight square, tapered square, straight octagon,

tapered octagon, and straight hexagon) and its rotational

speed (600 rpm, 950 rpm and 1300 rpm) on the tensile

strength and microstructure during FSW of two dissimilar

aluminum alloys: AA6351-T6 and AA5083-H111 using a

tool made of high carbon chromium steel. It was reported

that tensile strength of the welded joint is affected by cold

work losses in the heat affected zone of the welded work-

pieces, flow behavior of the softened material, and defects

formed in the weld region. The highest tensile strength of

the joint (273 MPa) was obtained using straight square tool

profile rotated at 950 rpm. This highest tensile strength is

less than the ultimate tensile strength of AA6351-T6 and

AA5083-H111 by 11.9% and 11.3%, respectively. The effects

of tool geometry (cylindrical and conical) on a FSW lap joint

made of two dissimilar aluminum alloys (AA 6082-T6 and

AA 5754-H22) have been investigated by Costa et al. [11].

The use of a conical tool produced similar strengths welds

for retreating and advancing sides. Xu et al. [12]studied

the fracture behavior of a FSW joint made of AA7085 Al

alloy aluminum alloy. The tensile strength under a tool rota-

tional speed of 600 rpm decreases by about 33.3% compared

with that of base material. Rajakumar et al. [13] investi-

gated the effect of rotational speed (900-1800 rpm), traverse

speed (20-100 mm/min) and axial tool force (6-10 KN), tool

hardness (33-56 HRC), tool shoulder diameter (9-21 mm),

and pin diameter (3-7 mm) on the tensile strength of FSWD

joints made of AA7075-T6 alloy. The maximum tensile

strength of 373 MPa and joint efficiency of 77% were

obtained at rotational speed of 1400 rpm, welding speed of

60 mm/min, axial force of 8 kN, tool hardness of 45 HRC,

shoulder diameter of 15 mm, and pin diameter of 5 mm. The

enhancement in the tensile properties of the welded joints is

due to the fine-grained microstructure with no defects and

uniformly distributed finer MgZn2 particles.

The selection and control of FSW process parameters is

highly required to enhance the quality of FSWD in terms of

mechanical properties. Many artificial intelligence methods

have been proposed to predict the process response (output)

based on some process inputs by establishing predictionmod-

els such as Artificial Neural Networks (ANN) and Adaptive

Neuro-Fuzzy Inference System (ANFIS).

ANN basedmodeling is one of themost significant areas of

research in recent decades. It is an artificial intelligence-based

system that mimics the function, mechanism and structure

of the human brain [14]. Complex problems of a nonlinear

nature can be modeled using ANN [15]. It is a complex sys-

tem consists of many neurons that form the main component

of the ANN model and generally composed of input, hidden

and output layers. The first layer acts as a receiver to the input

parameters. Then the data is processed from the input layer

in the hidden layer, and the output is finally computed in the

output layer, the number of neurons in the first and last layer

is equal to the inputs and outputs of the ANN. ANNs are

particularly suitable for identifying highly complex nonlinear

phenomena and have been widely used in the study of mate-

rial constitutive relations [16], [17]. ANN has outstanding

generalization capabilities in modeling non-linear mathemat-

ical problems [18]–[22]. ANN has been proposed to model

different welding processes. Andersen et al. [23] developed

an ANN model to predict the bead shape during arc tungsten

gas welding. Nagesh and Datta [24] used ANN for predicting

weld bead geometry and penetration in shielded metal-arc

welding and in TIG welding of pure aluminum [25].

