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Abstract: In order to improve the speech acquisition ability of a non-contact method, a 94 GHz

millimeter wave (MMW) radar sensor was employed to detect speech signals. This novel non-contact

speech acquisition method was shown to have high directional sensitivity, and to be immune

to strong acoustical disturbance. However, MMW radar speech is often degraded by combined

sources of noise, which mainly include harmonic, electrical circuit and channel noise. In this paper,

an algorithm combining empirical mode decomposition (EMD) and mutual information entropy

(MIE) was proposed for enhancing the perceptibility and intelligibility of radar speech. Firstly, the

radar speech signal was adaptively decomposed into oscillatory components called intrinsic mode

functions (IMFs) by EMD. Secondly, MIE was used to determine the number of reconstructive

components, and then an adaptive threshold was employed to remove the noise from the radar

speech. The experimental results show that human speech can be effectively acquired by a 94 GHz

MMW radar sensor when the detection distance is 20 m. Moreover, the noise of the radar speech

is greatly suppressed and the speech sounds become more pleasant to human listeners after being

enhanced by the proposed algorithm, suggesting that this novel speech acquisition and enhancement

method will provide a promising alternative for various applications associated with speech detection.

Keywords: radar speech; 94 GHz MMW; speech enhancement; empirical mode decomposition;

mutual information entropy

1. Introduction

Speech is one of the most important and effective means for human communication, thus,

speech acquisition is particularly important. There are some methods which can be used to

acquire speech signals, such as traditional air-borne microphones and non-air-borne contact

detection. However, traditional microphones are easily disturbed by background noise and their

propagation distance is very short, while other methods using non-air-borne contact detection such as

electroglottography and the bone conduction microphone constrain people’s free movement and make

users feel uncomfortable.

Thus, non-contact speech detection methods have been studied and developed. Optical speech

detection technology, as one such approach, had been used to listen for messages. For example,

Avargel et al. presented a remote speech-measurement system that utilizes an auxiliary laser Doppler

vibrometer sensor, and proposed a speech enhancement algorithm to enhance speech quality [1].

Sensors 2016, 16, 50; doi:10.3390/s16010050 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Sensors 2016, 16, 50 2 of 14

Recently, radar sensor speech detection technology has also been investigated by many researchers.

In 1998, Holzrichter’s group developed a micro-power impulse radar which was used to measure

the movement of the vocal organs [2]. In order to improve the performance synthetic speech and

speech pathology as well as allow silent speech recognition, Eid et al. explored a novel application of

Ultra Wide Band (UWB) radar speech sensing [3]. Chang’s group presented a Doppler radar system

and successfully extracted speech information from the vocal vibration signals of a human subject [4].

Although these results verified the effectiveness of the radar sensor in speech, they mainly concentrated

on measuring the vibration of the speech organs, instead of examining the performance of the radar

speech detection.

Millimeter wave (MMW) radars were developed in previous research for speech detection. Li’s

group used MMW radar to detect speech signals, which were successfully acquired with a 40 GHz

MMW radar. He also demonstrated that the 60 GHz or 90 GHz radars performed better than the 40

GHz one in this new application [5]. In addition, a MMW radar was examined in our laboratory [6,7].

Li et al. successfully used a 34 GHz MMW radar to acquire speech signals in free space [8,9], however,

the quality of the 34 GHz MMW radar speech was found to be unsatisfactory. In our previous

research, we found that the high operation frequency demonstrated excellent sensitivity for the

acquisition of speech signals [10–12]. Compared with the Ka-band range, MMW frequency in the

W-band range (75–110 GHz) provides a good tradeoff between range and sensitivity for the detection

of biosignals [12–14].

To further improve sensitivity and achieve high quality speech detection, in this paper a 94 GHz

microwave radar sensor with a superheterodyne receiver was employed to acquire speech signals.

In addition, in order to avoid the null point, in-phase and quadrature demodulation technology was

adopted in this radar. A superheterodyne receiver was employed to reduce the DC offsets and 1/f noise.

