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Abstract—Hyperbolic tangent and Sigmoid functions are 

used as non-linear activation units in the artificial and deep 

neural networks. Since, these networks are computationally 

expensive, customized accelerators are designed for achieving 

the required performance at lower cost and power. The 

activation function and MAC units are the key building blocks 

of these neural networks. A low complexity and accurate 

hardware implementation of the activation function is required 

to meet the performance and area targets of such neural 

network accelerators. Moreover, a scalable implementation is 

required as the recent studies show that the DNNs may use 

different precision in different layers. This paper presents a 

novel method based on trigonometric expansion properties of 

the hyperbolic function for hardware implementation which can 

be easily tuned for different accuracy and precision 

requirements.  

Keywords—Neural network, Hyperbolic tangent, nonlinear 

activation function, VLSI implementation 

I. INTRODUCTION 

Artificial neural networks (ANNs) have been used for 
modeling the complex non-linear relationships between the 
inputs and outputs in multiple applications. An ANN consists 
of a layered network of the artificial neurons which compute 
the weighted sum of multiple inputs and pass it through a non-
linear activation function. State of the art deep neural 
networks (DNNs) have many such layers connected in feed 
forward fashion. Using these feed-forward DNNs, state of the 
art result has been achieved in various applications such as 
object detection and classification. However, there is another 
set of applications which requires the neural networks to 
model the history or sequence such as the natural language 
processing, classification of video sequences, and image 
captioning etc. Recurrent neural networks (RNNs) and long 
short-term memory (LSTM) have been used for such 
applications. These neural networks continue to use tanh 
activation function for its ability to handle vanishing gradients 
and ease of computing gradient.  

Since, these algorithms require huge computing resources; 
there has been an effort to implement dedicated accelerators 
to speed up the execution. Activation function is one of the 
key building block required for the efficient hardware 
accelerator. Experimental study has shown that the accuracy 
of the activation function impacts the performance and the size 
of the neural networks. Hyperbolic tangent function, being a 
non-linear, function requires specific consideration for the 
accuracy and area trade-off. This paper presents a novel 
method for hardware implementation which can be easily 
tuned for different accuracy requirements. 

II. LITERATURE REVIEW 

Tanh function, shown in figure 1, is a non-linear function 
defined as: 

tanh(x) = 
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
                                     (1) 

 

Multiple implementations of hyperbolic tangent have been 
published in literature ranging from the simplest step and 
linear approximations to more complex interpolation 
schemes. This section reviews some of these methods for tanh 
implementation and discusses the motivation behind this 
paper. 

The simplest implementation is to store the values of the 
function in a lookup table (LUT) and approximate the output 
with the lookup table value for the nearest input. Since, the 
function is non-uniform, it’s challenging to balance the 
tradeoff between accuracy and area if the range is divided in 
equal sub-ranges. To address this issue, range addressable 
lookup table has been proposed by Leboeuf et al. [1]. The step 
size is varied depending on the variability of the function to 
reduce the size of LUT without impacting the accuracy. 
Another variation of this method is to use a two-step LUT. The 
first one with the coarse estimation and second one with the 
finer estimation. Namin et al. use this method but instead of 
an LUT, they use a combination of linear and saturation values 
for coarse approximation [2].  

Zamanlooy et al. take advantage of the tanh function being 
an odd function and divide it in three ranges based on its basic 
properties; pass region, processing region and saturation 
region [3]. Then the hardware is optimized specific to the 
regions. In the pass region, the data is simply shifted and in 
the saturation region it is constant. In processing region, data 
is mapped from the input by simple bit-level mapping (i.e. the 
combinatorial logic). 

The function value can be interpolated by piecewise linear 
(PWL) interpolation to reduce the error. The function value is 
stored in an LUT for known values and from these values, the 
function is interpolated for intermediate input values [4].  

