
 Open access Proceedings Article DOI:10.1109/HST.2012.6224313

A novel method for watermarking sequential circuits — Source link

Matthew Lewandowski, Richard Meana, Matthew Morrison, Srinivas Katkoori

Institutions: University of South Florida

Published on: 03 Jun 2012 - Hardware-Oriented Security and Trust

Topics: Watermark, Graph (abstract data type), Finite-state machine, Greedy algorithm and Sequential logic

Related papers:

 A Robust FSM Watermarking Scheme for IP Protection of Sequential Circuit Design

 Watermarking-based copyright protection of sequential functions

 Techniques for the creation of digital watermarks in sequential circuit designs

 A Survey on IP Watermarking Techniques

 Robust techniques for watermarking sequential circuit designs

Share this paper:

View more about this paper here: https://typeset.io/papers/a-novel-method-for-watermarking-sequential-circuits-
4n83qighzu

https://typeset.io/
https://www.doi.org/10.1109/HST.2012.6224313
https://typeset.io/papers/a-novel-method-for-watermarking-sequential-circuits-4n83qighzu
https://typeset.io/authors/matthew-lewandowski-l7ghclxv0t
https://typeset.io/authors/richard-meana-53ovw63y65
https://typeset.io/authors/matthew-morrison-505l3wa3bc
https://typeset.io/authors/srinivas-katkoori-2g4us8n9ev
https://typeset.io/institutions/university-of-south-florida-2caup2dy
https://typeset.io/conferences/hardware-oriented-security-and-trust-1v3vw4ov
https://typeset.io/topics/watermark-w6hf3eha
https://typeset.io/topics/graph-abstract-data-type-1ax3631y
https://typeset.io/topics/finite-state-machine-9vl6oeyj
https://typeset.io/topics/greedy-algorithm-1hlr1l7y
https://typeset.io/topics/sequential-logic-13vzqv0i
https://typeset.io/papers/a-robust-fsm-watermarking-scheme-for-ip-protection-of-57qr55itjf
https://typeset.io/papers/watermarking-based-copyright-protection-of-sequential-59okdpbeb7
https://typeset.io/papers/techniques-for-the-creation-of-digital-watermarks-in-2nvrsqc5bd
https://typeset.io/papers/a-survey-on-ip-watermarking-techniques-42r9nfwubt
https://typeset.io/papers/robust-techniques-for-watermarking-sequential-circuit-2ogqjg82ev
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-novel-method-for-watermarking-sequential-circuits-4n83qighzu
https://twitter.com/intent/tweet?text=A%20novel%20method%20for%20watermarking%20sequential%20circuits&url=https://typeset.io/papers/a-novel-method-for-watermarking-sequential-circuits-4n83qighzu
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-novel-method-for-watermarking-sequential-circuits-4n83qighzu
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-novel-method-for-watermarking-sequential-circuits-4n83qighzu
https://typeset.io/papers/a-novel-method-for-watermarking-sequential-circuits-4n83qighzu

University of South Florida

Scholar Commons

Graduate Theses and Dissertations Graduate School

January 2013

A Novel Method For Watermarking Sequential
Circuits
Matthew Lewandowski
University of South Florida, mlewando@mail.usf.edu

Follow this and additional works at: http://scholarcommons.usf.edu/etd

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate

Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.

Scholar Commons Citation
Lewandowski, Matthew, "A Novel Method For Watermarking Sequential Circuits" (2013). Graduate Theses and Dissertations.

http://scholarcommons.usf.edu/etd/4528

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F4528&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F4528&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F4528&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F4528&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F4528&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F4528&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.usf.edu%2Fetd%2F4528&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu

A Novel Method For Watermarking Sequential Circuits

by

Matthew Lewandowski

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Computer Engineering
Department of Computer Science and Engineering

College of Engineering
University of South Florida

Major Professor: Srinivas Katkoori, Ph.D.
Swaroop Ghosh, Ph.D.

Jay Ligatti, Ph.D.

Date of Approval:
March 18, 2013

Keywords: Automata, Encoding, Intellectual Property, Finite State Machine
Watermarking, Circuit Watermarking

Copyright ➞ 2013, Matthew Lewandowski

Dedication

I would like to dedicate this work to my beloved family, parents, and siblings. To

my mother and father, Kristy and Michael Lewandowski, I cannot thank you enough for

your continued support, both emotionally and physically, throughout my many years of

academia, and the many more to come.

I also thank my siblings, Eric, Keven, and Craig for being there for me during my

times of need, and for teaching me that regardless of my handicap I can overcome any

hurdle when driven by a limitless passion. I am grateful for every lesson you have taught

me, every opportunity you have provided me with, and the many years of time you have

invested into dealing with me. I can only hope you are as proud of me as I am of you, and

I could not have accomplished the things I have today without your continued love and

support.

In addition, I dedicate this to Amanda Lewandowski. Without your continued

support both as a member of my family and as my physical therapist, I would not have

been able to regain the functionality in my hand which allowed me to complete this work.

For this time, patience, and care you put forth during my rehabilitative process, I so deeply

thank you.

Lastly, I dedicate this to my beloved grandfather and grandmother, Dean and Doris

Moon, who have continuously supported me through every life venture and taught me that

with the right mind set and attitude, I have the potential to walk among the stars.

Acknowledgments

First and foremost, I give acknowledgement with the utmost appreciation and grat-

itude to Dr. Srinivas Katkoori for providing me with the wonderful opportunity of working

on this project. I am grateful to him for letting me be his teaching assistant in the areas of

study I so passionately love, which granted me the resources to further my education and

opportunities here at the university. I also extend my appreciations and gratitude to Dr.

Swaroop Ghosh and Jay Ligatti for serving on my supervisory committee.

I would like to thank Christopher Bell and Matthew Morrison for providing me the

opportunity to work alongside them on various hardware security and quantum computing

projects. I extend thanks to Richard Meana for his sub-graph matching contributions

and involvement with this work during our senior project with Dr. Katkoori. To my

lab neighbor, Joseph Botto, I thank you for the grand idea of file hashing and continued

technical support.

To my loving friends who were there for me over my academic travels and times

of need: Christopher Bell, TracyWolf, Donald Ray, Matthew Morrison, Richard Meana,

Nicole Gonzalez, Chris Bringes, Thomas Peterson, Mary Ivory, Cybil Scott, Virginia Mau-

rer, Caitlin Snell, James Adkins, David ODonnell, Roya Kashani, Robert O’Brien, Christo-

pher Denton, Andrew Thomas, Nicholas Carter, Kristen Kluberdanz, Andrew Price, and

Benjamin Geiger.

Lastly, I want to acknowledge the wonderful faculty — and staff, current and former,

of the University of South Florida Department of Computer Science and Engineering. You

have made my academic pursuits of higher knowledge a joyful and pain free experience, and

I thank you for that. Students here are truly lucky to have faculty and staff — that are as

caring as each and every member proves.

Table of Contents

List of Tables iii

List of Figures v

Abstract vii

1 Introduction and Background 1
1.1 Thesis Organization 2

2 Modeling Sequential Systems 4
2.1 Finite State Machine Model 4

2.1.1 Asynchronous and Synchronous FSMs 4
2.2 Representations of FSMs 5

2.2.1 State Transition Graphs 5
2.2.2 State Transition Tables 6
2.2.3 Kiss2 6

2.3 FSM Models and Classifications 7
2.3.1 Moore Model 8
2.3.2 Mealy Model 8
2.3.3 Completely Specified Finite State Machine (CSFSM) 9
2.3.4 Incompletely Specified Finite State Machine (ISCFSM) 10

2.4 State Encoding for Sequential Circuit Optimization 11
2.5 Chapter Summary 12

3 Related Work 13
3.1 Physical Protection 13

3.1.1 Integrated Circuit Logos 13
3.1.2 Constraint Based Watermarking 15

3.2 Hardware Description Language Level Protection 17
3.3 Circuit and Model Level Protection 18
3.4 Sequential Circuit Watermarking Techniques 19

3.4.1 State Based Watermarking 19
3.4.2 Edge Based Watermarking 20
3.4.3 Input Output Based Watermarking 23

3.5 Motivation for This Work 25
3.6 Chapter Summary 29

4 State Encoding Based Watermarking 30
4.1 Note to Reader 30
4.2 Watermarking via State Encoding 31
4.3 Edge Creation Cost 31

i

4.4 Watermarking System: Overview 32
4.5 Watermark Construction Phase 33

4.5.1 Bitmap Signature Decomposition 33
4.5.2 File Signature Decomposition 35
4.5.3 Hashing Signature Decomposition 37
4.5.4 HSD Watermark Construction: Hash-2-K2 38

4.6 Watermark Embedding Phase 40
4.6.1 Embedding: Complexity 40
4.6.2 Brute Force Embedding Algorithm 41
4.6.3 Greedy Embedding Algorithm 45

4.7 Model Generation and Verification Phase 53
4.8 Watermark Extraction Sequence Generation 58
4.9 On the Tampering Hardness of State Encoding Based Watermarking 59
4.10 Chapter Summary 62

5 Experimental Results 65
5.1 Note to Reader 65
5.2 Xilinx Synthesis Options 65
5.3 Benchmark Suite 67
5.4 Overhead Calculations 67

5.4.1 User Encoding 68
5.4.2 Gray Encoding 69
5.4.3 Johnson Encoding 70
5.4.4 One-hot Encoding 71
5.4.5 Sequential Encoding 73
5.4.6 Speed1 Encoding 74