However, the combined sources of noise, which include ambient, harmonic and electrical circuit noise,

were combined in the acquired speech signals. These types of noise greatly degrade the quality of radar

speech, and seriously affect the applications of the MMW radar speech. Therefore, how to enhance the

quality of radar speech is an important question in radar speech acquisition. Many noise reduction

methods have been proposed for enhancing the quality of traditional microphone speech; these include

mainly the spectral subtraction, Wiener filtering and wavelet shrinkage methods. However, these

methods have several shortcomings which limit their further development. The spectral subtraction

method [15] can reduce global noise in speech, but introduces some musical noise. The Wiener filtering

method is a linear method which is easy to implement and design [16], but since speech signals are

always nonlinear, this results in severe speech distortion. The wavelet shrinkage method relies on the

threshold of the wavelet coefficient, and has been applied to denoise signals [17,18]. The application of

this method is limited because the basis functions of the algorithm are fixed, and it will not entirely fit

real signals. Therefore, it is important for the development of speech enhancement systems to find an

adaptive method aimed at improving intelligibility and reducing speech distortion.

Recently, empirical mode decomposition (EMD) has been proposed by Huang et al. for analyzing

signals from nonlinear and nonstationary processes [19]. Unlike other nonlinear methods, the basis

functions in this case are derived from the signal itself, so the major advantage of the EMD algorithm

is its adaptability. Several authors have studied EMD-based signal noise filtering and successfully

reduced the noise of signals [20–22]. Boudraa et al. introduced a new signal denoising approach based

on the EMD framework. The approach assumes that the noise of the signal is spread across the intrinsic

mode functions (IMFs), and it sets a threshold to remove the noise of the signal; the results show

that the EMD-soft method can effectively reduce the signal noise [23]. However, for radar speech,

the method should also ensure the intelligibility of the speech when reducing noise. If each IMF is

filtered, we find that the noise is suppressed, but the intelligibility of the radar speech is poor. In order

to find the best tradeoff between the intelligibility of radar speech and noise reduction, an algorithm

combining empirical mode decomposition (EMD) and mutual information entropy (MIE) is proposed

for enhancing the perceptibility and intelligibility of radar speech. Mutual information entropy (MIE)
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is a measure of independence between two variables, a theory proposed by Shannon [24]. In this paper,

MIE is used to determine the number of reconstructive components.

This paper demonstrates a potential radar sensor for acquiring high quality speech, and we find

that the quality of the acquired speech was enhanced by our proposed method. The radar sensor can

therefore be used for non-contact speech signal detection over long distances. This will provide a

promising alternative for various applications associated with speech detection.

2. The 94 GHz MMW Radar Sensor

2.1. Quadrature Doppler Radar Theory

The 94 GHz MMW radar system typically transmits a single-tone signal by the transmitting

antenna, and the signal can be described as below:

PTptq “ A cosp2π f0t ` θ1q (1)

where A is the oscillation amplitude, and f 0 is the oscillation frequency of the transmitting signal. θ1 is

the initial phase of the oscillator. When the signal is reflected by the human throat with a distance

change x(t), the received signal may be expressed as [4]:

PRptq “ KA cosp2π f0t ` θ2 ´
4πxptq

λ
q (2)

where λ0 is the carrier wavelength of the 94-GHz radar sensor, and x(t) is the time-varying displacement

by a target. K is the decay factor of the oscillation amplitude. θ2 is phase modulated by the nominal

distance. Then the received signal and local oscillator signal are mixed, and the mixer signal is filtered

by a low-pass filtering. Thus, the signal can be expressed as [25,26]:

PMptq “
KA2

2
cosp∆θ `

4πxptq

λ0
q ` Nptq (3)

where ∆θ is the constant phase shift dependent on the nominal distance to the target. N(t) is the phase

noise and ambient noise.

