
936 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 49, NO. 9, SEPTEMBER 2002

A Novel Method for the Detection of Apnea and
Hypopnea Events in Respiration Signals

Péter Várady, Student Member, IEEE, Tamás Micsik, Sándor Benedek, and Zoltán Benyó*

Abstract—The monitoring of breathing dynamics is an es-
sential diagnostic tool in various clinical environments, such as
sleep diagnostics, intensive care and neonatal monitoring. This
paper introduces an innovative signal classification method that
is capable of on-line detection of the presence or absence of
normal breathing. Four different artificial neural networks are
presented for the recognition of three different patterns in the
respiration signals (normal breathing, hypopnea, and apnea).
Two networks process the normalized respiration signals directly,
while another two use sophisticatedly preprocessed signals. The
development of the networks was based on training sets from
the polysomnographic records of nine different patients. The
detection performance of the networks was tested and compared
by using up to 8000 untrained breathing patterns from 16 different
patients. The networks which classified the preprocessed respira-
tion signals produced an average detection performance of over
90%. In the light of the moderate computational power used, the
presented method is not only viable in clinical polysomnographs
and respiration monitors, but also in portable devices.

Index Terms—Classification, neural networks, polysomnog-
raphy, respiration monitoring, sleep apnea.

I. INTRODUCTION

A. Medical Background

D ISTURBANCE of the normal breathing process can cause
the development of severe metabolic, organic, central ner-

vous, and physical disorders. Respiration monitoring allows the
continuous measurement and analysis of breathing dynamics
and, thus, the detection of various disorders. There are a number
of breathing disorders, butsleep apnea syndrome(SAS) is prob-
ably the most common amongst them. Almost 5% of the total
human population suffers from it, and its occurrence increases
up to 30% in the population of males over 70 years old in the
industrially developed lands [1].

The Greek wordapnea means: without breathing. An episode
of apneaoccurs if someone’s breathing ceases for a certain
amount of time, by definition: if the magnitude of the respira-
tion movements are decreased for at least 10 s to less than 5%
of the physiological values [1], [2]. A mild version of apnea is
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hypopnea,where the movements are decreased below half the
normal values. The occurrence of sleep apnea episodes might be
physiological; they would usually be regarded as being patho-
logical only if more than 5 episodes of apnea occur per sleeping
hour [1], [3]. The origin of apnea can becentral (CA), caused
by the lack of central moto-neural respiration drive, or can be
obstructive(OA), caused by the occlusion of the upper airways.

The blood oxygen saturation falls during apnea, because no
gas exchange can take place. This reaches clinical significance
if the blood oxygen saturation decreases below 95% of the sat-
uration level before the episode of apnea and this lasts for more
than 10 s. The desaturation event activates the sympathetic ner-
vous systems. This results in increasing heart rate and blood
pressure, which can stress and possibly injure aspects of the car-
diovascular system. Disturbances in hormone levels caused by
the sympathetic activation can result in the long-term develop-
ment of metabolic disorders such as insulin resistance, diabetes
mellitus, and obesity [4]. In addition, a micro-arousal happens
during sleep that is related to the resolution of the apnea. Since
these micro-arousals happen at each episode of apnea, the phys-
iological structure of sleep becomes fragmented. All these ef-
fects may combine and lead to progressive and serious change,
even to incurable damage to numerous parts of the human orga-
nizm.

B. State-of-the-Art Apnea Diagnosis

Today the only reliable diagnostic method for the detection
of SAS is the polysomnographic(PSG) assay which is a
multichannel signal record measured during the whole sleeping
process. The standard diagnostic nocturnal PSG consists of the
following vital parameters [5]: electroencephalogram (EEG),
electro-oculogram (EOG), electromyogram (EMG), nasal
airflow (NAF), abdominal and/or thoracic movements, body
position, snore microphone, electrocardiogram (ECG), and
blood oxygen saturationSaO . A limited-channel version of
PSG is also frequently used for apnea screening, especially in
portable devices, including only the following signal channels:
NAF , abdominal and/or thoracic movements, SaO, and heart
rate [6].