Sukhomay et al. [26] constructed an ANN model to predict

the UTS of inert gas-welded plates and the results of the

developed model had a better agreement with experimental

ones compared with those obtained by multiple regression

analysis. Palanivel et al. [27] established an ANN model

to predict the UTS of FSWD titanium tubes and compared

the results with RSM, and concluded that ANN produced

the most accurate predictions. Dehabadi et al. [28] used

the same technique to predict the microhardness of FSWD

AA6061 joints. ANNwas also applied to predict the mechan-

ical properties of FSWD aluminum plates including hardness,

strength, and elongation [29]. Recently, various metaheuristic

optimization algorithms, such as genetic algorithms, particle

swarm optimization, artificial bee colony, cat swarm opti-

mization, Harris hawks optimization, and whale optimiza-

tion algorithm, have been integrated with ANN to determine

the optimal ANN structure and parameters [15], [30]–[35].
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Genetically optimized neural network systems have been

applied to model FSW process. It has been used to search the

optimized parameters of the FSW process [36]. Furthermore,

the hybrid multi-objective optimization has been applied to

improve the microstructural and mechanical properties of

B4C/A356 composites fabricated by FSP [37], and aluminum

composites reinforced with different reinforcing particles

type [38]. Additional studies on ANN applications to model

FSW process have been carried out [29], [36], [39]–[42].

Since the FSW process has many variables, which makes

it difficult to reach the appropriate parameters that achieve

the best results, therefore this work focuses on predicting the

optimal output by specifying the appropriate parameters for

the welding process to obtain the best mechanical properties.

In this study, a new approach to predict UTS of AA6061-

T6 FSWD joints is presented. The proposed approach is con-

structed by integrating ANN with a new metaheuristic algo-

rithm called Henry gas solubility optimization (HGSO) [43]

to improve the performance of the RandomVector Functional

Link (RVFL) that used to predict the UTS of the FSWD joints

under different welding parameters. The use of RVFL avoids

the problem that faces the traditional ANN such as overfitting

since RVFL connects the input data with the output which

improves the prediction accuracy of the output. Moreover,

HGSO helps to obtain the optimal RVFL parameters that

maximize the prediction accuracy of the model.

II. PROPOSED APPROACH

A. RANDOM VECTOR FUNCTIONAL LINK

In the last decades, the single layer feed forward neural

network (SLFNN) has been extended to other more versions,

for example, in 1994, Pao et al. [44] supposed the Random

Vector Functional Link Network, noted as RVFL. The main

difference between them that in the RVFL, the input layer and

output layer are connected to each other directly, as shown

in Fig.1. Such connection can assist the RVFL network to be

able to avert the problems of overfitting.

FIGURE 1. The structure of RVFL network.

The RVFL network can be mathematically modeled as

following, there is a number N of data samples, where

each sample can be symbolized as (x i, yi), where xi ∈ Rn,

yi ∈ Rm, i = 1, . . . ,N . Such samples are transferred through

another layer unlike the input layer, in which they can be

enhanced as in the following equation:

Oj
(

αjxi + βj
)

=
1

1 + e−(αjxi+βj)
, βj ∈ [0, S] , αj ∈ [−S, S]

(1)

where αj and βj are weights between layers, input layer and

improved one, and the bias respectively. In addition, S is the

parameter tuning coefficient and is a scale factor. The RVFL

output layer after that can have an output obtained through

the weight w as follows

Z = Fw,w ∈ Rn+P,F = [F1,F2] (2)

where F represents the samples of the input data matrix that

contains F1 and F2 represents the output of the improving

layer.

F1 =







x11 . . . x1n
...

. . .
...

xN1 . . . xNn






,

F2 =







G1 (α1x1 + β1) . . . GP (αPx1 + βP)
...

. . .
...

G1 (α1xN + β1) . . . GP (αPxN + βP)






(3)

The output weight w is updated by the ridge regression [45]

or by the Moore-Penrose pseudo-inverse [45], [46].

w =

(

FTF +
I

C

)−1

FTZ (4)

w = F†Z (5) (5)

where I , † and C are, the identity matrix, the Moore-Penrose

pseudo-inverse and a coefficient of the trading-off,

respectively.

B. HENRY GAS SOLUBILITY OPTIMIZATION

In this section, we introduce the steps of the HGSO which

simulates the physical behavior defined by Henr’s law.