It is known that there is a null detection point problem for a single channel radar. This null

detection point occurs with a target distance every λ/4 from the radar. In order to avoid the null point

of the single-channel radar, a quadrature receiver with I/Q channel was designed [27]. The quadrature

receiver with local oscillator phases π/2 apart, insuring that there is always at least one output not in

the null point. The output of the radar quadrature mixer can be expressed as follows [25,27]:

WIptq “ AIcosp∆θ `
4πxptq

λ0
q ` NIptq (4)

and:

WQptq “ AQsinp
4πxptq

λ0
` ∆θq ` NQptq (5)

where, AI and AQ are the amplitudes of the quadrature channel I and channel Q, NI and NQ are

added sources of noise which include ambient noise and electrical-circuit noise for the I-branch and

Q-branch. Therefore, if AI = AQ, the associated phase ω(t) can be extracted by the following equation:

ωptq “ arctan

„

WQptq ´ NQptq

WIptq ´ NIptq



“
4πxptq

λ0
` ∆θ (6)
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2.2. The 94 GHz MMW Radar System

Figure 1 shows a schematic diagram of the 94 GHz MMW radar sensor system. The system is

composed of an oscillator, transmitter module and receiver module. The W-band double resonant

oscillator operates at a local frequency at 7.23 GHz and the power of the reference frequency is 20 mW.

The transmitting and receiving antennas of the radar sensor are both Cassegrain antennas, with a

diameter of 200 mm, a gain of 41.7 dBi, and a beam width of 1˝ at –3 dB levels. The output radio

frequency (RF) power of the transmitting antenna is 100 mW and the equivalent isotropic radiated

power (EIRP) is 61.7 dBm. To begin with, the Dielectric Resonator Oscillator (DRO) of 7.23 GHz emits

a continuous wave signal, and then the frequency of the signal is amplified and feeds into both the

transmitter module and receiver module. In the transmitter module, the local frequency is multiplied

13 times by the frequency multiplier, first it passes through a band-pass filter of 94 GHz, and then

generates a high-stability 94 GHz RF signal, with the beams radiated by the transmitting antenna.

In the receiver module, the noise figure is 7.6 dB. The total gain of RF-IF is 65 dB and the I/Q phase

balance is +/´1 deg. Firstly, the local frequency is multiplied 12 times by the frequency multiplier, and

passes through a band-pass filter of 86.7 GHz, and is then balance-mixed with received signal from

receiving antenna. Finally, a signal is amplified with a low-noise amplifier (LNA) and is then mixed

with two quadrature local signal for the in-phase and quadrature (I/Q) receiver chains. After I/Q

quadrature demodulation, the final signal is sampled by an A/D converter to be transferred to a

computer, and then the speech signal is recorded by the computer.

A superheterodyne receiver is employed to avoid the severe DC offsets and the associated 1/f

noise at the baseband. Moreover, the transmitting and receiving circuits employ two antennas, and

they are separated, which can increase the detection range and reduce interference. The distance

and the angle between the two antennas can be easily adjusted. Furthermore, the I/Q quadrature

demodulation technology can not only effectively avoid the null detection point problem, but also

enhance the signal-to-noise ratio (SNR) by 3 dB compared with the one-signal channel [28].

−

 

Figure 1. Schematic diagram of the 94 GHz millimeter wave radar sensor.
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2.3. Safety

To begin with, the safety issue regarding human exposure to radar electromagnetic fields should

be taken into account. Thus, the maximum allowed density which exposed to the human should

be computed. In this paper, the radiating power of the radar sensor is 100 mW, the antenna gain is

41.7 dBi. The maximum accepted density exposed S to the human can be computed as [29]:

S

ˆ

W

m2

˙

“
raiating power ˆ antenna gain

4πpdistanceq2
(7)

where the distance represents the minimum distance between the human subject and the radar.

Here, the distance is 1 m. Therefore, the maximum acceptable density S is about 0.3318 W/m2.

The maximum allowed density level accepted safe power density level of 10 W/m2 [30] for

human exposure at frequencies from 10 to 300 GHz. The maximum acceptable power density is much

lower than the maximum allowed density level accepted safe power density level. Therefore, the radar

sensor poses no risk to the human health.

3. Experimental Section

3.1. Subjects and the Experiment

Ten healthy volunteers (five males and five females) participated in the radar speech experiment.

Their ages varied from 20 to 35, and all of them were Chinese native speakers. In the experiment, one

of the volunteers sat in front of the radar sensor with his throat kept at the same height as the radar

sensor. The radar speech sensor was positioned ranging from 2 m to 20 m away from the subjects.

Although the speech signals can be detected at a distance of 20 m, to guarantee high quality speech

signals, a distance of 5 m was selected as a representative distance. The volunteers were asked to

speak one sentence of Mandarin Chinese “1-2-3-4-5-6”. All of the experimental procedures were in

accordance with the rules of the Declaration of Helsinki [31].