The diagnosis of SAS has several standardized methods and
steps, including the detection of apnea and hypopnea, the de-
termination of their type (CA/OA), and the calculation of the
respiration disorder index (RDI), i.e., the number of apnea and
hypopnea events per sleeping hour [1]. According to current ac-
cepted clinical criteria the episodes of apnea and hypopnea are
detected in the respiration signals, while the arousals detected
with EEG and the desaturation episodes in the SaOsignal pro-
vide supportive evidence [5], [7].
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Computer support is indispensable for the proper evaluation
of the PSG records. There are numerous methods existing for
the off-line analysis of respiration signals stored in PSG records
[8]–[14]. Usually, the vendor of the PSG device provides its own
signal analyzing software package. The applied methods are
mostly based on time domain algorithms, measuring the ampli-
tude and frequency of breathing. Existing tools can detect apnea
with 80%–90% specificity and sensitivity. The precision in the
case of hypopnea detection is somewhat lower [15].

Current compact portable PSG devices can perform stand-
alone signal analysis and provide apnea indexes. These are very
useful instruments since they can be mounted on the patient,
who can take it home and sleep with it in a home environment.

This paper presents an innovative method for the on-line de-
tection of apnea and hypopnea events using only the respiration
signals. The developed method can be applied in the field of
PSG processing and respiration monitoring and is, hence, ca-
pable of:

• robust, on-line detection of apnea and hypopnea events
with high specificity and sensitivity;

• detection without using patient specific information;
• moderate computational time (implementation in portable

devices).

Note: the determination of apnea type, i.e., CA versus OA is not
addressed in this paper.

II. M ETHODS

A. Signal Records

We used the signal records of the MIT-BIH reference PSG
database that is freely available for research purposes from Phy-
sioNet [16]. The database consists of 18 PSG records having
lengths from 1 hour up to 7 hr (4 hr on average). For the pur-
pose of this study we selected 16 records which were all taken
from different patients.

The selected records contain different vital parameters:
all records contain a NAF signal measured by a thermistor,
a single-channel ECG and EEG signal and a blood pres-
sure signal. Nine records include an additional thoracic or
abdominal excursion signal (RIP) measured by inductance
plethysmography. Only five records include the SaOsignal
measured by pulse-oxymetry.

B. Design Considerations

The presented apnea detection system is based only on the
respiration signals (NAF and/or RIP) which carry the primary
evidence of apnea and hypopnea. The developed method is ca-
pable of determining three different patterns in the respiration
time series which correspond to the medical terminology:

• normal breathing (to be referred to as): a periodic func-
tion with slightly fluctuating magnitude and frequency;

• hypopnea (to be referred to as): abnormal breathing with
attenuating or decreased amplitude (respiration effort less
than half of normal breathing) for a duration of more than
10 s;

Fig. 1. Respiration patterns in a normalized NAF signal using a 16-s
classification time window.

• apnea (to be referred to as): lack of NAF (respiration
effort less than 5% of normal breathing) for a duration of
more than 10 s.

The on-line operation requires that only small sections of the
respiration time series can be used for detection. The respira-
tion patterns in the consecutive sections can be determined by
an appropriate classification time window. According to the def-
inition of apnea, the length of the window should be at least
10 s in order to detect apnea within a single time window. We
decided to use a longer window size, since respiration signals
may contain short apnea and hypopnea episodes (lasting only
several seconds) which are not pathological, but could disturb
classification stability. The selected window size was 16 s in
order to get an integer number of samples after the signal prepro-
cessing. Using a longer window would unnecessarily increase
the system’s complexity. It would also be difficult to detect pe-
riods of apnea shorter than the time window, and to distinguish
between consecutive episodes of apnea and hypopnea which are
usually very common in PSG records.

The selected time window is stepped along the respiration sig-
nals, resulting in a series of respiration pattern categories con-
sisting of , , and (see Fig. 1). It must be noted that the event
detection is delayed by a period equal to the window time, as
a consequence of windowing. The resolution of the detection is
determined by the window step size which equals the window
time if no window overlapping occurs. A finer resolution is pos-
sible if window overlapping is used. When the total lengths of
the apnea and hypopnea periods are calculated, the consecutive

and events must be joined, respectively.
Many authors have pointed out the nonlinearity of cardio-res-

piratory signals [17], and used different types of artificial neural
networks (ANNs) for their processing [18], [19]. We propose
four different ANNs for time-domain respiration pattern clas-
sification. Two networks directly process the normalized res-
piration signals, while the other two use some sophisticatedly
derived signals as network input. The entire signal flowchart in
the case of two networks is depicted in Fig. 2.

C. Signal Preprocessing

The productivity of an ANN depends heavily on the proper
preprocessing of its input signals. The selected PSG records
were sampled at 250 Hz with 12-bit resolution. Due to practical
considerations, the sampling rate was decreased to 25 Hz using
a simple moving average filter.