The HGSO, like other Physics-based algorithms, starts by

constructing a set of N positions for the gases (X ) and this

process is formulated as

Xi = Lb+ rand ∗ (Ub-Lb) , rand ∈ [0, 1] (6)

where Lb andUb are the lower and upper values in the search

space, respectively.

The second step is to cluster the solutions in equal groups

equivalent to the number of gas types and each group has the

same number of gases. In addition, each of them has the same

Henry’s constant that defined as

Hj = l × r1, j = 1, 2, . . . ,Ng

where r1 is a random number and l is a constant value set

to 5E-2, while Ng represents the number of groups. The next

step is to assess the gas in each group to determine the best gas

in each group. Followed by determining the best gas overall

79898 VOLUME 8, 2020



T. A. Shehabeldeen et al.: Novel Method for Predicting Tensile Strength of FSWD AA6061 Aluminium Alloy Joints

the groups. Thereafter, the Henr’s coefficient for the

j-th group will be updated using the following equation

Hj (t + 1) = Hj (t) × exp

(

−Cj ×

(

1

T (t)
−

1

T θ

))

,

T (t) = exp

(

−
t

iter

)

(7)

where T ,T θ , and iter are the temperature, constant value (set

to 298.15), and the maximum number of iterations.

The next step in HGSO is to update the solubility of each

solution among all groups (Sij) using the following equation.

Sij (t) = K × Hj (t + 1) × Pij(t) (8)

whereK is a constant andPij(t) represents the partial pressure

on i-th gas on j-th cluster j and its defined as

Pij (t) = l2 × r1, j = 1, 2, . . . ,Ng, l2 = 100

The HGSO go to update the position of the i-th gas in the

j-th group using the following equation:

Xij (t + 1) = Xij (t) + F × r × η ×
(

Xib (t) − Xij (t)
)

+

+F × r × α ×
(

Sij (t) × X
ib (t) − Xij (t)

)

(9)

Where η = β × exp(−
Fb (t) + ǫ

Fij (t) + ǫ
) (10)

In Equation (10), the Fij is the fitness value of the solution i

on the group j and Fb is the best fitness value. F is a flag to

change the direction gas. η represents the ability of the i-th gas

in the group j to interact with other gases in the same group.

Whereas, the α = 1 represents the influence of other gases

on the i-th gas in the j-th group. The HGSO use the following

equation to escape the local point which determine the worst

Nw solutions.

Nw=N ×r ×(c2−c1)+c1, c1 = 0.1, and c2 = 0.2

(11)

Then those solutions are updated using the following equation

Gij = Gminij + r ×

(

Gmaxij − Gminij

)

(12)

Gij is the solution i in the group j which belongs to the worst

solutions.

C. THE PROPOSED HGSO-RVFL METHOD

The proposed model for predicting UTS of FSW is based

on improving RVFL performance using a new swarm algo-

rithm called HGSO. The proposed HGSO-RVFL contains

two phases, in the first phase, the training phase, the initial

values for the parameters of HGSO, and RVFL are received

as well as the training set, then the initial values for N

solutions (X ) are generated which represent the parameters

of the RVFL. Each one of these solutions refers to an RVFL

configuration and to evaluate the quality of this configuration,

it is learned using the training set and the performance of

its output is computed using the root mean square error.

After, computing the fitness value for all configurations (solu-

tions), the best configuration is determined which has the

smallest fitness value. The next step is to compute updating

other configurations using HGSO operators. This process is

performed until the stop conditions are satisfied and return by

the best configuration. Then, the testing set is applied to this

best configuration to assess its performance. Details of these

two phases are given in the following sections.

1) TRAINING PHASE

This phase starts by receiving the input set and dividing it

into training (70%) and testing set (30%). Then, the initial

value for the parameters of the proposed HGSO-RVFLmodel

such as number of solutions (N ), dimension of each solution

Npar (number of parameters), number of iterations are set.