3.2. Evaluations

In order to test the performance of the proposed algorithm, both objective and subjective methods

were applied to assess the results. Signal-noise ratio (SNR), speech spectrogram and mean opinion score

(MOS) tests were conducted. In the experiments, three different kinds of background noise—white

noise, pink noise and babble noise—were added to the original radar speech. All the types of noise

were taken from the NOISEX-92 database, and the noisy radar speech with SNRin of –5, 0, 5 and 10 dB.

In addition, to further illustrate the effectiveness of the proposed algorithm, the results were compared

to the spectral subtraction and wavelet shrinkage algorithms.

The SNR is used as an objective measure to evaluate the proposed method’s performance, and

the SNRin of noisy speech is defined by:

SNRin “ 10log10

N
ř

n“1
s2pnq

N
ř

n“1
rxpnq ´ spnqs2

(8)

The SNRout of the enhanced speech is given by:

SNRout “ 10log10

N
ř

n“1
s2pnq

N
ř

n“1
rypnq ´ spnqs2

(9)
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where x(n) is the noisy speech, s(n) is the clean speech, y(n) is the enhanced speech, N indicates the

number of samples in speech, and n represents the sample index.

The speech spectrogram and MOS test are used as the subjective measures to evaluate the

proposed method’s performance. From the speech spectrogram, it can be observed that the signal

strength of different speech spectra over time, the abscissa of the speech spectrogram represents

time, and the ordinate of the speech spectrogram represents frequency. The color depth shows the

speech energy value; the deeper the color, the stronger the speech energy. For the MOS test, ten other

volunteers were instructed to evaluate the intelligibility of the speech based on the criteria of the

mean opinion score test, which is a five point scale (1: bad; 2: poor; 3: common; 4: good; 5: excellent).

All listeners were healthy with no reported history of hearing disease.

4. Methods

4.1. Empirical Mode Decomposition

As the core component of the Hilbert Huang transforms (HHT), empirical mode decomposition

(EMD) is an adaptive method for processing nonlinear and nonstationary signals [19]. Unlike previous

signal processing methods [17,18], the EMD method is intuitive, direct and adaptive. In the whole

process of decomposition, all the basis functions are derived from the signal itself. Therefore, the

method is very well-suited to processing nonlinear and nonstationary signals [32], such as ECG and

speech signal. Given a signal x(t), EMD can adaptively decompose it into a series of oscillatory

components called intrinsic mode functions (IMFs) through the “sifting” process, and each IMF is an

oscillatory signal which consists of a subset of frequency components from the original signal. Figure 2

shows the flow chart of the EMD algorithm.

The sifting process can be described as follows:

1. Locate all the extrema (maxima/minima) of x(t).

2. Interpolate the maxima and minima points by cubic splines to obtain an upper envelope eu(t)

and a lower envelope ed(t), respectively.

3. Compute the average m1(t) of the upper and lower envelopes, subtracted from the original signal

x(t) to obtain h1(t) = x(t) ´ m1(t).

4. Judging whether h1(t) is to satisfies the following two conditions of IMF:

(a) In the whole data item, the number of extrema should be equal to the number of zero

crossings, or one difference at the most.

(b) At any point, the mean of the maxima envelope and the minima envelope should be zero.

That is to say, signal is symmetric about the time axis.

If h1(t) satisfies the conditions to be an IMF, it is regarded as the first IMF1(t), IMF1(t) = h1(t).

5. If h1(t) does not satisfy the two conditions, the h1(t) is regarded as a new signal, steps 1–4 are

repeated on h1(t) to generate the following h2(t). If h2(t) does not satisfy the two conditions, there

is a standard deviation (SD) to terminate the sifting process. The stopping criterion is given by:

SDpiq “
N

ÿ

t“0

|hi´1ptq ´ hiptq|2

h2
i´1ptq

(10)

Usually, the value range of SD is between 0.2 and 0.3 [19]. If h2(t) satisfies the SD, then the IMF1(t)

= h2(t). If h2(t) does not meet the stopping criterion, and the h2(t) is regarded as a new signal,

steps 1–5 are repeated on h2(t) to generate the following hi(t), until the hi(t) satisfies the two

conditions of IMF or SD. Then, the IMF1(t) = hi(t).