The baseline and the gain of anrespiration signal are spe-
cific to the applied sensor and they can change during long-term
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Fig. 2. Neural-network-based detection of apnea and hypopnea events using (a) the time series of the NAF signal or (b) the derived IRA and IRI signals. The
numbers in the arrows show the signal dimensions in the selected classification time window.

Fig. 3. NAF and the derived IRA and IRI signals in two excerpts of record SLP03 containing (a) apnea events and (b) normal breathing.

measurements because of sensor or patient movements. There-
fore, an adaptive signal normalization was used where the
baseline correction and the scale factor for theth processing
window were determined by the formulas

and

where the limit value is specific to the sensor.

The initial factors were and . The
samples of the normalized signal were obtained by adjusting
each sample of theoriginal signal within the th window

Finally, values remaining outside the range due to im-
proper factor adaptation were truncated.

An instantaneous respiration amplitude (IRA) and an instan-
taneous respiration interval (IRI) signal were derived from both
of the normalized respiration signals (NAF and RIP). Both the
IRA and IRI signals were normalized and spanned over the con-
tinuous time (see Fig. 3). In the calculation of IRI we assumed
that the respiration interval times lie in the range . The
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TABLE I
TOPOLOGIES OF THEPROPOSEDANNS

derived IRA and IRI signals were used as inputs in the case of
two ANNs (see N3 and N4 in Table I).

The calculation method of the IRA/IRI signals is shown in
Fig. 4, where denotes that the signal gets the
value over the closed interval . At first, the individual
breaths are located in thesignal, using the local minimum and
maximum signal amplitudes at positions and which
are relative to the current position . The time interval of
a breath corresponds to the difference between and
scaled with the sampling rate, while the amplitude of the
breath is given by the signal value difference in these positions.
If the interval is smaller than or the amplitude lies below

, the breath is discarded. This provides protection
against signal noise. If no breath occurs over a given threshold
time , IRA is set to zero around the current breath’s
location. This emphasizes the apnea events.

After obtaining the IRA and IRI signals, both the normalized
original and the derived signals were resampled at 1.5625 Hz
using an antialiasing filter. Therefore, the selected classification
time window of 16 s consisted of only 25 sample points (see
Fig. 2).

D. Classification and Network Implementation

We designed and implemented four different feed-forward
ANNs, with the topologies as summarized in Table I.

According to medical practice, the presence of apnea (both
OA and CA) is clearly evident by the analysis of the NAF signal.
Thus, the single-signal networks (N1 and N3) use only NAF or
its derived signals. The two other networks (N2 and N4) were
designed to use both the NAF and the RIP signals. During the
training of these networks, we used specific target values in
order to consider NAF as the main evidence of apnea and hy-
popnea.

The networks were implemented in Matlab, using the Neural
Network Toolbox [20]. For the purpose of network training we
chose nine records and selected 60 fragments from each of them,
each with the length of one time window (20 pieces of, ,
and fragments, each consisting of 25 sample points). The ex-
cerpts were taken both from the original and the derived IRA
and IRI signals. The total number of training patterns was 540
(60 patterns from each of the nine selected training records).

Fig. 4. Flowchart of the proposed IRA/IRI algorithm. For the meaning of the
parameters, see the text.

The training vectors of the networks were derived according to
the input signal structure outlined in Table I.

The network outputs were chosen as binary values, coding
the respiration patterns corresponding to the actual input
training pattern (, , , and —unknown). Both the hidden
and the output units had sigmoid-type activation functions
and each ANN was trained by the back-propagation algorithm
with gradient descent and momentum [20]. The targeted mean
squared error (MSE) was 10 which was reached in the case
of each ANN in less than 1000 epochs.

III. RESULTS

For the test and evaluation of the networks’ performance, con-
tinuous sections were selected from the 16 PSG records, each
having a total length of 500 time windows (about 133 min). The
networks N1 and N3 were tested with all 8000 patterns. In the
case of N2 and N4, 4500 test patterns were used, since only nine
records contained both the NAF and the RIP signal. The selected
test record sections contained no training patterns.

Fig. 5 shows three 5-min-long excerpts of record SLP16. The
classification regions are separated by vertical grid lines and the
results produced by N3 are displayed in the top area of each
classification region.
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Fig. 5. Respiration patterns detected by N3 in three sections of record SLP16 containing (a) normal breathing, (b) episodes of hypopnea, and (c) episodes of
apnea.