5.5 Discussion of Results 75
5.5.1 Synthesis Discrepancies 75
5.5.2 Synthesis Results 75

6 Future Work 78
6.1 Sequential Circuit Logic Synthesis: k3 78
6.2 Phantom Edges 79

6.2.1 Cost of a Phantom Edge 80
6.3 Watermark Extraction 80
6.4 Metric Stacking 81

7 Conclusions 82

References 83

Appendix A Glossary 91

Appendix B Permission of Use 97

About The Author End Page

ii

List of Tables

Table 1 Sample STT representation 6

Table 2 Metrics affected by state encoding 11

Table 3 Summary of protection techniques 26

Table 4 Summary of sequential protection techniques 28

Table 5 Xilinx synthesis results for dummy edges in Fig. 14 FSM 32

Table 6 Sample file under FSD 35

Table 7 Brute force mapping combinations 44

Table 8 Brute force cost mapping combinations 44

Table 9 Original and watermark FSM node degree values 50

Table 10 Example step-by-step greedy algorithm 52

Table 11 Embedding results, watermark (Fig. 19) has 15 states and 32 edges 52

Table 12 Time for HPC preimage attacks 61

Table 13 Time for HPC collision attacks 62

Table 14 Summary of proposed watermark construction phase methods 62

Table 15 Summary of proposed watermark embedding phase methods 63

Table 16 Summary of proposed model generation and verification methods 64

Table 17 Summary of security run-time analysis 64

Table 18 Xilinx XST optimization options 65

Table 19 Top ten largest IWLS’93 Kiss2 files 67

Table 20 Encoding schemes used 68

Table 21 Xilinx synthesis results for User & User encoded FSMs 69

Table 22 2-bit Gray encoding & Hamming distance 70

Table 23 Xilinx synthesis results for Gray & User encoded FSMs 70

Table 24 Johnson encoding 71

iii

Table 25 Xilinx synthesis results for Johnson & User encoded FSMs 71

Table 26 One-hot encoding 72

Table 27 Xilinx synthesis results for One-hot & User encoded FSMs 72

Table 28 Sequential encoding 73

Table 29 Xilinx synthesis results for Sequential & User encoded FSMs 73

Table 30 Speed1 encoding 74

Table 31 Xilinx synthesis results for Speed1 & User encoded FSMs 74

Table 32 Xilinx synthesis discrepancies for User & Sequential encoded FSMs 76

Table 33 Summary of Xilinx synthesis results 76

Table 34 Summary of performance 77

Table 35 k3 overview 78

Table 36 Xilinx synthesis results of phantom edge FSMs 80

iv

List of Figures

Figure 1 STG representation of an example FSM 6

Figure 2 Kiss2 representation of an example FSM 7

Figure 3 Moore model FSM example 8

Figure 4 Mealy model FSM example 9

Figure 5 An example of a completely specified FSM (CSFSM) 9

Figure 6 An example of an incompletely specified FSM (ICSFSM) 10

Figure 7 Sample IC logo implemented in AMI C5N that passed DRC check 15

Figure 8 Example of hierarchical watermarking 16

Figure 9 Lion FSM watermarked by HARPOON method [1] 18

Figure 10 Lion FSM utilizing state based watermarking 20

Figure 11 FSM utilizing edge based watermarking 22

Figure 12 Sample I/O signature 23

Figure 13 FSM utilizing passive I/O based watermarking 25

Figure 14 Watermarking edge creation method an illustrative watermarked FSM 31

Figure 15 High level overview of watermarking system flow 33

Figure 16 Methods of watermark construction 33

Figure 17 Sample bitmap signature 34

Figure 18 Example of FSD 36

Figure 19 Sample HSD signature prior to hashing 37

Figure 20 RIPEMD-160 Pajek netlist / STG using Gephi 38

Figure 21 Hash-2-Kiss2 watermark construction algorithm 39

Figure 22 Proposed brute force watermark embedding algorithm 42

Figure 23 Brute force cost calculation algorithm 43

Figure 24 Original and watermark FSMs for brute force embedding example 43

v

Figure 25 Original, watermark, and watermarked FSMs for brute force embedding 45

Figure 26 Greedy heuristic 46

Figure 27 Algorithm for FindMaxDegreeNode function 48

Figure 28 Algorithm for FindMinCostNode function 49

Figure 29 Algorithm for Neighbors function 50

Figure 30 Algorithm for SortDescend function 50

Figure 31 Original and watermark FSMs for greedy embedding example 51

Figure 32 Original, watermark, and watermarked FSMs for greedy embedding 51

Figure 33 Flow diagram for the custom tool “k2vhdl” 54

Figure 34 Algorithm for VertexCover 54

Figure 35 Sample VHDL signal generation for Lion.kiss2 55

Figure 36 Sample VHDL state controller for Lion.kiss2 56

Figure 37 Sample VHDL state machine for Lion.kiss2 57

Figure 38 Xilinx simulation state encoding trace 59

Figure 39 Sample VHDL synthesis options generation for Lion.kiss2 66

Figure 40 FSM with phantom edges 79

vi

Abstract

We present an Intellectual Property (IP) protection technique for sequential circuits

driven by embedding a decomposed signature into a Finite State Machine (FSM) through

the manipulation of the arbitrary state encoding of the unprotected FSM. This technique

is composed of three steps: (a) transforming the signature into a watermark graph, (b) em-

bedding watermark graphs into the original FSM’s State Transition Graph (STG) and (c)

generating models for verification and extraction. In the watermark construction process

watermark graphs are generated from signatures. The proposed methods for watermark

construction are: (1) Bitmap Signature Decomposition (BSD), (2) File Signature Decom-

position (FSD), and (3) Hashing Signature Decomposition (HSD). The HSD method is

shown to be advantageous for all signatures while providing sparse watermark FSMs with

complexity O(n2). The embedding process is related to the sub-graph matching problem.

Due to the computational complexity of the matching problem, attempts to reverse engineer

or remove the constructed watermark from the protected FSM, with only finite resources

and time, are shown to be infeasible. The proposed embedding solutions are: (1) Brute

Force and (2) Greedy Heuristic. The greedy heuristic has a computational complexity of

O(n log n), where n is the number of states in the watermark graph. The greedy heuristic

showed improvements for three of the six encoding schemes used in experimental results.

Model generation and verification utilizes design automation techniques for generating mul-

tiple representations of the original, watermark, and watermarked FSMs. Analysis of the

security provided by this method shows that a variety of attacks on the watermark and sys-

tem including: (1) data-mining hidden functionality, (2) preimage, (3) secondary preimage,

and (4) collision, can be shown to be computationally infeasible. Experimental results for

the ten largest IWLS 93 benchmarks that the proposed watermarking technique is a secure,

yet flexible, technique for protecting sequential circuit based IP cores.

vii

1 Introduction and Background

Integrated Circuit (IC) technologies have continued to rapidly evolve in size and

complexity since the beginning of their creation. Because of this constant evolution, it has

now become a common practice for companies designing Application Specific Integrated

Circuits (ASICs) to outsource part of the design process and purchase third party Intellec-

tual Property (IP) cores. These IP cores can be anything from communication to graphics

processing units, consisting of combinational or sequential sub-components. By employing

this semi-custom design approach, design houses can reduce costs that would typically be

incurred from a full-custom design approach. It also enables designers to reduce time-to-

market expectations. Under this business model, the design house will have to pay royalties

on every unit sold to the IP owner. It typically only has rights to the IP core for a limited

amount of time or design fabrication runs.

One might ponder what is to happen to the IP core that the design house physically

has once the licensing period has ended. This is where the need for further IP protection

comes into the scenario. There is currently no effective way to stop a company from further

utilizing the IP core outside of the contracted licensing period and refrain from rewarding

appropriate royalties for the further use of the design. Thus, the IP owner needs another

line of protection in the ability to thwart these potentially fraudulent actions. One common

way for IP owners to achieve this extra line of protection is through the utilization of digital

watermarking techniques. This enables an IP owner to embed a digital watermark for

the purpose of ownership verification in the event of litigation. The embedded watermark

signature can be any format of digital media ranging from images, audio, text files, and

even short length videos.

The process of watermarking electronic art consisted of the IP owners embedding

a signature, or watermark, directly into the image in a location that was only known by

the owner. This would later enable the owner a method of proving that the work, or

1

design, was his or hers if the ownership of the work ever came into question. This was

known to be the first “Electronic Water Mark” [2]. Due to technological advancements

of networks and electronic libraries [3] since this concept first appeared, this technique

would be expanded to encapsulate typography [4]. This would allow publishers, or others

sharing typographical material, a method for proving that a given document was their

IP. The concept of watermarking was extended to typography through seemingly invisible

typographical manipulations, which included the shifting of a single word a mere millimeter

to the original document.

Although digital watermarking of IP by included corporate logos in physical lay-

outs is a common today — it should be noted that they can be easily removed by etching

process. As technology complexities would continue to advance over time so too would

the spectrum of watermarking techniques and applications for which it could be used. It

was applied to ICs first by Charbon [5] through a hierarchical method, and later extended

to Field Programmable Gate Array (FPGA) technologies [6] as well as physical design

methodologies [7]. Electronic libraries report the earliest extension of this concept to se-

quential systems was by Olivera [8] where through the implementation of additional Finite

Automata and the employment of a secret input sequence to traverse into the watermark,

one could successfully embed a digital watermark into a sequential circuit.

This work presents a novel watermarking technique that can be used with sequential

systems, and their realized circuitry, by exploiting an inherent characteristic of these ma-

chines that was previously unexplored. Given an original model of a sequential system, and

the watermark signature, we determine the appropriate matching set which will minimize

overhead and properly embed the watermark signature into the original sequential system.

1.1 Thesis Organization

In Chapter 2, we present an in depth background on sequential systems. This

includes various types of FSM models and classifications, and the different methods for

representing these models. In Chapter 3 we will review related work pertaining to phys-

ical, Hardware Description Language (HDL), circuit & model level protection schemes.

Additionally, we provide detailed reviews and illustrations of the different techniques for

2

watermarking sequential circuits and discuss the motivation which led to this proposed

method.

In Chapter 4, we present the proposed method of watermarking. This chapter will

cover in depth the technical details of the proposed method. This includes the proposed

BSD, FSD, and HSD signature construction methods in sections 4.5.1 through 4.5.3. The

complexities of the embedding phase and the proposed Brute Force and Greedy solutions are

presented in sections 4.6.1 through 4.6.3. We present the custom “Hash-2-Kiss2,” “k2vhdl,”

and “k2net” tools for automation of model generation and present techniques for verifica-

tion and watermark extraction. Additionally we present an analysis of the security of the

proposed watermarking technique, showing that attacks of reverse engineering and claiming

false ownership are computationally infeasible. In Chapter 5 we describe the experimen-

tal setup, report the experimental results, and discuss advantages and disadvantages. In

Section 5.3 we cover the benchmark suite used and the pre-synthesis experimental water-

marking results. In Section 5.2 we cover the synthesis options applied to for the original

and watermarked FSM sets. In Section 5.4 we report the synthesis results and overhead

calculations for area and frequency for six different encoding schemes. In Chapters 6 and 7

we will outline directions for future work and draw conclusions, respectively.

3

2 Modeling Sequential Systems

When designing computer hardware based systems the internal subsystems can fall

into one of two categories namely, combinational and sequential. Sequential systems differ

from combination systems, in that, for a sequential system the history of input sequence may

affect the output of the system, while in a combinational system the outputs are only based

on the current input combination [9]. In this section, we focus on providing a detailed

description and background on using Finite Automata to model sequential systems and

components. More specifically this section will focus on the Finite State Machine (FSM)

model and representations.

2.1 Finite State Machine Model

As previously mentioned sequential systems are those containing memory storage

elements which can cause the system to be affected by the previous inputs to the sequential

system. An FSM model is an abstract model which can formally describe the behavior of

a sequential system, and is a 6-tuple [10], FSM < S, I, O, F, H, S0 >. Each parameter

of an FSM can be defined as follows: (S) a set of states {S0, · · · , Sk}; (I) a set inputs

{I0, · · · , Iy}; (O) a set of outputs {O0, · · · , Ox}; (F) is a set of transitions that represent

current states and inputs mapped to next states; (H) is a set of either inputs and states

mapped to outputs S×I → O or states mapped to outputs S → O; and (S0) is the starting

state of the system. FSM models allow greater flexibility in design and enables design

automation tools to synthesize a minimal implementation.

2.1.1 Asynchronous and Synchronous FSMs

The Input/Output (I/O) behavior of an FSM can fall into two classifications namely,

asynchronous or synchronous. Asynchronous systems are those which operate independently

of clocking signals. This means that the manner in which the system will update the output

4

is based on its arrival to the next state on a transition. The way these systems handle input

combinations is also constrained to a mutually exclusive manner, such that, if the current

input is “00” the next valid input is “01” and the input “11” is not allowed. This is due to

the fact that these systems again operate independently of a clock signal, thus, by allowing

more than one input bit to change at once gives rise to the potential for race conditions. This

simply means that when exactly two inputs change at once, the signal which propagates

quickest will cause change first, i.e., in a input change from “00” to “11” possible state

transitions are also those associated with “10” and “01.”

Synchronous systems operate with a reference to a clock signal. This means that

any and all system transitions, and output changes, are performed with respect to some

property of a clock signal. This property can be either a rising or falling edge of the signal.

Synchronous machines allow for greater design flexibility because of the ability for non

mutually exclusive bit changes to occur. Thus it allows outputs and system transitions to

occur on rising or falling clock edges, removing the potential for race conditions.

2.2 Representations of FSMs

There are several ways for representing FSM models for example, graphically, or in

tabular format. The remainder of this section will describe popular representation methods

for FSMs.

2.2.1 State Transition Graphs

The graphical method of representation, the State Transition Graph (STG), utilizes

fundamental graph theory units for representing the formal FSM model. A graph consists

of vertices (nodes) and edges (links). FSM states and transitions are mapped to nodes and

edges respectively. An example of an FSM model represented in STG format is shown in

Fig. 1. In this specific example, transitions are mapped to an associated input value, while

states are mapped with an associated output value.