Thereafter, construct the initial solutions X using the follow-

ing equation

xij= lj + r ×

(

uj − l
j

)

, i=1, . . . ,N , j=1, . . . ,Npar

(13)

where uj and lj are the upper and lower boundaries at

j th parameter, respectively. r ∈ [0, 1] random

value. For clarity, assume the i-th solution xi =

[xi1, xi2, xi3, xi4, xi5, xi6, xi7] = [Nh,Bias, link,AF,RT ,

mode, Scalem]. xi1 ∈ [1, 2000] represents the number of

hidden neuron; the value of xi2 ∈ {0, 1} indicates either there

is a bias in the output layer or not. The value of xi3 ∈ {0, 1}

is used if there is a direct link to output layer or not; while,

the value of xi4 ∈ {1, 2, 3, 4, 5} represents the type of the

objective function (i.e., sig, tribas, radbas, hardlim, sin, and

sign). The xi5 ∈ {1, 2} is used to determine the kind of the

randomization approach that applied to set the value of the

weights (Uniform, and Gaussian);xi6 ∈ {1, 2} is the approach

used to improve the weights (Moore-Penrose pseudoinverse,

and regularized least square). The value of xi7 ∈ {1, 2, 3} is

applied to determine the type of scaling the features here;

and there are three types a) all neurons, b) each hidden

neuron separately, and c) the randomization range of the

uniform distribution. For example, xi = [200, 1, 1, 3, 1, 2, 2]

indicates that the current configuration of RVFL contains

200 neurons with bias and direct link. In addition, radbas is

used as an activation function, while weights are generated

according to a uniform distribution. The regularized least

square is sued to update weights with scale the features for

each hidden neuron separately.

To assess the quality of each configuration, the training

set is passed through the neurons and the final output (YP)

is computed then the quality of this output is computed by

using the following equatio

Fit i =

√

∑Ns
i=1 (YP − YT )2

Ns
(14)

where YT is the original output, andNs represents the number

of samples in the training set. Thereafter, the best configura-

tion (Xb) is determined and according to its value, the other
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FIGURE 2. The HGSO-RVFL technique for predicting UTS.

configurations will be updated, in addition to using the opera-

tors of the HGSO as discussed in section B. Then the terminal

conditions are checked; if they are met, then return by the best

configuration otherwise, repeat the previous steps again.

2) TESTING PHASE

In this phase, the testing set is applied to assess the perfor-

mance of the best configuration Xb by passing its samples to

the input neurons and computing the final output. Then eval-

uate the output quality by computing the RMSE as defined

in Equation (14). The HGSO-RVFL framework is shown

in Fig.2.

TABLE 1. Chemical compositions of AA6061-T6 alloy (wt. %).

III. MATERIALS AND METHOD

In order to collect data to construct the HGSO-RVFL model,

experimental information of literature [47] has been used

as well as the regression model given in Eq. 15 for UTS.

Two 5 mm thickness AA6061-T6 aluminum alloys plates

have been used to produce FSWD butt joints as shown

in Fig. 3. The chemical composition of AA6061- T6 is

shown in Table 1. UTS of AA6061-T6 aluminum alloys is

312 MPa. Five tools with different pin geometries made of

molybdenum-based high-speed steel were used to produce

the FSWD joints: simple square (SS), simple cylindrical

(SC), simple tapered (ST), cylindrical with threads (CT), and

tapered with threads (TT) as shown in Fig. 4. All tools had the

same dimension of shoulder diameter of 18 mm with a con-

cave of 6◦, pin diameter of 6 mm and pin length of 4.7 mm.

FIGURE 3. Schematic diagram of FSW and process parameters.

FIGURE 4. Different tool Pin profiles used in FSW process; (a) simple
cylindrical, (b) cylindrical with threads, (c) simple tapered, (d) tapered
with threads, and (e) simple square.

The base of the pin and the tip diameter of TT and ST were

4 and 6mm, respectively, while the plunge depth was 0.1mm.

FSW parameters used in the proposed model and working
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TABLE 2. FSW parameters and working range [47].