Adnan et al. have approximated the tanh function by 
Taylor series expansion [5]. The accuracy varies across the 
range of the input and the function is more accurately 

Fig. 1. tanh function and its piecewise linear approximation 



computed for smaller values of inputs. Moreover, if the 
number of terms in Taylor series are increased from three to 
four, improvement is just 2x where the error was large while 
it is 10x where the error was already small. 

Abdelsalam et al. have used the DCT (discrete cosine 
transform) interpolation filter (DCTIF) for tanh 
approximation [6]. Like [3], they also divide the tanh function 
in three regions and use DCTIF for approximation in 
processing region. This method achieves higher accuracy than 
any of the published methods. However, it requires huge 
memory for storing the coefficients. 

Rational interpolation methods have also been explored by 
the researchers. Z. Hajduk [7] has discussed the hardware 
implementation of tanh using Padé Approximant. Similalrly, 
Lambert’s continuous fraction is also used for the rational 
function approximation of hyperbolic tangent. [8] 

It is evident from this short list that various 
implementations have been published in the literature. Some 
of them are too complex and require huge resources and may 
be overkill for applications which work with fixed point data 
such as deep learning. Even though, rational approximations 
are computationally complex as they require a divider, they 
are worth exploring for proper comparison. Newton-Raphson 
method can be applied for the reciprocal computation to 
implement the divider [9]. Moreover, there are methods for 
fast oral calculation of various trigonometric and exponential 
function such as the one published by Ron Doerfler [10]. This 
method is quite interesting and can be applied to the hardware 
implementations. This paper explores a hardware 
implementation by adopting this method and making 
necessary changes to make it hardware friendly. 

III. METHOD OVERVIEW 

This section discusses the method published by Ron 
Doerfler for oral approximation of Hyperbolic tangent 
function [10]. It basically consists of method of finding the 
hyperbolic tangent value for sum of two angles given the value 
of the function for two angles independently or if one of the 
angles is very small.   

Hyperbolic tangent for the addition of two angles is given 
by: 

tanh(𝑎 + 𝑏) =  
tanh 𝑎+tanh 𝑏

1+tanh 𝑎 ×tanh 𝑏
                (2) 

Given tanh value at a, and very small b, it can be 
approximated as below: 

tanh 𝑏 = 𝑏  

tanh(𝑎 + 𝑏) =  
tanh 𝑎 + 𝑏

1 + b× tanh 𝑎
 

tanh(𝑎 + 𝑏) = (tanh 𝑎 + 𝑏) × (1 − b × tanh 𝑎) 

tanh(𝑎 + 𝑏) = tanh 𝑎 + 𝑏 × (1 − tanh2 𝑎)           (3) 

This approximation works well for small ‘b’. For larger 
values of b, we can directly use equation (2). However, it 
requires operations which are costly for hardware or software 
implementation and difficult to parallelize. An alternative 
representation, that simplifies these operations, is presented in 
[10] and reproduced below. 

Instead of working with tanh values, the author proposes 
to work with a transformed value called as velocity factor (f), 
and defined as: 

𝑓𝑎 =
1+tanh 𝑎

1−tanh 𝑎
                                        (4) 

To compute tanh from f, we can use following equation. 

tanh 𝑎 =
𝑓𝑎−1

𝑓𝑎+1
                                             (5) 

Given fa and fb, fa+b can be computed as: 

𝑓𝑎+𝑏 =
1 + tanh(𝑎 + 𝑏)

1 − tanh(𝑎 + 𝑏)
 

𝑓𝑎+𝑏 =
1 +

tanh 𝑎 + tanh 𝑏
1 + 𝑡𝑎𝑛ℎ 𝑎 × tanh 𝑏

1 −
tanh 𝑎 + tanh 𝑏

1 + 𝑡𝑎𝑛ℎ 𝑎 × tanh 𝑏

 

𝑓𝑎+𝑏 =
1 + tanh 𝑎 + tanh 𝑏 + tanh 𝑎 × tanh 𝑏

1 − tanh 𝑎 − tanh 𝑏 + tanh 𝑎 × tanh 𝑏
 

𝑓𝑎+𝑏 =
(1 + tanh 𝑎) × (1 + tanh 𝑏)

(1 − tanh 𝑎) × (1 − tanh 𝑏)
 

𝑓𝑎+𝑏 = 𝑓𝑎 × 𝑓𝑏                                                 (6) 

Given this velocity factor for sum of angles, hyperbolic 
function can be computed back using (5). 