5

01 / - 10 / 1 01 / 1

11 / 0 00 / 1 11 / 1

st0 st1 st2 st3

0- / 1 1- / 1

0- / 111 / 0
-0 / 0

Figure 1: STG representation of an example FSM

2.2.2 State Transition Tables

This method of representing an FSM, the State Transition Table (STT), is an equiv-

alent non-graphical, method in tabular format. There are several equivalent methods for

representing an FSM through the use of the STT format. However, while the name itself

seems to imply only a table of transitions, commonly [9, 11] it is a collection of the in-

put, current state, next state, and output, or the combination of the transition and output

functions defined by the mathematical model. There are several ways for which an STT

can be expressed. To better illustrate this method of FSM representation Table 1 shows a

commonly used STT format.

Table 1: Sample STT representation

Current State (CS) Next State (NS) Output (Z)

(x = 0) (x = 1) (x = 0) (x = 1)

st0 st1 st0 0 0

st1 st0 st2 0 0

st2 st3 st1 1 0

st3 st3 st2 1 0

2.2.3 Kiss2

Lastly, with the development of synthesis and optimization tools for sequential sys-

tems, the Kiss2 format is an FSM representation and part of the Berkeley Logic Interchange

Format (BLIF) circuit description format [12]. The Kiss2 format is an adaptation of both

the mathematical model of an FSM and its associated STT representation. It utilizes a

human readible syntax to equivalently model an FSM as a 2-tuple, FSM < D, X >,

6

where (D) is a set of machine descriptors and (X) is the list of information for each row

in the corresponding STT representation. Specifically, (D) is the set of following descrip-

tors {.i, .o, .p, .s} input length, output length, number of transitions, number of states,

respectively. Additionally an optional descriptor .r, or the reset state descriptor, can also

be contained in the set (D). The parameter (X) is the set of transitions where each of the

transitions follow the format {input, current state, next state, output}. Figure 2 shows the

Kiss2 representation of the STG shown in Fig. 1.

1 #----------------------------

2 # Lion.kiss2

3 #----------------------------

4 # Machine Descriptors

5 #----------------------------

6 .i 2 # Number of Input Bits

7 .o 1 # Number of Output Bits

8 .p 11 # Number of Transitions

9 .s 4 # Number of States

10 #----------------------------

11 # Input CState NState Output

12 #----------------------------

13 -0 st0 st0 0

14 11 st0 st0 0

15 01 st0 st1 -

16 0- st1 st1 1

17 11 st1 st0 0

18 10 st1 st2 1

19 1- st2 st2 1

20 00 st2 st1 1

21 01 st2 st3 1

22 0- st3 st3 1

23 11 st3 st2 1

24 #----------------------------

Figure 2: Kiss2 representation of an example FSM

2.3 FSM Models and Classifications

Having explored the methods for representing FSMs, in the following sections we

explore the two main types of FSM models and the classification groups for which they can

7

fall into. First we define two types of models, the Moore and Mealy models. We then define

the Completely Specified Finite State Machine (CSFSM) and Incompletely Specified Finite

State Machine (ICSFSM).

2.3.1 Moore Model

The Moore Model was one of the first methods for graphically modeling sequential

systems, and was first proposed in [13]. This model has a specific constraint that pertains

to how the output of the system is to be updated. This constraint specifies that the system

output is updated after the system has arrived at the next, or destination, state during

operation after the edge input condition has been satisfied. An example Moore FSM is

shown in Fig. 3. The node labeling format for this modeling is “state encoding value /

system output value.”

st0 / 0 st1 / 0 st2 / 0 st3 / 1

0 1 0

0 11

0

Figure 3: Moore model FSM example

2.3.2 Mealy Model

The second method of modeling sequential systems is the Mealy model [14], which

operates similar to the Moore Model with the exception of its output modeling constraint.

This constraint is that the output is updated on a given edge, or transition, rather than

upon the arrival of the systems next state that is dictated by this edge. This constraint

allows for systems to drastically reduce the number of states needed to describe system

behavior and allows for greater versatility of the system design. An example Mealy FSM is

shown in Fig. 4. The edge labeling format for this modeling style is “system input value /

system output value.”

8

st0 st1 st2 st3

00 / 11 10 / 01 00 / 11

00 / 10 11 / 0010 / 10

00 / 01

11 / 00

01 / 00

Figure 4: Mealy model FSM example

2.3.3 Completely Specified Finite State Machine (CSFSM)

A CSFSM is a Mealy or Moore model which operates under the specific condition

that every single possible behavior of the system is explicitly specified by the FSM. The

use of the don’t care logic conditions in these state machines is prohibited. Figure 5, shows

an example of such a machine. It can be seen that all possible behaviors of the system

are explicitly stated in the STG. Additionally, because of the conditions in which CSFSMs

operate under, they are known to be strictly Deterministic Finite Automata (DFA). This

means that there can never be a situation in which one cannot determine the behavior that

an FSM will experience, or the resulting location of a transition.

st0 / 0 st1 / 0 st2 / 0 st3 / 1

0 1 0

0 11

01

Figure 5: An example of a completely specified FSM (CSFSM)

9

2.3.4 Incompletely Specified Finite State Machine (ISCFSM)

The ICSFSM is a classification given to a Mealy or Moore model which operates

under the specific condition where every single possible behavior of a system is not explic-

itly specified, or the system employs the use of a multi-value logic system that utilizes the

don’t care condition. The use of don’t care conditions alters the deterministic aspect of the

system to potentially non-deterministic behavior. This increases the difficulty of optimiza-

tion techniques on these machines. This is because a don’t care condition, for a single bit,

could be either a logical zero or one, and by specifying any don’t care condition to either of

these values the results produced by optimization techniques may be significantly different.

We note that the use of don’t care conditions can also apply to the use of states for edge

conditions, such that, if a given edge is triggered and the next state is a don’t care, then

the machine has now become non-deterministic. A machine is labeled as non-deterministic

when under any condition there is no way to determine what behavior the machine will ex-

hibit. In such a case, the machines operating under these conditions now becomes classified

as Non-Deterministic Finite Automata (NDFA). The FSM shown in Fig. 6 illustrates an

ICSFSM. This FSM also exemplifies non-deterministic behavior at “st3.”

st0 st1 st2 st3

00 / 11 1- / 01 00 / 1-

0- / 10 -- / --1- / --

-- / --

11 / 00

-- / --

-- / --

Figure 6: An example of an incompletely specified FSM (ICSFSM)

10

2.4 State Encoding for Sequential Circuit Optimization

Once an FSM model has been constructed, each of the states in (S) from the formal

FSM model assigned a state encoding. State encoding can be viewed as a unique identifier

for the state and can either be assigned arbitrarily [15] or intentionally [16–46]. State encod-

ing values can present themselves in either text string or binary bit sets, i.e., either “st0,”

or “00.” Intentionally assigning state encoding values for circuit optimization gives rise to

what is commonly known as the State Assignment Problem. This problem can be described

as the problem of assigning state codes such that the design metrics of the system, such as,

delay, complexity and area, power, and other metrics, can be optimized. Table 2 shows the

range of design metrics that can be optimized by the use of suitable state encoding values.

Table 2: Metrics affected by state encoding

Related Work: [16–46]

Design Metric

Area & Complexity Reduction

Built-In Self-Test (BIST)

Delay & Switching Time Reduction

Hazard & Glitch Elimination

Low-Power & Low-Leakage

Watermarking & Security

From Table 2, it can be seen that an extensive amount of work in the field of

FSM state assignment has been performed. However, while the specific techniques for

determining sets of state encoding values that can be assigned for optimization of various

design metrics, the underlying concept behind each technique is still the same. It is stated

in [11] that a good approach to handling the state assignment problem is by developing a

set of guidelines which will reduce the overall complexity of the next state equations and

yield a reduced state table. Through the use of the information provided in the STT and

the use of Karnaugh Maps [47], or other techniques, the optimal next state equations can

be produced for an FSM. This is the general idea behind most methods of state assignment

techniques.

11

2.5 Chapter Summary

There are several ways for representing FSM models which can be achieved through

the use of the STG, STT, or Kiss2 method. Each method unique in its own way, the STG

is the only visual method for representing this data. However, the non-visual methods are

amenable for easy processing by design automation tools. Recapping the types of FSMs

there exists both the asynchronous and synchronous versions of these model. In this work

all FSM models considered are synchronous machines. Additionally, there are the two main

models for FSMs the Moore and Mealy models, where the main difference lies in how the

machine updates the output. In the case of Moore model, outputs are updated upon the

arrival at the next state. On the other hand, in Mealy model, they are updated during

the transition to the next state. Further the FSMs can be either be completely specified or

incompletely specified.

12

3 Related Work

A significant amount of research has been done in the field of IP Protection and

watermarking techniques for ICs at all levels and platforms [1, 5, 7, 8, 45, 46, 48–63]. This

includes Soft IP, where designs are easily altered, and Hard IP, where designs are difficult

to alter, and range from FPGA devices to IC Layouts. In Sections 3.1 — 3.3 we illustrate

various methods for IP Protection over several different levels of the design hierarchy. In

Section 3.4, we discuss in detail the existing methods of watermarking for sequential systems.

The remainder of this chapter, will cover the main areas of IP protection currently available

to IP core owners. We will provide an overview and analysis of select methods for the

purpose of better illustrating the available protection methods.

3.1 Physical Protection

We define physical protection to be the addition of intangible elements, or function-

ality, to pre-fabrication circuit level designs for the purpose of ownership verification. These

intangible elements can range from IC company logos to specific place-and-route mapping

for standard cells. The remainder of this section will cover several methods of physical

layout protection while identifying the pitfalls as well as the advantages of employing them

for IP protection. This form of protection is typically applied to Hard IP, or an IP which

is in a format difficult to alter.

3.1.1 Integrated Circuit Logos

Physical IC layout designers have a long standing tradition of placing logos in the

fabrication ready design [64]. However, the evolution of technology, and the intricacy of

chip logos has made this a difficult process for fabrication facilities. This is due to two

facts, first, the host fabrication facility will ensure that the design intended to be fabricated

13

passes all Design Rule Checking (DRC) requirements, and second, that each fabrication

ready design follows a set of vendor-independent design rules.

For example, ON-Semiconductor’s (AMI) C5 Complementary Metal Oxide Semi-

conductor (CMOS) fabrication process family contains the N & F processes [65]. Each

of these processes has a set of DRC rules which depend specifically on the feature size

and the intended application of the technology, which may be Scalable CMOS (SC), Sub-

Mircon (SUBM), or Deep Sub-Micron (DEEP SUBM). In addition to this criteria, each sub-

process has an associated, parenthetical, labeling, i.e., AMI C5N (SCN3ME) and AMI C5F

(SCN3M) processes. These labelings denote a set of descriptors for the technologies phys-

ical design process, such that, they are Scalable CMOS (SC) developed entirely in an N

substrate (N), while providing use of three metal layers (3M), and even potentially allowing

the use of a secondary poly-silicon layer, electrode (E), for poly-capacitors. From these

notations it can be seen how quickly this system escalates out of hand even though this is

a process family of two. This system becomes even more daunting for fabrication facilities

that are required to perform in-depth verification of designs when DRC rules are violated.

Due to the potential design and fabrication issues that these logos can cause, more

and more fabrication facilities may not provide a readily available design fabrication layer

for indication of on-chip logos for the use of logos. Thus, designs must go through the

aforementioned rigorous verification process, in most cases, upon the design failing DRC due

to these logos. This is exemplified by fabrication facilities, such as the MOSIS Fabrication

Facility, that still heavily discourages the use of logos due to the potential delays they can

impose on entire fabrication runs [66]. However, even with heavy discouragement, it is

possible to construct an IC Logo that passes DRC rules. Shown in Fig. 7 is a logo that

was implemented using the ON-Scemiconductor (AMI) C5N technology, and even though

the logo is complex in design it successfully passed DRC checking. More intricate examples

can be found at [67], which can be seen as potential fabrication nightmares.