FIGURE 5. Dimensions of tensile sample (ASTM E8M-04).

range are shown in Table 2. Tensile samples were prepared

based on ASTM E8M-04 standard dimensions as described

in Fig. 5. Each experiment had three replicates and the mean

was computed for each experimental set. Table 3 shows the

FSW parameters for the welded AA6061-T6 plates and the

measured UTS used to create the HGSO-RVFL model.

UTS = 276.62 + 14.96 (P) − 1.18 (N ) − 7.32 (S) + 0.21T

+3.79 (P) (N ) +8.07 (P) (S) + 0.46 (P) (T )

+9.35 (N ) (S) +0.32 (N ) (T ) +3.42 (S) (T )

−30.86
(

P2
)

−3.40
(

N 2
)

−3.01
(

S2
)

−4.59
(

T 2
)

(15)

IV. RESULTS AND DISCUSSION

A. COMPARISON OF EXPERIMENTAL RESULTS WITH

PREDICTED RESULTS OF HGSO-RVFL, ANFIS,

AND KNN MODELS FOR UTS

In this study, we proposed HGSO-RVFL as the main algo-

rithm. However, we added two other algorithms to compare

their results with the result of HGSO-RVFL and demon-

strate the accuracy of the proposed model. The measured

UTS results are compared with the predicted results by

RVF–HGOS model as shown in Fig. 6. The HGSO-RVFL

model showed a high correlation with experimental results

due to its high prediction rate. To confirm the strength of

the HGSO-RVFL model in the prediction process, ANFIS

and K Nearest Neighbor algorithm (KNN) models have been

constructed with the same input data and then compared

with the experimental data. The ANFIS model displayed less

predictability than HGSO-RVFL model as shown in Fig.7,

while KNN model had the lowest degree of predictability

as shown in Fig.8. This indicates that the KNN suffers from

overfitting and needsmore experiments as training set. There-

fore, the correlation between HGSO-RVFL predicted data

and the corresponding experimental data is better than those

obtained byANFIS or KNN thanks to the integration between

advanced ANN technique (RVFL) and robust metaheuristic

TABLE 3. Design matrix used to train HGSO-RVFL model [47].

technique (HGSO) that successfully predicts the UTS of

FSW process. Since the HGSO aims to find the optimal

configuration that provides RVFL with a suitable tool to

avoid the limitations in traditional ANFIS and KNN such as

absence of direct link between input and output which leads

to overfitting.

In addition, the percentage error Ei and the average per-

centage error Eav have been used to assess the performance

of HGSO-RVFL algorithm. The Ei and Eav are defined

VOLUME 8, 2020 79901
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FIGURE 6. UTS results of experimental values versus HGSO-RVFL
modified values.

FIGURE 7. UTS results of experimental values versus ANFIS values.

FIGURE 8. UTS results of experimental values versus KNN values.

in equations. (16) and (17) respectively.

Ei =

∣

∣

∣

∣

∣

UTS i − UTSPi
UTS i

∣

∣

∣

∣

∣

× 100 (16)

Eav =
1

n

∑n

i=1
Ei (17)

FIGURE 9. HGSO-RVFL error versus ANFIS and KNN.

where, i is the experiment number, Ei is the percentage

error; UTS iand UTSPi are the experimental and predicted

UTS, respectively. Eav denotes the average value of the

percentage error. Fig. 9 demonstrate the prediction error

for HGSO-RVFL, ANFIS, and KNN models which are 0

%, 2.139 %, and 2.693 %, respectively. This indicates that

ANFIS and KNN models suffer from overfitting. Therefore,

HGSO-RVFLmodel can be used to predict UTS values better

than other investigated models. From the abovementioned

discussion, the HGSO-RVFL is proved to be a reliable and

strong algorithm to predict mechanical properties of FSWD.

B. CHECKING VALIDATION OF THE MODEL

Figure 10 (a), (b) and (c) demonstrate the validity of

HGSO-RVFL, ANFIS, and KNN models to predict UTS.