IV. HARDWARE  IMPLEMENTATION 

Since, tanh is an odd function, the main algorithm can be 
implemented for positive values only. Main steps as shown in 
figure 2, are sign detection, tanh value computation and sign 
conversion. Computing tanh only for positive values 
simplifies the hardware implementation; hence all the analysis 
in subsequent sections considers the tanh computation for 
positive input values only. 

 

It has been shown that the inference using DNNs is less 
sensitive to the quantization of the data (i.e. the precision); so, 
the data is assumed to be organized as 16-bit or 8-bit fixed 
point signed input to the tanh for the discussion in this paper. 

f(x) = tanh(x) 

x 

abs (x) 

tanh [abs(x)] 

2’s Complement 

sgn(x) 

Sign Extension 

Fig. 2 . Data Flow diagram for tanh function implementation 
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For 16-bit fixed point input data, we can consider 13-bit or 
12-bit precision for fractional part. The range of the input data 
in this case will be either (-4,4) or (-8,8) respectively. 
However, for practical purposes, we can constrain the domain 
to tanh-1[±(1-2-b)] where b is the number bits used to represent 
the fractional part of tanh at the output. For 8, 12 and 16-bit 
signed fixed-point representation with fractional only, the 
corresponding domain is ±2.77 (±2.42), ±4.16 (±3.82) and 
±5.55 (±5.20) respectively. Beyond this domain, the errors for 
tanh is smaller than that can be represented by the least 
significant bit and can be ignored. For the following 
discussion, the maximum error is restricted to the lsb. 

A. Hardware Implementation of Published Method 

The manipulations described in (3)-(6) make the hardware 
implementation less complex compared to direct computation 
using (2). For example, if there is an n-bit integer N 
represented as bn-1bn-2..b2b1b0 in binary, then velocity factor fN 
can be computed as: 

𝑓𝑁 = ∏ 𝑓2𝑏𝑘×𝑘
𝑛−1
𝑘=0                               (7) 

Once 𝑓𝑁 is known, tanh can be computed using (5). 

 

For hardware implementation, shown in figure 3, velocity 
factors can be stored in registers for the numbers which are the 
power of two and more than a threshold (e.g. 2-7). Equations 
(7) and (5) are used to compute the tanh value for the sum of 
stored numbers. For the addition smaller than threshold, 
equation (3) can be used for compensating the error. The value 
of this threshold affects the accuracy of the approximation and 
the number of registers required for storing velocity factors. 
The simplest implementation using this method for s3.12 
input requires 10 registers storing the tanh velocity factor (fa) 
value for 2k (-7 ≤ k ≤ 2), and 9 multipliers (one for each bit).  

The implementation requires a division operation which 
can be implemented by multiplying numerator with the 
reciprocal of denominator. Newton Raphson method can be 
used along with some data manipulation techniques for 
computing reciprocal [11]. The data manipulation is required 
to bring the denominator in the range of (0.5,1) required by 
the method. Newton Raphson method iteratively refines the 
initial guess x0 for reciprocal of a number ‘b’ using equation 

(8). The high-level block diagram for Newton Raphson 
method for computing reciprocal is shown in figure 4. 

𝑥𝑖+1 = 𝑥𝑖 × (2 − 𝑏 × 𝑥𝑖)                            (8) 

 

B. Architectural Improvements for Scalable Hardware 

Implementation 

1) Removing the last stage multiplier 
The equation (3) used in original approximation and 

shown in dotted rectangular block in figure 3, has two main 
problems; one, it introduces error and two, it requires two 
multipliers in the last stage. We can get rid of this and instead 
use (7) for computing velocity factor for all bit positions 
instead of only some MSBs. It makes the tanh computation 
highly accurate and the error is introduced only because of the 
precision of the numbers and arithmetic. So, for our 
implementation trials we can make this modification i.e. store 
the velocity factor for all bit positions and no approximation. 
This also requires additional multipliers for computing (7); 
however, this can be optimized by hardware manipulations 
and is discussed later. 