Unfortunately due to the recent increase of companies outsourcing IC fabrication,

rather than costly in-house fabrication, smaller non-spacious IC logos have the risk of be-

coming endangered. This is due to the process of how outsourcing and design fabrication

function. Under almost all conditions, the design house will provide the outsourced fab-

14

Figure 7: Sample IC logo implemented in AMI C5N that passed DRC check

rication company with a lithographic mask of the final layout. This hand off can lead to

potential theft, or counterfeiting, of the IP. This potential misuse can be in the terms of

the removal of the company logo, altering, or duplicating, the mask prior to fabrication.

However, even if companies continue to use logos, as their viable method for protection,

while continuing to outsource fabrication of their ICs, it will most likely come at a cost.

This cost is due to the lack of non-invasive methods that allow companies to verify that

their logo, still exists after an outsourced fabrication run. This means companies must use

high cost destructive methods on post-fabrication ICs to verify that the integrity of the

mask and confirm that neither the mask nor design were compromised.

3.1.2 Constraint Based Watermarking

Charbon [5] proposed the hierarchical method of watermarking through the imple-

mentation of topographical constraints through multiple signatures. This process involves

recreating the topological signatures through the floorplan and routing phase of the origi-

nal design topology. What this simply means is that the signatures are used in generating

the specific layout, and placement, of instantiated components based on these topological

signatures used as the watermark. This process relies on using a large number of partial

15

signatures rather than one signature mapped to the entire topology. This is because the

use of a single signature allows for the destruction of the watermark from the addition or

deletion of a single component that is to be used in the design layout. The process of sig-

nature identification in this technique is shown to be a complicated process. This is due to

the use of many partial signatures may have been scrambled throughout the design during

synthesis, and to identify the watermark a technique known as genome searching must be

used. This searching technique is where a best match the set of partial signatures used in

the watermark must be found in the layout. However, while this technique is non-invasive

for Soft IP it is also very costly. Additionally post-fabrication watermark verification and

extraction will require costly and invasive methods.

(a) Standard layout (b) Watermarked layout

Figure 8: Example of hierarchical watermarking

Figure 8 is an illustrative example of this scheme. The general idea is that the

topographical watermark is created from layout constraints based on the signature which

creates a specific layout from placement and routing that has a low probability of being

recreated. In Fig. 8(b) is the watermarked layout, using an arbitrary sequence the single

16

Static Random-Access Memory (SRAM) cell is adjusted a mere lambda, or grid unit. How-

ever, the probability of recreating this layout is extremely low due to design optimization

techniques and algorithms which would create a design that employs a square aspect ratio

with minimalistic amounts unused space. Shown in Fig. 8(a) is a similar layout with the

exception that it has been designed with no signature constraints that would otherwise

adjust the single SRAM cell.

3.2 Hardware Description Language Level Protection

The continued development, and advancement, of technologies eventually gave rise

to FPGA devices and advanced HDL. The HDL-based netlist could be easily used, and

re-used, for a plethora of design systems, and in a medium that was easily transferable and

editable, because of this, these formats of IP are known to be Soft IP. Due the development of

this new format, IP theft and terms of use violations for contractual agreements of licensed

Soft IP cores could occur more easily. As a result and previously mentioned, different

methods of protection have been proposed to prevent such practices. However, most of

these methods at this level of abstraction are similar in nature, which is by implementing

a significant amount of additional functionality. In [1], the authors present a method for

obfuscating system level designs which directly relates to the addition of at least one, if

not two, extra FSMs in addition to the original FSM being protected. Using a previous

example, Fig. 1, we implement this method of protection into the original FSM, which is

shown in Fig. 9. For the sake of clarity, the conditions on the edges shown for traversal of

the authentication and obfuscation FSM are not labeled.

As illustrated in Fig. 9, it can be seen that there are two additional FSMs needed

for the added layer of protection. While the overhead may be small in some cases, the

Authentication and Obfuscation FSMs that were added nearly doubled the number of states

to be implemented. While this method may be useful in a setting where the desired IP core

for protection has been hardened, i.e., a post synthesis FPGA bit file, the alteration of a

single transition can render the protection method useless. Alternatively, this protection

scheme can be compromised through methods such as that presented in [68], and by using

this system, one can decompile bitstream files to low-level netlists for the purpose of easily

17

01 / - 10 / 1 01 / 1

11 / 0 00 / 1 11 / 1

st0 st1 st2 st3

0- / 1 1- / 1

0- / 111 / 0
-0 / 0

stA0 stA2stO2 stO1 stO0

Authentication FSM (b)

Obfuscation FSM (a)

Original (Lion) FSM (c)

stA4stA5

stA3

Figure 9: Lion FSM watermarked by HARPOON method [1]

removing and altering such security schemes. However, even though the system presented in

[68] may, or may not, be publicly available, other organizations such as [69] are beginning to

hold competitive challenges to reverse engineer the bitstream format. It should be known,

however, that for significantly complex systems, which utilize the greater portion of design

space, will further help prevent the removal of this protection scheme. For relating this type

of tampering of the protection scheme we use the idiom of “finding a needle in a hay stack,”

such that, in a significantly complex system the odds of finding a single transition in the

design are significantly low, which further helps to prevent the removal of this protection

scheme.

3.3 Circuit and Model Level Protection

Circuit level protection is employed through the utilization of the inherent char-

acteristics of a system and the behavior it experiences under given operating conditions.

This is commonly referred to as “Glitch Logic,” presented in [54], and is geared towards

exploiting inherent delay characteristics of logic circuits that would otherwise cause a glitch

in the system. Implementation of this method utilizes designs, and practices, that would

18

otherwise be considered poor due to the likelihood that a logic implementation will pro-

duce faulty, or glitched, output. Utilizing this system allows for signature logic behavior

to be produced by an otherwise hidden channel that can be activated under a given set of

operating conditions. These operating conditions are constrained by the system but can

typically be activated by simply increasing the clock speed to a set frequency outside the

operating frequency range of the design. The potential drawback of this system is that a

design house is burdened with a daunting task of intentionally implementing, what is seen

as poor design, logical hazards into the system while ensuring proper functionality under

normal operating conditions.

Model Level protection is similar to the practices detailed by the HARPOON [1]

system previously discussed in Section 3.2, and illustrated by Fig. 9. The overall goal

of this level of protection is to provide a method that can be utilized at the highest level

of abstraction, while offering protection to the IP core through all steps of any further

implementation or fabrication processes. With respect to sequential circuits, the current

methods of IP protection are detailed in Section 3.4, and are the state, edge, and I/O based

schemes of protection.

3.4 Sequential Circuit Watermarking Techniques

Several watermarking techniques for sequential systems are currently available to

IP core owners. These available watermarking techniques include state based, edge based,

and I/O based protection schemes. The remainder of this section will discuss and analyze

each of these watermarking techniques.

3.4.1 State Based Watermarking

This method of watermarking sequential systems pertains to the direct addition of

states into a sequential system. Besides watermarking states, additional states, which act as

a key-based system, are inserted to provide security between the watermark and the original

FSM. We apply this technique to the FSM shown in Fig. 1 and show the resulting FSM in

Fig. 10. We note that the labeling of edges in the watermark key FSM are intentionally

left out for the sake of clarity, such that, the key values for entering the watermark are

19

arbitrary for the purpose of the illustration of intended functionality. The watermarking

method illustrated by Fig. 10 was first introduced by Oliveira in [8]. While this method

offers an additional layer of protection, the incurred overhead of this method can escalate

rather quickly based on the complexity of the original system with respect to the key and

watermark FSMs. However, this can prove to be useful in a significantly large system.

On the other hand, when this is applied at the beginning of the modeling level before any

form of implementation, synthesis, or fabrication, this method has the potential to be easily

defeated by tampering in a design house setting.

01 / - 10 / 1 01 / 1

11 / 0 00 / 1 11 / 1

st0 st1 st2 st3

0- / 1 1- / 1

0- / 111 / 0
-0 / 0

Original (Lion) FSM

01 / - 10 / 0 01 / 0

11 / 1 00 / 0 11 / 0

st0 st1 st2 st3

0- / 1 1- / 1

0- / 111 / 0
-0 / 1

Watermark FSM

st0st1st2

Watermark Key FSM

Figure 10: Lion FSM utilizing state based watermarking

3.4.2 Edge Based Watermarking

Another technique for the watermarking of sequential systems is through the use of

an edge based watermarking scheme. This scheme, presented by Abdel-Hamid et al. [50],

breaks the desired signature into a bit length that matches the output length of the FSM

intended for watermarking. These output blocks are randomly paired with an input com-

20

bination that whose length matches the length of input bits used in the system. Through

the process of random start state selection, this technique evaluates its ability to add a sig-

nature edge to the selected state. This evaluation is the process of checking the randomly

generated input for the signature block against those specified by the selected state. If the

signature edge is not being utilized, this edge is simply added. Similarly, if the signature

and non-signature edge outputs match, the system utilizes the existing non-signature edge

as the signature edge. This is done to reduce the number of edges created by utilizing

inherent system functionality to reproduce the desired signature. However, if the required

signature edge is being utilized as a non-signature edge and these two edges do not contain

equivalent outputs, this method will add an input bit to the system. Upon adding the input

bit, the original non-signature transitions are extended, at the Least Significant Bit (LSB)

in a Big Endian manner, with zero and the signature edges are extended with one. However,

we note that while this work explains the manner in which this technique should operate,

it has been published various times [50–52] and each time utilizes the same example, while

each illustration used reports conflicting data in the watermarking process. This inconsis-

tency pertains to original edge I/O combinations changing throughout the example, i.e.,

I/O values of single non-signature edge were observed changing as many as three times in

a four step example.

Figure 11 illustrates an example of this protection method extended to the Lion

FSM, from Fig. 1. We note that this example has been constructed from the interpretation

of the watermark insertion algorithm presented in [51]. The desired signature “110” was

blocked appropriately to match the length of the system output and paired with random

input combinations that match the length of the initial system. In this example specifi-

cally the signature was blocked and mapped to “[00/1],[10/1],[01/0],” where the format is

“[input/signature].” For the purpose of this example, we start the technique at the starting

state and simply work our way to the end. We note that the thicker lines shown in Fig. 11

denote signature edges that were mapped within the system, in addition, edges that were

dashed indicate that they were added by the system. Shown by the watermarked FSM in

Fig. 11, it can be seen that because the watermark edge input was not being utilized, this

signature edge was simply added and the watermarking state now becomes “st1.” At “st1”

21

01 / - 10 / 1 01 / 1

11 / 0 00 / 1 11 / 1

st0 st1 st2 st3

00 / 1 10 / 1

00 / 111 / 0

Original FSM

Watermarked FSM

Watermark Sequence (Blocked) [00/1][10/1][01/0]

01 / -

10 / 1

010 / 1

11 / 0 00 / 1 11 / 1

st0 st1 st2 st3

00 / 1 10 / 1

00 / 111 / 0

00 / 1 011 / 0

Figure 11: FSM utilizing edge based watermarking

the next edge to be added in the sequence is already utilized, in addition, the signature

edge output matches that of the utilized edge and no edges need to be added, allowing us to

move to “st2.” At “st2” the signature edge and utilized edge output values do not match,

and from our interpretation, this is where the LSB of the input string is extended. The ex-

tensions that are applied to the signature edge and utilized edge are logical one and logical

zero, respectively. While unclear, this method is a low cost alternative to the previous state

based watermarking technique from Section 3.4.1.

However, because this watermarking technique directly outputs part of the signature

and alters the output of the system this allows for signature edges and utilized edges to be

differentiated between. With this in mind, once all of the signature edges have been data

mined and extracted this method is rendered useless. This is because now that an attacker

has partial blocks of the signature, regardless of what the signature may be, there is no

way to prove ownership when both parties claiming ownership know all of the additional

functionality. This is based on the fact that once all functionality has been discovered

then any desired signature can be created from the known functionality hidden or not.

However, if all edges can be completely embedded, i.e., a 100% match and no created edges,

22

then no two sequences are indistinguishable when used as signatures. This holds because

there is no secret functionality that would otherwise allow for two signatures to become

distinguishable from each other, thus this system requires at least one edge to be added.