The predicted values are scattered around the line for all

three models. For the HGSO-RVFL model, plotted values are

regularly distributed around the line as shown in Fig. 10 (a),

which indicates the accuracy and fitness of the model because

of the ability of HGSO algorithm to discover the optimal

configuration that provides RVFL a suitable tool for avoiding

constraints in conventional ANFIS and KNN such as there

is no direct link between inputs and outputs leading to over-

fitting, while values are less uniformly distributed around

the line for ANFIS model as shown in Fig. 10 (b), they are

also randomly distributed around the line for KNN model as

shown in Fig. 10 (c) which indicates the worst fitness among

all investigated models. The above discussion illustrates an

excellent prediction capability of the HGSO-RVFL model.

C. STATISTICS FOR HGSO-RVFL MODEL COMPARED

WITH ANFIS, AND KNN MODELS

The obtained results by different models are checked using

different statistical criteria such as the root mean square error

(RMSE), the mean absolute error (MAE), the coefficient of

determination (R2), the mean relative estimate error (MRE),

and the coefficient of variance (COV). The values of these

statistical coefficients are tabulated in Table 4. R2 equals 1, 1,

and 0.9997 for the HGSO-RVFL, ANFIS, and KNN models
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FIGURE 10. Fitting of UTS data (a) HGSO-RVFL model, (b) ANFIS model
and (c) KNN model.

respectively, which indicates a high correlation between the

experimental and the predicted data of HGSO-RVFL com-

pared with the other two models. Moreover, the RMSE of

HGSO-RVFL model (3.0482E-12) is lower than the ANFIS

model (4.1267E-06) and KNN model (4.2295). MAE, MRE,

and COV values of HGSO-RVFL model are lower than that

of the other two models, thus the prediction of HGSO-RVFL

TABLE 4. Statistical results of the developed models.

technique has much adequacy to predict the UTS of FSWD

joints with high accuracy.

D. PREDICTION OF FSW PROCESS PARAMETERS

The developed HGSO-RVFL model was applied to study

and predict the parameters of FSW process as shown in

Fig.11 (a-c) where a significant agreement was observed

between the predicted results and the experimental results,

indicating the high ability of the developed model to predict

the ideal welding parameters that achieve the optimal UTS.

Fig. 11a illustrates the effects of rotational speed and weld-

ing speed on UTS. It was observed that base material UTS

(312 MPa) is higher than the UTS for all investigated joints

regardless of rotational speed and welding speed used in the

FSW process. Increasing the rotational speed and decreasing

the welding speed increases the tensile stress to reach the

maximum value (288.1 MPa) at (1150 rpm - 70 mm / min),

and (286.72MPa) at (1150 rpm - 30mm /min), then gradually

decreases with increasing welding speed due to the increase

in heat input to the welding region. Increasing the rotational

speed of the welding tool increases the heat input and affects

the uniform flow behavior of the material. At the same time,

the lower rotational speed produces less heat input, which

results in the lack of stirring action. Therefore, excessive

grain growth, solubilization and reprecipitating lead to a

decrease in UTS of AA6061 FS welded aluminum alloys.

Fig. 11b shows the effect of rotational speed and tool pin pro-

file where simple cylindrical pin profile produces maximum

UTS at 1450 rpm whereas tensile stress gradually decreases

at a rotation speed of 1150 rpm using a tapered pin with

threading, cylindrical pin with threading, and simple tapered

screw, respectively to reach minimum value using simple

square pin profile. Fig. 11c shows the effects of rotational

speed and tool tilt angle. UTS increases with increasing tilt

angle and rotational speed to reach peak value at 3◦ and

1450 rpm then decreases with increasing these parameters

more than these values. Increasing the tilt angle causes poor

bonding due to excessive reduction of frictional heat genera-

tion which increases average grain size while decreasing tilt

angle leads to poor bonding because of high frictional heat

generation [48]. Fig. 11d plots the effect of tool pin profile

and welding speed on the UTS of the FSWD joints. The plot

shows that simple cylindrical pin profile gives the maximum

UTS at 30 mm/min, while a gradual decrease of tensile stress

is observed at welding speed of 70 mm/min using tapered pin
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FIGURE 11. Contour plots showing the effect of (a) Rotation speed – Welding speed, (b) Rotation speed – Pin profile, (c) Rotation speed – Tilt
angle, (d) Welding speed – Pin profile, (e) Welding speed – Tilt angle, and (f) Tilt angle – Pin profile on UTS for the developed HGSO-RVFL model.