6. Once the IMF1(t) is generated and subtracted the original signal to get a residual r1(t): r1(t) = x(t)

´ IMF1(t). The residual signal is treated as the original signal, and steps 1–5 are repeated to get
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the next residual signal. Therefore, the residual signal can be expressed as rn(t) = rn´1(t) ´ MFn(t).

At this point, the rn(t) is a monotonic sequence. After the sifting process, the original signal can be

decomposed into several IMF components IMF1(t), IMF2(t), . . . IMFn(t) and a residual sequence

rn(t). Therefore, the original signal can be expressed as:

xptq “
n

ÿ

i“1

IMFiptq ` rnptq (11)




 



Figure 2. The flow chart of empirical mode decomposition algorithm.

4.2. Mutual Information Entropy

Mutual information entropy is an information theory measurement for quantifying how much

information is shared between two or more random variables [33]. It can not only describe the linear

correlation between these variables, but also can describe the nonlinear correlation between variables.

The major advantage of MIE is that this method can indicate the correlation between two random

events without any special requirements for the distribution of the types of variables.
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In this paper, MIE is used as a cutoff point to determine the number of reconstructive components.

MIE is always non-negative and can measure the relationship between two variables. The MIE I(X;Y)

between variables X and Y is defined as [34,35]:

IpX; Yq “
ÿ ÿ

ppx, yqlog2p
ppx, yq

ppxqppyq
q (12)

Entropy mainly measures the uncertainty of random variables, and the MIE can also be

represented by the entropy as:

IpX; Yq “ HpXq ´ HpX |Y q (13)

where:

HpXq “ ´
ÿ

xPΩx

ppxqlog2pppxqq (14)

and:

Hp X| Yq “ ´
ÿ ÿ

xPΩx

ppx, yqlog2ppp x| yqq (15)

The more uncertain the event X is, the larger H(X) is. Basically, the stronger the relationship

between two variables is, the larger MIE they will have. Zero MIE means the two variables are

independent or have no relationship [36].

4.3. Selecting the Reconstruction Components

Figure 3a shows original radar speech contaminated by white noise. Figure 3b shows the

decomposition of the original radar speech signal by EMD. From top to bottom, the frequencies of

IMFs decreased gradually. In general, the noise of the signal is spread across the IMFs. From Figure 3b,

it is observed that the first three IMFs are mainly noise, and there are few useful original signals.

From the fourth to the ninth IMFs, it is observed that there are many useful original signals and the

IMFs are very similar to the original signal, but some noise components still remain. From the tenth

to the last IMFs, the frequencies of the IMFs are lower and the amplitudes are smaller, and there is

detailed information about the original signal. Thus, it is assumed that the original radar speech can be

decomposed into high frequency modes, middle frequency modes and low frequency modes. The high

frequency modes are mainly noise and interference signal, the middle frequency modes mainly include

original useful signals and the low frequency modes mainly are the detailed information from the

original signal. In short, the noise is mainly concentrated in the high frequency and middle frequency

modes, and there is much less in the low frequency modes.

Some authors have used a wavelet soft-threshold method to remove the noise of IMFs.

This method is often employed to process all the IMF components. However, with regard to radar

speech, if all the frequency modes are denoised, we find that while the noise is suppressed, the

intelligibility of the radar speech is poor. It is because the detailed information from the original signal

is removed. Thus, in order to achieve a good tradeoff between radar speech distortion and noise

reduction, the high and the middle frequency modes are denoised firstly, and then reconstruct speech

signal with the processed IMFs and the remaining low frequency modes.

The mutual information values are sequentially calculated in the adjacent IMF components energy

entropy. According to the information theory, the MIE of adjacent IMF components will be in order of

large to small, and then back to large:

#

If IpIMFi, IMFi`1q Ó and IpIMFi`1, IMFi`2q Ò

k “ f irstparg min
1ďiďn´1

rIpIMFi, IMFi`1qsq (16)

The point which the minimum MIE appears is selected as the cutoff point to distinguish the high

frequency and the middle frequency modes. In order to find the cutoff point of the middle frequency
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and the low frequency modes, the fixed threshold (FT) was defined as 10´1. If the maximum amplitude

of IMFs are lower than the FT, it can be assumed that these IMFs are low frequency modes.