From this however, additional functionality can be data-mined and easily removed, thus,

destroying the signature. Even if signature edges are utilized by non-signature edges along

with created edges, if the additionally created edges are removed then there is no way to

distinguish from signature and system functionality.

3.4.3 Input Output Based Watermarking

The last watermarking technique is that presented in [48], which utilizes I/O se-

quences native to the original FSM. This technique operates in a manner that utilizes

augmenting paths of state transitions to construct a resulting I/O signature, such that, a

given input sequence creates an I/O signature from the outputs of the edges traversed. How-

ever, this technique achieves this through a passive and active watermarking scheme, each

of which are applied to ICSFSMs and CSFSMs respectively. Signatures for this method are

based on binary sequences that are generated from the outputs of specific unbound input

combinations. A sample signature FSM was constructed using the signature “110,” and is

shown in Fig. 12.

wm0 wm1 wm2 wm3

-- / 1 -- / 1 -- / 0

Figure 12: Sample I/O signature

Utilizing such a signature the system algorithmically employs both a passive and

active watermarking method. The passive watermarking algorithm is based on utilization of

unbound input specifications within the original ICSFSM. These unbound edges are used in

an augmenting path algorithm which constructs the input specifications which are bound to

the I/O signature. In the event that the original FSM is a CSFSM and the passive scheme

23

cannot be utilized, this requires the algorithm to utilize the active algorithm. The active

algorithm causes the unbound I/O combinations to become expanded by extending the

length of the number of bits used, in this signature example, Fig. 12, the input bit length

would need to be extended in the even the initial system was a CSFSM. By extending the

number of input bits available the CSFSM, the system is transformed into an ICSFSM.

From this bit length extension a number of unbound input combinations are generated, the

specific number of total unbound input combinations in the system that will be generated

is given by equation 1.

∆Edgesunbound(System) =

states∑

0

2(n+1) − 2n =

states∑

0

2n (1)

∆Edgesunbound(State) = 2(n+1) − 2n = 2n (2)

From equation (1), it can be seen that by the addition of a single input bit the system now

has a number of unbound edges equal to the number of all edges in the original system.

Likewise, equation (2) shows that each state has gained an equivalent amount of unbound

edges due to the input bit length increase. Doing this will ultimately result in the algorithm

creating an augmenting path for the otherwise original CSFSM which it can now map input

sequences to the I/O signature. The extraction method for this technique is to simply

apply the known sequence that was generated for the I/O mapping and observe the output

by applying the sequence, thus making verification of the watermark a simplistic process.

Ultimately, this technique is achieved through the addition of edges to generate the I/O

watermark. However, it is set apart from previous edge based watermarking techniques

due to the embedding technique, which does not contain any previously utilized edges.

Figure 13 illustrates the passive method of this watermarking technique.

However, due to the fact that this system employs only edge creation it actually

increases the difficulty for proving ownership. This is because once the additional edges

have been data-mined, the exact signature can be determined. This is because the system

implements a simple path, or simple cycle, when constructing the desired signature. While

finding a simple cycle in a graph can be mapped to the Hamiltonian path/cycle problem,

24

01 / - 10 / 1 01 / 1

11 / 0 00 / 1 11 / 1

st0 st1 st2 st3

00 / 1 10 / 1

00 / 111 / 0

Original FSM

Watermarked FSM

Watermark I/O Sequence [00/1][11/1][01/0]

01 / - 10 / 1 010 / 1

11 / 0 00 / 1 11 / 1

st0 st1 st2 st3

00 / 1 10 / 1

00 / 111 / 0

00 / 1 011 / 011 / 1

wm0 wm1 wm2 wm3

-- / 1 -- / 1 -- / 0Signature

Figure 13: FSM utilizing passive I/O based watermarking

which is known to be Non-deterministic Polynomial Complete (NP-Complete), because the

augmenting path utilizes a single state once then the watermark is easily data-mined by

finding the set of all edges not contained within the original system. From this, all possible

sequences of a given length can be computed starting from any state. This allows desired

signatures, different from the original watermark signature, to potentially be constructed.

Due to this fact, two separate parties can now claim ownership with no way to distinguish

between the “Knight Owner” and the “Knave Owner,” or simply no way to distinguish

between who is falsely claiming ownership and the real owner.

3.5 Motivation for This Work

We begin by recapping the protection methods covered in this chapter and discuss

the advantages and disadvantages of each scheme (see Table 3). It can be seen that the

majority of the protection based schemes either fall into the two categories, difficult and/or

25

costly, and easily compromised and/or removable. This is simply because the more finely

tuned the security scheme, the more costly it becomes. Additionally, it can be seen that

most of the solutions that have ease of use are also easily compromised.

Table 3: Summary of protection techniques

Scheme IP Type Advantages Disadvantages

IC Logos Hard IP Ease of Use Stall Fabrication Runs

Easily Removable

Costly Verification

Constraint Based Hard IP Ease of Use Many Partial Signatures

Improbable Replication Easily Compromised

Difficult to Extract

Costly Verification

HDL Based Soft IP Obfuscation Potentially High Overhead

Ease of Use Easily Compromised

Bitstream Decompilation

Circuit Based Soft IP Side Channel Difficult to Design

Ease of Extraction

Low Overhead

Model Based Soft IP Ease of Use Easily Removable

Ease of Extraction Easily Compromised

Physical protection can be easily removed even when designed for Hard IPs, and

owners must resort to expensive methods to verify that the post-fabrication design had

not been altered. Similarly, constraint based protection has the advantage of being able to

show that replication, by design automation tools, of the watermarked layout is statistically

improbable and unique to the owner. Conversely, the simple addition or deletion of an

instance will destroy the signature, post-fabrication extraction and verification require costly

invasive techniques.

HDL based protection has added benefits such as the ability to obfuscate netlists,

making it less intelligible to those licensing the core. However, once compiled into a bit-

stream format, transforming the Soft IP to a Hard IP, available tools allow for the Hard IPs

transformation from bitstream back into a low-level, intelligible, Soft IP format. This allows

for HDL designs implementing protection schemes such as Obfuscation and Authentication

26

FSMs to become easily compromised and or removed. Additionally, the use of Obfuscation

and Authentication FSMs schemes have the potential to generate significant increases in

area, based on when the complexity of the protection FSMs is greater when compared to

the original system.

Circuit based protection, has extremely desirable benefits, namely, side-channel

properties and ease of extraction. Additionally, this type of protection scheme only incurs

overhead from the design practices required to implement the glitch logic. In that, altering

the design implementation practices to produce otherwise “meta-stable,” frequency range

based functionality, designs can either increase or decrease the overhead. However, while

this type of protection offers many ideal benefits, the main drawback is burdening designers

with the daunting task of designing such “meta-stable” circuitry.

Model Based protection, when simply added rather than embedded, is extremely

vulnerable to malicious parties during hand-offs in the design process, even in an in-house

design setting. This allows for IP cores to become easily compromised by removing the

protection schemes added. However, Model Based protection is among the easiest to im-

plement, similar to IC logos, protection schemes can simply be placed before or after the

original system had been designed. Alternatively, by embedding, or superimposing, water-

marks at the beginning of the design process of models the protection can be increased.

Embedding watermarks, helps deter malicious users due to the complexities involved with

differentiating between system critical components and the superimposed watermark func-

tionality.

Summarizing the watermarking techniques for sequential systems, we examine the

schemes in order as provided in Table 4. Sequential circuit protection schemes can be

generalized as one of two methods, the addition of states and the addition of edges and

input bits. However, the watermark in all cases is directly output by these schemes. This

allows the watermark to be data-mined and easily compromised in a malicious setting.

Such that, once an attacker has data-mined additional functionality implemented for the

watermark, then the secret sequence required to reproduce the IP owners signature is no

longer significant. This is due to the fact that desired signatures can be constructed by

utilizing the data-mined information.

27

Table 4: Summary of sequential protection techniques

Scheme IP Type Advantages Disadvantages

State Based Soft IP Ease of Use Potentially High Overhead

Ease of Extraction Easily Removable

Easily Compromised

Edge Based Soft IP Ease of Use Easily Removable

Lower Overhead Easily Compromised

Ease of Extraction

I/O Based Soft IP Ease of Use Easily Removable

Lower Overhead Easily Compromised

Ease of Extraction

State Based watermarking is the simplest technique among the techniques shown

in Table 4, and due to the manner in which the technique is accomplished the overhead is

likely to significantly increase overall. However, overhead assumptions can be made based

on the complexity of the additional FSMs compared to the complexity of the original system.

Additionally, data-mining the edges involved in the watermark allow this technique to be

compromised. Likewise, because of the addition of separate FSMs, during the design process

the watermark can easily be removed.

Edge Based watermarking, like State Based, can easily become compromised through

the data-mining of additional system functionality. Similarly, this is due to the fact that

the watermark is partially output by the added edges, once a malicious party data-mines

the additional edges then ownership potentially becomes indistinguishable. This is because

utilizing the outputs from the addition edges desired signatures can be constructed.

Lastly, I/O Based watermarking proves insecure as well. This is from the fact that

the watermark is solely based on the creation of additional edges for the desired sequence.

Once again, by data-mining the hidden functionality, the watermark can be obtained, com-

promised, and potentially removed. In this system the watermark can be obtained due to

the fact that the watermark signature is based on creating a simple path or cycle and em-

bedding the edges. Thus, the exact watermark signature can be found by simply traversing

the set of additional edges and observing the output.

28

3.6 Chapter Summary

Summarizing this section there are four types of IP protection commonly used: (1)

physical protection, (2) HDL protection, (3) circuit protection, and (4) model protection.

Physical protection is the use of watermark signatures and/or logos in Hard IP or fabricated

ICs. HDL protection is performed at the Soft IP level, through the alteration of hardware

netlists for obfuscation, watermarking, or authentication purposes. Circuit level protection

is at the gate level, or logic level, of design. It is performed through the use of “Glitch Logic”

where the circuity is designed using practices and constraints other than normal to create

circuits which will produce a desired glitch output at a given operating frequency. Model

level protection is the addition of structures at the highest design level and is illustrated by

the techniques presented in this work.

Additionally, there are three types of sequential watermarking techniques commonly

used: (1) state based, (2) I/O based, and (3) edge based. State based watermarking is the

process of implementing additional states in an FSM which can be used as keys and/or

entirely separate functional FSMs. Edge based watermarked is the process of embedding a

signature through the use overlapping and created edges which can be used to output part

of the signature. I/O based watermarking is the process of embedding a watermark FSM

through binding unbound input sequences of an original FSM state to a watermark FSM

state. This generates transitions based on unused input sequences to output part of the

signature.

29

4 State Encoding Based Watermarking

In this chapter, we present in detail the proposed watermarking technique that uti-

lizes the FMS’s state encoding for the purpose of permanently embedding a digital signature

into the FSM. This chapter is organized as follows. In Section 4.2 we present the concept

of watermarking via state encoding. In Section 4.4 we present an overview of the proposed

watermarking system. Section 4.3 presents experimental costs associated with proposed

edge creating techniques. In Section 4.5 we briefly detail the process of the watermark

construction phase and present the three proposed methods. In Section 4.5.1 we present

in detail the proposed method for generating watermark FSMs from bitmap signatures,

Section 4.5.2 presents in detail the proposed method for generating watermark FSMs from

file signatures, and in Section 4.5.3 we present in detail the proposed method and custom

tool for generating watermark FSMs from hash signatures. In Section 4.6 we discuss the

watermark embedding phase of the proposed system and the detailed complexities involved

in Section 4.6.1. In Section 4.6.2 we present the proposed brute force solution for wa-

termark embedding and then a greedy heuristic in Section 4.6.3. Section 4.7 details the

model generation and verification phase and presents a set of custom tools created in this

work. In Section 4.8 we detail the proposed methods for extracting the embedded water-

mark sequence. Section 4.9 details the security and computational complexities involved

for multiple forms of attacks against the proposed method.