2) Velocity Factor Range and Precision 
For 16-bit fixed point data in s3.12 format, the velocity 

factor range is [1.0004884,54.59815]. It requires at least 6.11 
bits to represent it. This dynamic range is a function of the 
input precision and range and hence makes the scalability a bit 
difficult to handle. It would be nice to have the fractional range 
that can be represented as 0.N and select N based on the input 
and output precision. Fortunately, such a representation is 
possible by reworking the algebraic manipulations. 

Instead of storing tanh values in the LUTs, redefine the 
velocity factor f as: 

𝑓𝑎 =
1−tanh 𝑎

1+tanh 𝑎
                                 (9) 

To compute tanh from f, we can use following equation. 

tanh 𝑎 =
1−𝑓𝑎

1+𝑓𝑎
                                   (10) 

There is no change for computing fa+b; and given fa and fb, 
(6) can be used for this purpose. Using this method, the fa is 
always in the range of (0,1) and makes the implementation 
more friendly to the scaling. 

This has another advantage in the implementation of the 
division logic using the Newton Raphson method. The 
Newton Raphson method works well if the operand is in the 
range of (0.5,1). Since, 

𝑓𝑎 ∈ (0,1) ⇒ (1 + 𝑓𝑎) ∈ (1,2) ⇒
(1+𝑓𝑎)

2
∈ (0.5,1)  (11) 

So, a single right shift brings the denominator in the 
required range. 

𝑓𝑥 − 1

𝑓𝑥 + 1
 abs 

(x) 
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Fig. 3. High level Block diagram for tanh commputation using published 

method for input represneted in s3.12 format 
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3) Reducing Number of Multipliers in Computing 

Velocity Factor 
We can also reduce the number of multipliers by using 

LUTs instead of registers for storing velocity factors. Instead 
of storing values of velocity factors for a single place value, 
we can store the velocity factor corresponding to combination 
of them. For example, we can combine two bits and store the 
values as given by table I. This reduces number of multipliers 
at the cost of LUT which store constant values and can be 
optimized. If we store LUT entries for four bits together, 
number of multipliers reduced to 3 for s3.12 representation at 
the cost of 4 LUTs each storing 16 velocity factor values. 

TABLE I.  MULTI-BIT LOOKUP FOR VELOCITY FACTORS   

Bits Value 

00 1.0 

01 Velocity factor corresponding to lsb 

10 Velocity factor corresponding to msb 

11 Multiplication of velocity factors corresponding to 
lsb and msb 

 

 Using LUTs in this way adds new challenges. Since, 
velocity factor values are fractions, their multiplication results 
in even smaller numbers and requires higher number of bits to 
represent them and preserve the precision. If we simply 
combine them in increasing order e.g. LUT0 storing the 
velocity factors for 2-12, 2-11, 2-10, 2-9; then, the problem is 
accentuated. Instead, we can combine the bit positions 
differently depending on magnitude to reduce the impact; for 
example, LUT0 can store the velocity factors for 2-12, 2-5, 2-4, 
22. What this means for hardware is that instead of using bits 
{x3, x2, x1, x0} as address for LUT0, we chose{ x15, x8, x7, x0} 
bits as the address for LUT0. With this scheme of addressing, 
18-bit precision is enough for the 1-bit error on the output. 
Note that the bit shuffling doesn’t add any hardware cost. 

 

4) Adder, Subtractor and Divider 
The last stage of the tanh computation requires a subtractor 

(1-fx), an adder (1+ fx) and a divider ((1- fx)/(1+ fx)). The 
divider can be implemented using three-stage Newton 
Raphson method and a multiplier. Since, fx is in the range 
(0,1), adding one is simply bit concatenation (i.e. suffix) for 
hardware and no real adder is required. The subtractor is a 2’s 
complement logic and can be approximated by 1’s 
complement without introducing much error as discussed 
later.  