with threads, cylindrical pin with threads, and simple tapered

pin profile respectively to reach minimum value using simple

square pin profile. Finer grain size is achieved for taper tools

compared to other tools as a result of better flow of plasticized

material, thereby producing a sound joint [49].

The effects of welding speed and tool tilt angle on UTS

are shown in Fig. 11e. As welding speed increases, UTS

decreases. Increasing in tilt angle results in increasing the

UTS to reach the maximum value at 3◦ and 30 mm/min, and

then gradually decreases as these two parameters increase.

Increasing the tilt angle of the welding tool leads to an

increase in the vertical force and torque, this may lead to an

increase in the contact between the tool and the workpiece

and then the highest heat inputs are achieved which causes a

thermal softening of the deformed material and an increase

in the flow of downward materials, where the restoration of

grains are obtained in stir zone that occurs in conjunction

with the deformation, and this process is called dynamic

recrystallization, which leads to the grain refinement during

welding [50]. Fig. 11f shows the effect of tool tilt angle and

tool pin profile. Maximum UTS value is achieved by simple

cylindrical tool pin profile and tilt angle of 3◦ while this value

gradually decreases at the same tilt angle for cylindrical pin

with threads and simple tapered pin profile, respectively until

it reaches the minimum value using simple square pin profile.

FIGURE 12. Main effect plot of FSW parameters on the process response
(UTS).

E. MAIN EFFECTS OF FSW WELDING

PARAMETERS ON UTS

The main effect plot of different FSW parameters on the

process response (UTS) is shown in Fig.12. In order to realize

the maximum UTS, it is recommended to use a rotation

speed of 1450 rpm or 1150 rpm and avoid using a rotation

speed of 1300 rpm as it leads to minimal UTS. It is also
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recommended to use a welding speed of 30 mm/min to obtain

maximum UTS. It can also be noted that the use of a simple

cylindrical pin profile or a cylindrical tapered pin profile can

attain maximum UTS while simple square pin profile leads

to impair UTS. A tilt angle of 3◦ can achieve maximal UTS

while 5◦ leads to minimal UTS. Generally, the HGSO-RVFL

model can successfully confirm that the use of a simple cylin-

drical tool, a tilt angle of 3◦, a rotation speed of 1150 rpm, and

a welding speed of 30 mm/min can achieve a high quality

AA6061-T6 aluminum alloy welding joint.

V. CONCLUSION

In this paper, we proposed a novel ANN model to predict

UTS of the FSWD joints of aluminum alloy AA6061-T6 as

functions of welding speed, rotational speed, tilt angle, and

tool pin profile. HGSO algorithm was used to optimize the

performance of RVFL network, the validity of the model

was checked, and the effect of the process parameters on

the mechanical properties of the joint was discussed. The

following conclusions can be drawn:

• HGSO technique can successfully find the optimal con-

figuration that provides RVFL with a suitable tool to

avoid the limitations in traditional algorithms such as

absence of direct link between input and output which

leads to overfitting.

• The developed HGSO-RVFL model can be used to pre-

dict the responses of experimental values at R2 of 1.

• The HGSO-RVFL model can successfully confirm that

using simple cylindrical tool, 3◦ tilt angle, rotation speed

1150 rpm, and welding speed 30mm / min can achieve

high quality aluminum alloy AA6061-T6 FSWD joint.

• The HGSO-RVFLmodel has high predictability of FSW

parameters to reach the optimum mechanical properties

and is recommended for other engineering applications.
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