4.1 Note to Reader

Portions of this chapter have been previously published (Lewandowski et al., 2012)[45]

and are utilized with permission of the publisher.

30

4.2 Watermarking via State Encoding

This method, as previously shown, had not been explored as a watermarking tech-

nique for FSMs. From this knowledge we developed a concept that would seamlessly in-

tegrate a new level protection into FSMs where the end user would only be impacted by

a tolerable cost. By controlling the state encoding values the watermark could be perma-

nently embedded into an FSM and later retrieved when needed. This method currently

employs edge creation methods similar to [48] and [50]. New edges created in this method

are paired with an unused state input combination, and the output is specified as a don’t

care condition. This method also utilizes transitions which are known to already provide

the desired next state transition, as in [52]. An illustrative example is shown in Fig. 14. We

note that in Fig. 14 the original edges are identified by thinner solid lines. Additionally,

the watermark edges and overlay edges are identified by thinner and thicker more closely

grouped dashed lines, respectively.

st0 st1 st2 st3

000 / 11 010 / 01 000 / 11

000 / 10 011 / 00010 / 10

000 / 01
001 / -- 001 / --

100 / --

Overlay

Original
Created

Figure 14: Watermarking edge creation method an illustrative watermarked FSM

4.3 Edge Creation Cost

In this section we explore the costs associated with additional edges. We analyze

the expected costs of implementing these types of edges by conducting an edge creation

related synthesis experiment for the FSM shown in Fig. 14. Using the Xilinx ISE Synthesis

tool we synthesized the FSM for a varying number of dummy edges (0, 1, 2, 3, and 12) and

the results are summarized in Table 5. For more information on full extent of synthesis

options utilized see Section 5.2.

31

Table 5: Xilinx synthesis results for dummy edges in Fig. 14 FSM

Number of Dummy Edges (0) (1) (2) (3) (12)

States 4

Transitions 11 12 13 14 23

Input Bits 3 4 5 8

Output Bits 4

Encoding Gray

Implementation LUT

Registers Used 2

Look-Up Tables (LUTs) Used 4

Max. Frequency (MHz) 1075.963

For this experiment, we initially synthesized the original FSM in Fig. 14, i.e.,

without any additional dummy edges. These results are reported in column (0) in Table 5.

We then began adding the non-overlay edges from Fig. 14 one-by-one performing synthesis

after each addition. These results are reported in columns (1), (2), and (3) in Table 5. Once

we had synthesized the original FSM, the example watermarked FSM, we then examined

the synthesis results for the scenario where the number of edges added doubled the number

of edges in the original FSM. This synthesis results for this scenario are reported in Table 5

as column (12). From the data presented in Table 5 it can be seen that the Xilinx Synthesis

results, for this example, returned potentially promising implementation cost values.

4.4 Watermarking System: Overview

The watermarking system that was created utilizes a variety of tools for accom-

plishing the task at hand. At the highest level, the system has three major phases, see

Fig. 15, (a) Watermark Construction Phase, (b) Watermark Embedding Phase, and (c)

Model Generation & Verification Phase. The Watermark Construction Phase transforms

the desired signature into a graph. In the Watermark Embedding Phase the signature graph

is embedded into the FSM by overlaying it into nodes and edges of the STG representation

of the FSM. If necessary new edges are created. In the Model Generation and Verification

32

Phase, the modified FSM is converted into a testable HDL model and verified. Below we

provide more details of each phase with illustrative examples.

Signature
Watermark

Construction

(a) Construction phase

WM Graph
Watermark
Embedding

(b) Embedding phase

WM FSM
Model

Generation

(c) Modeling phase

Figure 15: High level overview of watermarking system flow

4.5 Watermark Construction Phase

The method for constructing the watermark has continuously evolved throughout

the life of this work. We propose three techniques ranging from the utilization of bitmaps

to signature hashing. The proposed watermark construction methods are shown in Figs. 16

(a), (b), and (c). Below we propose each watermark construction method by providing

an algorithm for the technique and possible examples of signatures, decomposition, and

sequences. We also discuss advantages and disadvantages of each method.

Bitmap Decompositon

WM Construction

Signature

(a) BSD method

Signature Decompositon

WM Construction

Signature

(b) FSD method

Hash-2-Kiss2

RIPEMD-160 Hashing

Signature

(c) HSD method

Figure 16: Methods of watermark construction

4.5.1 Bitmap Signature Decomposition

BSD is the first form of watermark construction implemented in this work. BSD was

employed for the ease in constructing and verifying a proof of concept model. To illustrate

this, Fig. 17 provides a sample bitmap signature that was used in the BSD method. From

this, using the BSD method, the bitmap signature would be decomposed into a raw binary

33

format. We note that black squares in the bitmap are represented by logical ones, while

white squares are represented by logical zeros. From this simplistic binary encoding scheme

there exist a plethora of viable methods for the bitmap decomposition. Arbitrarily, we

chose the simplest method for decomposing the signature, which was a row-concatenate

based implementation. This algorithm operates by traversing the bitmap in a raster scan

fashion to yield a single binary sequence. The concatenated string is split into chunks equal

to the length of the state encoding of the FSM. If the last chunk is not appropriately sized

the remaining bits are LSB sign extended with logical zeroes until the appropriate chunk

size has been met. LSB sign extension is used as to not compromise the signature, i.e.,

while “10” and “100” are not binary equivalent, when the signature is constructed it will

simply have an extra “0” at the end of the reconstructed signature. For example, if the

signature sequence is “11110,” with a block size of three, inserting a leading zero would now

compromise the signature and generate “111|0|10” instead of the original desired signature

“11110|0|.” The worst case run-time for composing the single concatenated signature string

is O(n×m), where n is the standardized length of each row, and m is the number of rows

used total. However, because the sequence is concatenated into a single string, the worst

case run-time of chunk creation is O(x), where x is the length of the concatenated string.

This is because all of the operations for constructing the blocks are based off of constant, or

other linear time growth, operations in the code. Which overall, causes this method to entail

a worst case run-time of O(n×m), which is the time for computing single concatenated bit

string. From this, the method would prove to be rather simplistic and ideal complexity and

run-time for decomposing signatures. Unfortunately, the main drawback of this method

is the lack of signature flexibility. In addition, this method would only work under the

condition that bitmap image signatures were not artistically intricate in their design.

Figure 17: Sample bitmap signature

34

4.5.2 File Signature Decomposition

FSD operates in the same manner as BSD and the only difference is that this concept

has been extended to digital files. By transforming a file into a machine level representation

we are able to construct the raw binary representation of the signature. This enables us to

utilize any format, ranging from text files to audio clips, as a watermark signature. However

this can become a very lengthy and time consuming process due to the massive amount of

raw data. We illustrate this by presenting a small fraction of the amount of data in a sample

file in Table 6.

Table 6: Sample file under FSD

Simple VHDL File

File Size: 9.98 KB (10,222 bytes)

Row Address Column Address

0 1 · · · E F

00000000 00101101 00101101 · · · 00101101 00101101

00000010 00101101 00101101 · · · 00101101 00101101

00000020 00101101 00101101 · · · 00101101 00101101

00000030 00101101 00101101 · · · 00101101 00101101

00000040 00101101 00101101 · · · 00101101 00101101

For the sake of clarity, we note that we did not include the entirety of the files

contents, and that all of the presented row & column binary bit sets only represent about

half of a single line of text in the original file, it is also noted that for brevity we did not

include the entire column range. However, this file contains roughly 640 more row addresses

similar to those shown in Table 6. From this, it can be seen that the amount of data to

be processed, bit by bit, grows rather rapidly for what modern computer users would see

as an insignificantly sized file. Nonetheless FSD, similarly to its BSD predecessor, also

needed to employ the use of sign extension when the data at a given row address ended

before column F , or when the block size specified would create inappropriately sized chunks.

The solution for this sign extension process was performed in the same manner of BSD,

with the exception that, columns were filled with “00000000” until the appropriate size was

reached. This appropriate size for sign extension was determined simply by the number of

35

bits required to size the last chunk in the system based on the provided block size. This

process of extension, and its resulting behavior, is acceptable due to the fact that writing

zeroes to the end of the file will not actually alter or compromise a signature in most cases,

but instead, it will only slightly increase the size of the signature, further making. Whether

or not the extension of zeroes visually alters a file, in the typographical sense, depends on

whether or not a utilized text editor will show characters representing this extension. For

example, a popular open source tool Notepad++ [70] will display “NUL” characters which

represents this extension of zeroes. While the standard Windows Notepad will keep this as a

seemingly invisible alteration. From this the chunks would be computed as they were in BSD

by using the predetermined block size. Similarly the worst case run-time calculations are

also the same. However, due to file size complexities, constructed watermarks were almost

always large completely specified state machines. This left little flexibility in embedding

and resulted in high overhead. This is further illustrated by an example of FSD in Fig. 18.

It can be seen that a relatively small file, Fig. 18(a), under FSD can generate a completely

connected signature, Fig. 18(b), which can become extremely costly to implement as a

signature.

(a) Signature used in FSD (b) Corresponding STG

Figure 18: Example of FSD

36

4.5.3 Hashing Signature Decomposition

From the ideal conditions of the BSD method, and rather poor outcomes illustrated

by FSD, alternative solutions for signature decomposition were needed. Through this search

gave rise to the current decomposition method, which is known as HSD. This method

employs the external use of a secure hashing function to uniquely hash the signature intended

to be used in watermarking. We chose to utilize the secure hashing function RACE Integrity

Primitives Evaluation Message Digest 160-bit (RIPEMD-160) [71] because it is a hashing

algorithm that returns a shorter 40 character hash sequence and has been shown to be

collision free [72]. The signature chosen for illustration of this method was the Portable

Network Graphic (PNG) file shown in Fig. 19. Using the OpenSSL tool [73] and RIPEMD-

160 hash to digest this signature, the corresponding hash value was returned:

“RIPEMD160(COE-h-black.png)= 91efebee4bd48a62f338f244560b668771fa338e”

This hash, in bold, would then be transformed from its present hexadecimal format into a

decimal representation that could be further utilized in an STG format. To perform this

process we created the Hash-2-K2 program, which will automatically manipulate the hash

sequence and generate a resulting watermark STG in Kiss2 format. The benefits of this

method are that any hashing function can be used in the HSD method, while OpenSSL

offers a variety of hashing solutions, one can still obtain even greater flexibility by utilizing

a hash of choice. However, the run-time of the HSD method is solely dependent of the

hashing algorithm chosen for use, while the transformation of the hash and watermark

construction run-times are covered in Section 4.5.4, as these manipulations are performed

by the Hash-2-K2 tool.

Figure 19: Sample HSD signature prior to hashing

37

4.5.4 HSD Watermark Construction: Hash-2-K2

Once the signature has been decomposed, it is ready to be further manipulated into

a format that could be used for watermarking. In this section we will cover the current

implementation of watermark construction that is achieved by the Hash-2-K2 program

which we have developed as part of this thesis work. The standard input to the program is

the previously illustrated hash output format from OpenSSL in Section 4.5.3. First, each

hexadecimal hash value is converted into the corresponding decimal representation. This

decimal representation is used as denoting a node in the watermark graph. From this new

representation an adjacency matrix is constructed for the hash, we define a hash adjacency

to be the left and right neighbors of a single character, i.e., in the sequence “91e,” “1”

is adjacent to both “9” and “e.” Once the adjacency matrix is created, we generate the

corresponding Kiss2 format file for the hash. This enabled us to generate sparser graphs

than those from the FSD and BSD method while increasing the signature complexity. Using

a tool called “k2net,” which utilizes the Pajek netlist format [74] and Gephi [75], an open

source graph visualization and manipulation software, we verified the correctness of the

generated graph. The RIPEMD-160 Hash graph is shown in Fig. 20.