 



σ















Figure 3. (a) The original radar speech signal contaminated by white noise; (b) the decomposition of

the original radar speech corrupted by white noise using EMD.

4.4. The Proposed Algorithm for Radar Speech Enhancement

In the speech enhancement based on the proposed algorithm, the threshold plays an important

role in removing noise from radar speech signal. The threshold was estimated by [17,23]:

Thri “ σi

b

2logpNq (17)

where N is the signal length, σ is the estimated noise level and is defined by [22]:

σ “
median t|IMF1ptq ´ median tIMF1ptqu|u

0.675
(18)

In this paper, the soft thresholding function is employed to denoise the high frequency and middle

frequency modes for speech enhancement [18,23]:

IMF1
i ptq “

#

sign tIMFiptqu tIMFiptq ´ Thriu |IMFiptq|ě Thri

0 |IMFiptq| ď Thri
(19)
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Afterwards the high frequency and middle frequency modes are processed by the soft

thresholding. Then, the enhanced speech y(t) is reconstructed with the processed signal IMF1
i ptq

and the remaining low frequency modes. The y(t) is given by:

yptq “
k

ÿ

i“1

IMF1
i ptq `

n
ÿ

k`1

IMFiptq (20)

where k is the number of the high frequency and middle frequency modes, and n is the number of

IMFs. In conclusion, the proposed algorithm for radar speech enhancement includes the following

steps:

1. Decompose the given signal x(t) into IMFs using the sifting process.

2. Compute the energy entropy of each IMFs using Equations (14) and (15).

3. Compute the MIE of the adjacent IMF components using Equation (13).

4. Determine the cutoff point of high frequency and middle frequency modes using Equation (16).

5. Determine the cutoff point of the middle frequency and low frequency modes using the FT of IMF.

6. Denoise the high frequency and middle frequency modes using Equations (17)–(19).

7. Reconstruct the speech with the processed signal and remaining low frequency modes using

Equation (20).

5. Results and Discussion

This section mainly presents the performance of the proposed algorithm. Speech time domain

waveforms and spectrograms are appropriate tools for analyzing speech quality. They can evaluate

the extent of noise reduction, residual noise and speech distortion by comparing the original radar

speech and the enhanced speech. Figure 4 shows the time-domain waveforms and the spectrograms of

the radar speech “1-2-3-4-5-6”.

Figure 4a,e show the waveform and spectrogram of the original radar speech, respectively. It is

observed that the original radar speech signals are contaminated by some noise. Figure 4b–d show

the waveforms of the radar speech enhanced by the spectral subtraction algorithm, wavelet shrinkage

algorithm and the proposed method, respectively. Figure 4f–h show the corresponding spectrograms

of the radar speech enhanced using the three algorithms. Figure 4b,f show that the spectral subtraction

algorithm is effective in reducing the combined noise of the radar speech, but the algorithm introduces

some new musical noise to the enhanced speech, so the intelligibility of the radar speech was not

improved. Figure 4c,g show that the wavelet shrinkage algorithm can also effectively reduce the

noise of the radar speech, but in this case the change in the color depth illustrates that the essential

information of the speech is removed. This results in severe radar speech distortion. Figure 4d,h

show that the proposed EMD and MIE methods not only reduce the low frequency noise in which the

combined noise are concentrated, but also eliminates the high frequency noise completely. In addition,

to a large extent, the essential signal information of the radar speech is still preserved. These results

suggest that the proposed algorithm outperforms the spectral subtraction and wavelet shrinkage

algorithms, and that the proposed algorithm is an effective way to improve the quality of radar speech.