5) Putting Together 
These optimizations result in significantly simpler 

hardware architecture as shown in fig. 5. 

V. IMPLEMENTATION RESULTS  

The method discussed above is highly accurate method 
and the error is introduced due to precision and few 
approximations such as Newton Raphson for reciprocal 
computation and 1’s complement for subtraction instead of 2’s 
complement. The Table II summarizes the error introduced 
due to these approximations for s3.12 input and s.15 output. 
The precision of LUTs and multipliers is kept at 18 and 16 bits 
respectively. It’s evident from the table that Newton Raphson 
method with 1’s complement subtraction gives as good 
accuracy as real divider. Similarly, using 1’s complement for 
(1-fx) computation drops the accuracy marginally to 5.87x10-5 
from 4.32x10-5. 

TABLE II.  ERROR ANALYSIS FOR ARITHMETIC APPROXIMATIONS 

No. of Newton Raphson Iteration 

Stages 

Subtractor  Max Error 

0 (Floating Point Divider followed by 
fixed point conversion for reference) 

- 4.44x10-5 

2 1’s 2.77x10-4 

2 2’s 2.56x10-4 

3 1’s 4.32x10-5 

3 2’s 4.44x10-5 

A reusable RTL code was written using Verilog HDL and 
synthesized for PPA (power, performance and area) trade-off 
analysis. The precision of input and output can be controlled 
by parameters selecting the bit width of LUTs and multipliers 
etc. The PPA trade-offs require multiple pipelined designs. 
The performance for different pipeline stages and 16- and 8-
bit input are given in table III and IV.  

TABLE III.  SUMMARY OF RESULTS FOR DIFFERENT FLAVOURS OF 

TANH IMPLEMENTATION FOR S3.12 INPUT AND S.15 OUTPUT 

Cells Latency 

(Clocks) 

Area 

(um2)  

Leakage 

Power 

(uW) 

Max 

Frequency 

(MHz) 

Logic 

Levels 

SVT 1 3748.28 4.20 188 135 

LVT 1 2600.34 119.33 302 111 

SVT 2 3400.43 3.53 258 95 

LVT 2 3367.16 180.67 511 86 

SVT 7 3688.98 3.92 1176 25 

LVT 7 3147.68 146.67 2134 17 

TABLE IV.  SUMMARY OF RESULTS FOR DIFFERENT FLAVOURS OF 

TANH IMPLEMENTATION FOR S3.5 INPUT AND S.7 OUTPUT 

Cells Latency 

(Clocks) 

Area 

(um2)  

Leakage 

Power 

(uW) 

Max 

Frequency 

(MHz) 

Logic 

Levels 

SVT 1 764.37 0.81 254 97 

LVT 1 568.99 24.19 303 95 

SVT 2 885.29 0.99 364 74 

LVT 2 877.82 51.67 715 70 

SVT 7 995.60 1.08 1532 14 

LVT 7 934.82 49.04 2985 13 

x 

 

Fig. 5. High level Block diagram of optimized HW for tanh computation 
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As discussed earlier, PWL and Taylor series expansion are 
quite popular for non-linear function implementation. 
However, they suffer from lack of scalability as the LUT size 
or number of terms must change as the accuracy requirement 
changes. DCT interpolation technique offers high accuracy 
but it requires huge memory for storing coefficients [6]. Other 
high accuracy implementations, such as using Padé 
approximants and CORDIC have higher latencies [7]. 

VI.  CONCLUSION 

This paper presents the hardware implementation of a 
highly accurate method for tanh computation. Though, the 
method itself is error free as against the series approximation 
or the PWL; the limited precision and reciprocal 
approximation introduce some error. The implementation 
presented here offers a highly accurate and scalable circuit for 
tanh computation. 
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