Figure 20: RIPEMD-160 Pajek netlist / STG using Gephi

38

We note that for the sake of clarity, edges and vertices are not labeled in Fig. 20,

rather we illustrate the concept of turning a hash into an undirected graph for the purpose

of embedding. Now that the hash has been converted into a format that can be processed

by the watermarking tool we can proceed forward. The worst case run-time of this format

conversion algorithm is dictated by the construction and processing of the adjacency matrix.

Thus the worst case run-time of the Hash-2-k2 tool will be O(n2), where n is the number of

unique values that represent states in the hash. We also note that the worst case run-time

of the k2net tool, used for generating visualizations of k2 files, is O(x), where x represents

the number of edges in the STT format. This is due to the fact that the STT format can be

traversed in an row based manner for writing the corresponding Pajek netlist information

to the file.

Input: Hex String WString(Hex)
Output: GW (V,E)

1: Hash2Kiss2(WString(Hex))
2: begin
3: foreach i ∈ WString(Hex) do
4: i ← Hex2Decimal(i)
5: if i 6∈ GW (V) then
6: GW (V) ← GW (V) ∪ i
7: end

8: end
9: foreach k ∈ GW (V) do

10: l ← WString(Decimal)(k) ∧ WString(Decimal)(k − 1)

11: if l 6∈ GW (E) ∧ l 6= ∅ then
12: GW (E) ← GW (E) ∪ l
13: end
14: r ← WString(Decimal)(k) ∧ WString(Decimal)(k + 1)

15: if r 6∈ GW (E) ∧ r 6= ∅ then
16: GW (E) ← GW (E) ∪ r
17: end

18: end

19: end

Figure 21: Hash-2-Kiss2 watermark construction algorithm

The psuedo-code of the Hash-2-Kiss2 watermark construction algorithm is shown in

Fig. 21. The process accepts a string in hexadecimal format (line 1), and while the string is

not empty the process converts each of the hexadecimal values to their respective decimal

39

value, i.e., “A” maps to “st10” (line 4). Additionally, the algorithm will only add unique

states to the graph, such that, if the hexadecimal character “A” happens to appear more

than once, then it is only added to GW (V) once (line 5 & 6). Similarly, if there exists an

edge which connects two known states in the string and is not already an element in GW (E)

this edge is added (line 8 & 9). This prevents redundant edges from being added to the

watermark FSM and creating addition overhead in the embedding process, for example if

the sequence is “9AABC10AA,” the sequence “AA” appears twice but is only added the

first time it is found in the sequence.

4.6 Watermark Embedding Phase

The Watermark Embedding Phase is the second phase where in the original STG is

watermarked with the undirected graph of the hash signature. In this section, we cover the

complexity of the problem and proposed algorithms.

4.6.1 Embedding: Complexity

The task of embedding one graph into another is directly related to the sub-graph

isomorphism/matching problem. This sub-graph matching problem is to determine if there

exists a possible configuration of a graph, GraphA, which is contained, or can be mapped,

as a subset in another graph, GraphB. In relating this to our problem, we are seeking

a low cost configuration represented by GW (V,E) ⊂ GFSM (V,E), where GW (V,E) and

GFSM (V,E) are, respectively, the watermark and original FSM graphs. However, if an

inherent sub-graph has been found in an unaltered FSM then the watermark is lost to

the normal functionality of the machine, and an alternative signature must be sought for

use. Alternatively, if GW (V,E) 6⊂ GFSM (V,E), then an inherent isomorphic sub-graph

has not been found, and in our case the appropriate actions must be taken. However,

from this generalized overview the complexity can be derived through its matching relation

to the clique problem, where the goal is to find complete sets in which each element is

connected [76]. This is ultimately done by finding a clique of nodes in GFSM (V,E) that can

be identically, or by low cost means in our case, mapped to GW (V,E). The clique problem

40

known to be NP-Complete [77]. Thus, there is potentially no efficient solution for tackling

this problem in a reasonable amount of time.

4.6.2 Brute Force Embedding Algorithm

Determining the number of mapping combinations is specifically dependent on both

the watermark and original FSM graphs. However such a method for generating all mapping

combinations is considered to be an r-Permutation, and can be computed from equation 3,

and is specifically for situations where n choices can be mapped to r positions [78]. In our

case, we consider the number of states in the original FSM to be n choices which can be

mapped to one of r positions in the watermark, where r is the number of states in the

watermark graph.

P (n, r) =
n!

(n− r)!
(3)

Thus, the first, proof of concept, algorithm exhaustively checks r-Permutations by Brute

Force, and is suitable for small state machines. The algorithm employs a recursive paradigm

to generate all possible state matching combinations. Through the use of a cost calculation

function the algorithm selects the lowest cost mapping for the watermark graph to the

original FSM.

This brute force algorithm, shown by the pseudo-code in Fig. 22, accepts both

the original FSM, GFSM (V,E), and watermark graph, GW (V,E), additionally, the algo-

rithm also accepts an initial match set. The match set contains a unique permutation of

mappings, or ordered pairs, from states in the original FSM and corresponding watermark

FSM states, or GW (V)→ GFSM (V ′) ⊂ GFSM (V), and is initially empty until the algo-

rithm first inserts a mapping (line 8). Initially, the best cost is set to the size of the edge

set, or number of edges, in the watermark graph (line 3). For each state in the original

FSM (line 4) and each state of the watermark FSM (line 5), the algorithm will add a

mapping of an original FSM state to a watermark FSM state (line 6). Once adding this

mapping, the algorithm then checks whether or not the removal of the previously mapped

watermark FSM state will cause the set of all watermark FSM states to become empty

(line 7). If this set is not empty then the algorithm will recursively call itself providing

41

Input: GFSM (V,E), GW (V,E),MatchSet
Output: Mapping of Gw(V) to GFSM (V ′) ⊂ GFSM (V)

1: EmbedBruteForce(GFSM (V,E), GW (V,E),MatchSet)
2: begin
3: BestCost ← GW (E).size
4: foreach k ∈ GFSM (V) do
5: foreach m ∈ GW (V) do
6: MatchSet ← MatchSet ∪ {(k,m)}
7: if GW (V)− {m} 6= ∅ then
8: EmbedBruteForce(GFSM (V)− {k}, GW (V)− {m},MatchSet)
9: else

10: if Cost(MatchSet) < BestCost then
11: BestMatch ← MatchSet
12: BestCost ← Cost(MatchSet)

13: end

14: end

15: end

16: end

17: end

Figure 22: Proposed brute force watermark embedding algorithm

the current set of matches with the removal of the current original FSM state, k, and the

current watermark FSM state, m, (line 8). However, if this removal causes the set to be-

come empty, such that all watermark FSM states have been mapped, then the algorithm

will calculate the cost of the current match comparing it to the cost of the known best

cost (line 10). Figure 23 shows the pseudo-code for calculating the cost of the mapping

(line 9) in the brute force algorithm, Fig. 22. We note that M(k,m) is the relative differ-

ence between the set of edges for the mapped graph nodes GFSM (k) and GW (m), formally,

M(k,m) = {x ∈ U | x /∈ GFSM (k) ∧ x ∈ GW (m)}, where U is the set of all edges [78].

If the returned calculated cost, of the current match set, is lower than the currently known

best cost, the best match and best cost are updated.

To further illustrate the brute force embedding algorithm, we offer an example of the

algorithm embedding the watermark FSM, shown in Fig. 24(b), into the original FSM shown

in Fig. 24(a). For the sake of clarity we do not label transitions, additionally, alphabetic

state encoding values and numerical state encoding values are respectively assigned to the

original and watermark FSM. The set of mapping combinations, or simply all permutations

42

Input: MatchSet
Output: CostofMatchSetMapping

1: Cost(MatchSet)
2: begin
3: MapCost ← 0
4: foreach (k,m) ∈ MatchSet do
5: M(k,m) ← {GW (m) − GFSM (k)}

6: MapCost ← MapCost + M(k,m).size

7: end
8: return MapCost

9: end

Figure 23: Brute force cost calculation algorithm

of the match set values, generated by the brute force algorithm is provided by Table 7. By

equation 3, for this example, the expected number of mapping combinations is 24, which is

additionally verified by Table 7.

A B

C D

(a) Original FSM

1 2

3

(b) Watermark FSM

Figure 24: Original and watermark FSMs for brute force embedding example

Each of the match sets, shown in Table 7, has its associated mapping cost calculated

and compared against the known best. These corresponding mapping costs, calculated by

the algorithm in Fig. 23, will be compared in order throughout the algorithm. Shown in

Table 8 are the map costs and actions taken by the algorithm for the corresponding range

sets in Table 7.

43

Table 7: Brute force mapping combinations

Combinatorial Ranges

[1-6] [7-12] [13-18] [19-24]

Match Sets (A,B,C) (B,A,C) (C,A,B) (D,A,B)

GFSM (A,B,C,D)→ GW (1, 2, 3) (A,B,D) (B,A,D) (C,A,D) (D,A,C)

(A,C,B) (B,C,A) (C,B,A) (D,B,A)

(A,C,D) (B,C,D) (C,B,D) (D,B,C)

(A,D,B) (B,D,A) (C,D,A) (D,C,A)

(A,D,C) (B,D,C) (C,D,B) (D,C,B)

Table 8: Brute force cost mapping combinations

Combinatorial Ranges

Cost[0] = 4 [1-6] Action [7-12] Action [13-18] Action [19-24] Action

Cost 1 Update 1 N/A 1 N/A 3 N/A

2 N/A 1 N/A 2 N/A 2 N/A

2 N/A 2 N/A 1 N/A 2 N/A

3 N/A 1 N/A 2 N/A 1 N/A

3 N/A 2 N/A 1 N/A 2 N/A

3 N/A 2 N/A 0 Update 2 N/A

Upon completion of the algorithm the map set with the lowest cost, in this example

(C,D,B) with a cost of 0, is returned. From this match set, returned by the brute force

embedding algorithm, the resulting watermarked FSM is then generated. Additionally, the

resulting watermarked FSM for this example, generated from the original and watermark

FSMs, Fig. 25(a) and Fig. 25(b), is shown by Fig. 25(c).

Run-time analysis of this algorithm shows that k! iterations will recursively call the

function EmbedBruteForce() a total of m! times during which the algorithm will construct

all combinations of possible match sets. Due to this recursive nature of the algorithm worst

case run-time complexity can be observed as O(nPm), where k and m are the number of

original states and watermarking states respectively. Alternatively, this worst case run-time

is also given by equation 3.

The drawbacks of the brute force algorithm are: (1) excessive run-time, and (2) lack

of scalability. Based on worst case run-time calculations it is apparent that this system

44

A B

C D

(a) Original FSM

1 2

3

(b) Watermark FSM

A 3(B)

1(C) 2(D)

(c) Watermarked FSM

Figure 25: Original, watermark, and watermarked FSMs for brute force embedding

will lack desired scalability due to the complexity of generating all possible permutations.

Typically brute force solutions aren’t sought out for this reason. From this, the need

arose for a more efficient algorithm that could be easily scaled for FSMs ranging in size,

with significantly lower run-time, and didn’t require the search space to be exhaustively

explored.

4.6.3 Greedy Embedding Algorithm

While it is generally known that greedy algorithms (with few exceptions, such as

Hu’s scheduling algorithm [79]), are unlikely to produce globally optimal solutions. The

proposed algorithm utilizes a node based complexity cost calculation for both watermarked

and un-watermarked states, which is used in the process of determining potential state

matches. The equations used for calculating the associated cost calculation for a single

state in either of the two machines and the cost associated with mapping a watermark state

to an original FSM state are given by equations 5 and 4 respectively. Alternatively, we note

that equation 4 is simply the degree of a node. Using these equations the algorithm first

calculates the cost of each node in the FSM and in the watermark.

Node Cost = (GFSM , Vχ) = (Vχ)in + (Vχ)out (4)

Map Cost = Node Cost(GFSM (Vχ)) − Node Cost(GW (Vχ′)) (5)

45

Through the use of this newly calculated cost information the algorithm selects and maps

the lowest cost implementation between the current watermark state and best match FSM

state. It repeats this process for each unmatched watermark node by traversing the edges

connected to the initial match while proceeding to search for the next lowest mapping. The

pseudo-code for this algorithm is shown in Fig. 26.