To test the proposed algorithm, a subjective MOS test was used to evaluate the quality of the

enhanced radar speech. Ten listeners were selected to listen to the enhanced radar speech sentences

using the three algorithms. The results of the averaged MOS under three types of noise at a SNRin of

5 dB are presented in Table 1. It can be seen from the table that all the scores of the enhanced speech

processed by using the three algorithms are improved, especially the proposed method obtained the

highest score, between “3” and “4”, followed by the wavelet shrinkage method, with a score of around

“3”, meanwhile the spectral subtraction algorithm achieved the lowest score. The results suggest that

the proposed method presents the highest speech intelligibility and is more pleasant to the listeners.
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Figure 4. The time-domain waveforms and the spectrograms of the radar speech “1-2-3-4-5-6”. (a,e) are

the original radar speech; (b,f) are enhanced speech obtained by the spectral subtraction; (c,g) are

enhanced speech obtained by the wavelet shrinkage; (d,h) are enhanced speech obtained by the

proposed algorithm.

Table 1. Comparison of the results of averaged MOS with three types of noise at a SNR of 5 dB.

The numbers in the brackets represent standard deviation for these mean opinion scores.

Enhancement Algorithms White Pink Babble

Spectral subtraction 2.78 (0.30) 2.98 (0.38) 2.64 (0.35)
Wavelet shrinkage 3.25 (0.46) 3.37 (0.32) 3.21 (0.27)
Proposed method 3.59 (0.37) 3.71 (0.35) 3.56 (0.42)
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The listening tests also indicated the EMD and MIE method is the most suitable for enhancing the

radar speech. The method obtained a good tradeoff between the intelligibility and noise reduction.

This is because EMD is an adaptive method for processing nonlinear and nonstationary signals, and

it does not require presetting fixed basis functions, as all the basis functions are derived from the

signal itself. The wavelet shrinkage algorithm will cause severe speech distortion when reducing

noise. The spectral subtraction algorithm introduces some musical noise into the enhanced radar

speech, so the perceptibility and intelligibility of the radar speech are not improved greatly, and the

resulting speech sounds unpleasant to listeners. An objective measurement, the signal-noise ratio, was

employed to evaluate the performance of the proposed method. We added babble noise, white noise

and pink noise with SNRin of –5, 0, 5 and 10 dB to the original radar speech. The results of the SNRout

obtained for different noise types and algorithms are seen in Table 2. It can be seen that the three

methods lead to an increase of SNRout values at different SNRin levels, and the results demonstrate

the effectiveness of the three methods. The SNRout obtained by the proposed method is much higher

than those obtained by the spectral subtraction and the wavelet shrinkage algorithms. Even for low

SNRin values, it can be observed the effectiveness of the proposed method in removing the noise

components, and we can observe that the spectral subtraction algorithm achieved the worst speech

enhancement. Especially at the SNR of 10 dB level, the spectral subtraction led to a decrease of SNRout.

This is due to musical noise being introduced to the speech. The wavelet shrinkage and the proposed

algorithm performed better, and this is attributed to the time adaptive threshold strategy. However, the

superiority of the proposed method over wavelet shrinkage is due to the adaptive decomposition of

the speech signal provided by EMD, as it does not rely on the fixed basis functions.

Table 2. Comparison of the SNRs obtained by using three enhancement algorithms.

Enhancement Algorithms
White Pink Babble

´5 0 5 10 ´5 0 5 10 ´5 0 5 10

Spectral subtraction 4.1 7.1 8.9 9.7 3.7 6.8 7.4 9.2 2.3 3.7 7.1 8.7
Wavelet shrinkage 4.6 7.6 10.2 12.3 4.1 7.2 8.6 12.1 2.7 5.6 7.3 11.9
Proposed method 5.2 7.5 10.9 14.9 4.8 7.3 10.2 13.7 3.9 6.7 10.1 12.3

6. Conclusions

In this paper, a 94 GHz millimeter wave (MMW) radar sensor was employed to acquire speech.

A superheterodyne quadrature receiver was designed to reduce the severe DC offsets and the associated

1/f noise at the baseband. An EMD and MIE algorithm was designed to enhance radar speech signals,

and the performance of proposed algorithm was evaluated by both objective and subjective methods.

The results show that human speech can be effectively acquired by a 94 GHz MMW radar sensor when

the detection distance is 20 m. The results also show the advantages of the radar speech sensor in long

distance detection, preventing acoustic disturbance and ensuring high directivity. Therefore, this novel

radar sensor and signal processing method is expected to provide a promising alternative to current

methods for various applications associated with speech.
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