TABLE II
CLASSIFICATION PERFORMANCE

The evaluation of the classification’s performance requires
untrained reference data consisting of patterns belonging to
known classes. The applied PSG records originally included
some signal annotations, however, they were entered only at the
onset of an event (e.g. apnea, hypopnea, and arousal). The end
of the events and the ranges with normal breathing were not
annotated at all. Therefore, the performance of the networks
was evaluated with the help of a physician practicing in the
field of respiratory medicine. We constructed a program that
displayed 20 consecutive time windows separated by grid lines,
including the sleep stage and apnea annotations of the original
records. The physician entered the class of the windows (,
, or ) manually in each of the selected test sections as a

consensus of the original annotations and his experience.
The evaluation took place by comparing the physician’s re-

sults with the results produced by the ANNs. Table II contains
the final test results where

number of patterns in category;
number of patterns classified correctly to category

;
number of patterns and classified false to category.

The percentage specificity and sensitivity of the clas-
sification performance were defined as

and

The best results were produced by the highlighted N3 network.

IV. DISCUSSION ANDCONCLUSION

The presented neural network based apnea and hypopnea
detection methods were based only on the processing of respira-
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tion signals. At the start of the study we decided to incorporate
not only respiration signals but also cardiovascular signals
into the apnea detection system. Heart rate and blood pressure
exhibit a well-defined behavior during sleep apnea: a slight
decrease after the apnea’s onset and rapid increment before its
offset [2]. Unfortunately, these effects are superimposed on
other cardiovascular phenomena (e.g., fluctuations due to the
vascular baroreflex and autoregulation mechanisms, effects of
respiration sinus arrhythmia).

Another problem is that the cardiovascular changes caused
by apnea are delayed by many seconds and their exact charac-
teristic is strongly dependent on the actual haemodynamic state
of the patient. Although the SaOsignal carries the secondary
evidence of apnea (desaturation episodes) [7], these changes are
also typically delayed by ten or more seconds after the onset of
the apnea. All these issues make the incorporation of the car-
diovascular signals in an on-line apnea detection method rather
problematic.

The original respiration signals used directly as network input
produced poor classification results (see N1 and N2 in Table II).
The cause of this unsatisfactory performance may lie in the na-
ture of the respiration signals: even two consecutive breaths
from the same patient can have different waveforms, ampli-
tudes, and length. Additionally, the exact breathing waveform
depends on the applied sensors and differ between patients of
different gender and age. This results in a dispersed training set
which makes the patterns for ANN training unsuitable.

The preprocessing of the original respiration signals allowed
the production of signals which are more suitable for ANN
training. The IRA and IRI signals calculated by the proposed
algorithm can represent the whole breathing process in a
way which is adequately characteristic for the detection of
respiration dynamics patterns. The derived signals are robust
in the face of sensor and patient-specific details of the original
waveform. N3 used derived signals only from the NAF.

The use of an additional respiration signal (RIP) in the case of
N4 did not result in a radical improvement of the classification
performance. We explain this as a result of the strong correlation
between the original NAF and RIP signals in many places. The
use of the RIP signal is essential when the determination of the
apnea type is also required. In the case of CA, no respiration
movements occur, while during OA there is a respiration effort
which tries to overcome the airway obstruction. As apnea typing
was not within the scope of this study, the primary focus was
concentrated on the analysis of the NAF signal.

We must underline that robustness is a key issue in the via-
bility of an apnea detection system. We considered two pivotal
points: robustness against noise and classification without any
patient-specific information. Noise is handled in two ways
in our system: The adaptive signal normalization eliminates
baseline errors (e.g. wandering, sensor saturation, and signal
losses). The resampling with low-pass antialiasing filtering and
the minimum and maximum detection method of the applied
IRA/IRI algorithm filters out unwanted signal spikes. The issue
of avoiding the use of patient-specific information is handled
by the proper derivation of the ANN input signals.

The overall classification performance achieved by N3 is a
promising result. The proposed method for the preprocessing of

the respiration signals together with N3 can serve as a basis of an
on-line respiration monitoring system. The moderate computa-
tional power required by the method allows for implementation
in portable devices.

Although the presented system is suitable for robust classifi-
cation of apnea and hypopnea events, a clinical validation study
based on a larger signal database is still needed.

Our future research will focus on the incorporation of the
heart rate and especially the SaOsignal which would result in
a more robust detection system.
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