Input: GFSM (V,E), GW (V,E)
Output: Mappings of GW (V) to GFSM (V ′) ⊂ GFSM (V)

1: EmbedGreedy(GFSM (V,E), GW (V,E))
2: begin
3: n ← FindMaxDegreeNode(GFSM)
4: while ∃ x ∈ GW (V) ∋ x.matched == FALSE do
5: j ← FindMinCostNode(GW , n)
6: MatchSet ← MatchSet ∪ {(n, j)}
7: n.matched ← TRUE
8: SortDescend(Neighbors(GFSM , n))
9: foreach i ∈ Neighbors(GFSM , n) ∋ i.matched == FALSE do

10: h ← Route(n, i)
11: p ← NeighborsMatchingRoute(GW , h)
12: if ∃ x ∈ p ∋ x.matched == FALSE then
13: k ← FindMinCostNode(i, x)
14: else
15: continue
16: end
17: MatchSet ← MatchSet ∪ {(i, k)}
18: i.matched ← TRUE

19: end
20: Found ← Found ∪ {(n)}
21: n ← FindMaxDegreeNode(MatchSet 6∈ Found)

22: end

23: end

Figure 26: Greedy heuristic

The greedy algorithm initially accepts the original and watermark FSMs (line 1).

The algorithm begins by finding the maximum degree node in the original FSM (line 2),

by calling the FindMaxDegreeNode() function that is shown in Fig. 27. The greedy

algorithm is then run until there exists a node in the watermark FSM such that it hasn’t

been matched (line 4). Beginning the loop the algorithm finds the minimum cost node,

in the watermarking FSM, that can be paired with the recently found highest cost node

(line 5) by calling the function FindMinCostNode(). This function is shown by Fig. 28.

46

The match set is then updated (line 6) with the previously returned minimum cost node

from FindMinCostNode() and then (line 7) n is marked as being matched. Following, the

unmatched nodes are sorted in descending order first by calling the Neighbors() function

and passing the returned list to the SortDescend() function (line 8). These two functions

are shown in Fig. 29 and Fig. 30. The algorithm then checks each of the neighbors in

descending order that are still unmatched (line 9). Following this, the direction of the

edge between the unmatched neighbor and the current node determines if it is an incoming

or outgoing edge (line 10). From this direction the algorithm finds additional neighbors

matching this edge route (line 11). If there is a neighbor which matches the edge route and

is still unmatched then algorithm calls the FindMinCostNode() function and maps it to

a node on the connected path (lines 12 & 13). If there are currently no unmatched nodes

then the algorithm continues (line 15). Following this, the match set is updated (line 17),

node status flags are updated (line 18), n is added to the found match for set (line 20) and

then updated to the highest degree node that is unmatched (line 21) and the algorithm

repeats this process.

The FindMaxDegreeNode() function initially accepts a graph (line 1) and iterates

through all of the nodes which the graph contains (line 6). It calculates the degree of the

current node (line 7) and compares it against the known maximum degree (line 8). If

the degree of the node is larger than the current best the algorithm will update the max

degree and match (lines 19 & 20), however, if the degree is equal to the known max then

the algorithm switches to the cases based on the value returned from rand()%2 (line 10),

or a random number modulo 2. If the value returned is 0 then the algorithm takes no

action (line 11), otherwise the algorithm will update the match value (line 15).

The FindMinCostNode() function initially accepts two graphs as the input (line 1),

where the second graph GB is specifically the node and its edges to be mapped in GA. The

initial cost of GB(V
′) is calculated from the nodes degree x (line 6). For each state in GA

the absolute value of the cost between GB(V
′) these two is calculated (line 8), where the

absolute value is used for events where GB(V
′) is larger than GA(V) and requires the

additions of edges. If this calculated cost is less than or equal to the known minimum

cost (line 9) then the algorithm will check if the two numbers are equal. This portion

47

Input: G(V,E)
Output: Maximum Degree Node V ′ ∈ G(V)

1: FindMaxDegreeNode(G(V,E)) begin
2: Degree ← 0
3: MaxDegree ← 0
4: Match ← ∅

5: foreach k ∈ G(V) do
6: Degree ← (k.in + k.out)
7: if Degree ≥ MaxDegree then
8: if Degree == MaxDegree then
9: switch (rand()%2) do

10: case 0
11: NULL
12: end
13: case 1
14: Match ← k
15: end

16: endsw

17: else
18: MaxDegree ← Degree
19: Match ← k

20: end

21: end

22: end
23: return Match

24: end

Figure 27: Algorithm for FindMaxDegreeNode function

of the algorithm operates the in the same manner for randomly selecting nodes as the

FindMaxDegreeNode() function.

The Neighbors() function accepts a graph and the node for which the neighborhood

is desired (line 1). The algorithm checks the set of nodes in the graph minus the center of

the neighborhood (line 4). If there is a node in the graph that is also in the sub-graph of

X, i.e., it is connected to X by an incoming or outgoing edge, then this edge is added to

the Neighborhood set (lines 5 & 6). Once the algorithm has examined all nodes not in the

neighborhood, the algorithm returns the set of nodes connected to X (line 9).

The SortDescend() function utilizes the C++ sorting function and employs the use

of a custom compare function for returning if the degree of node k is larger than the degree

48

Input: GA(V,E), GB(V
′, E)

Output: Minimum Cost Node GB(V
′) ∈ GA(V)

1: FindMinCostNode(GA(V,E), GB(V
′, E))

2: begin
3: Cost ← 0
4: MinCost ← GA(E)
5: Match ← ∅

6: x ← (GB(V
′).in + GB(V

′).out)
7: foreach k ∈ GA(V) do
8: Cost ← |x − (k.in + k.out)|
9: if Cost ≤ MinCost then

10: if Cost == MinCost then
11: switch (rand()%2) do
12: case 0
13: NULL
14: end
15: case 1
16: Match ← k
17: end

18: endsw

19: else
20: MinCost ← Cost
21: Match ← k

22: end

23: end

24: end
25: return Match

26: end

Figure 28: Algorithm for FindMinCostNode function

of node j. This process is repeated for the entire match set and upon completion will return

the match set sorted where the node elements are in descending order of their degrees.

We illustrate the proposed greedy approach with an example where the original

and watermark FSMs are shown by Fig. 31(a) and Fig. 31(b). For the sake of clar-

ity, the example will be deterministic in the sense that we will simply choose nodes in a

First Come First Serve (FCFS) manner rather than the random selection employed by the

FindMaxDegreeNode() and FindMinCostNode() functions. The associated node degree

values for both the original and watermark FSMs, GFSM and GW , are given in Table 9.

Additionally, since the the complexities behind this process as significantly less than those

49

Input: G(V,E),
Neighbors of Node(X)

Output: Set of G(V ′) ⊂ G(V,E)

1: Neighbors(G(V,E), X)

2: begin
3: Neighborhood ← ∅

4: foreach k ∈ G(V)−X do
5: if k ∈ G(X,EX) then
6: Neighborhood ← MatchSet ∪ {k}
7: end

8: end
9: return Neighborhood

10: end

Figure 29: Algorithm for Neighbors function

Input: MatchSet
Output: Sorted MatchSet

1: SortDescend(MatchSet)
2: begin
3: Sort(MatchSet.begin(),MatchSet.end(),

compare(k, j){return ((k.in+ k.out) > (j.in+ j.out)) ? 1 : 0)})
4: end

Figure 30: Algorithm for SortDescend function

of the brute force approach, the step-by-step process for which the algorithm computes the

watermarked FSM is given in Table 10.

Table 9: Original and watermark FSM node degree values

GFSM GW

State Degree State Degree

A 3 1 3

B 4 2 3

C 4 3 2

D 3 - -

Upon completion of the algorithm we receive the resulting match set and additional

edges are added for connection of the watermark FSM. This can be seen by Fig. 32(c),

where due to the mappings additional edges are required from 2(C) to 1(B) and 2(C) to

3(A) for the correctness of the watermark. We note that the edges with shorter, higher

50

A B

C D

(a) Original FSM

1 2

3

(b) Watermark FSM

Figure 31: Original and watermark FSMs for greedy embedding example

frequency, dashed lines indicated edges that overlapped in the process while the longer,

lower frequency, dashed lines indicate that an edge was created. From this the cost of

this solution was one edge compared to the previous perfect match from the Brute Force

algorithm.

A B

C D

(a) Original FSM

1 2

3

(b) Watermark FSM

3(A) 1(B)

2(C) 3(D)

(c) Watermarked FSM

Figure 32: Original, watermark, and watermarked FSMs for greedy embedding

While a greedy solution, in addition with the HSD method, may produce more

desirable results there is a need for advanced solutions. This is due to the fact that the

greedy algorithm relies solely on the sparse watermark FSMs generated from the HSD

method. In addition, because the implementation is greedy globally optimal solutions will

51

Table 10: Example step-by-step greedy algorithm

Step Action Note

1 n = B FindMaxDegreeNode() returns GFSM (B)

2 j = 1 FindMinCostNode() returns GW (1)

3 MatchSet ∪ {(B, 1)} MatchSet{(B, 1)}

4 i = C C connected, unmatched, highest degree

5 k = 2 FindMinCostNode() returns GW (2)

6 MatchSet ∪ {(C, 2)} MatchSet{(B, 1), (C, 2)}

7 i = A A connected, unmatched, highest degree

8 k = 3 FindMinCostNode() returns GW (3)

9 MatchSet ∪ {(A, 3)} MatchSet{(B, 1), (C, 2), (A, 3)}

10 Return MatchSet All nodes in GW Matched

not be produced. Further, we analyze the costs of this algorithm with the experimental

results that were gathered, which are further detailed at length in Chapter 5. Provided in

Table 11 are the results produced by this algorithm for the largest ten Kiss2 benchmark

files. The watermark used was that previously shown in Fig. 19 and Fig. 20.

Table 11: Embedding results, watermark (Fig. 19) has 15 states and 32 edges

GFSM States Edges Inputs EdgesAdded EdgesGW
InputsAdded

bbara bbtas 30 268 4 20 63% 2

keyb 19 170 7 18 56% 1

kirkman 16 381 12 19 59% 1

s298 218 1096 3 21 66% 2

s820 25 232 18 16 50% 2

s832 25 245 18 16 50% 2

s1488 48 251 8 14 44% 1

s1494 48 250 8 18 56% 1

sand 23 184 11 15 47% 2

tbk 28 1569 6 13 41% 2

As shown in the table, more than half of the machines assumed more than 50% of

the watermark edges on average, and that this method is currently less than desirable due to

the fact that exemplify the algorithms performance. The benchmark “s298,” for example,

52

contains over 1000 edges in the system, however, this current greedy solution still adds 21

of the 32 edges. While it can be argued that 1000 edges over 218 states can easily allow for

this, we turn to another example, the benchmark “tbk” contains 28 states and over 1500

edges. If we were to evenly distribute these edges over 28 states then each state roughly

contains 56 edges, which contains more edges than the entirety of the watermark itself.

However, due to the creation of HSD and Hash-2-Kiss2 this algorithm has greatly reduced

the overhead incurred from methods such as FSD. In addition, this algorithm also allows

for massive scaling compared to previous implementations. However by employing a sorting

method on the Min and Max arrays for determining costs of nodes, which is comparison-

based sorting, the worst case run-times of these algorithms is known to be O(nlogn) [80].

Similarly, due to the nature of the algorithm, which implements Kruskal’s algorithm [81],

a weighted greedy algorithm for finding a minimal spanning tree in the original FSM for

which the watermark can be embedded, this run-time holds. We note that the weights in

this system are associated costs of mapping a watermark state to a state in the original

FSM.

4.7 Model Generation and Verification Phase

Once the watermark has been embedded into the original STG the model generation

phase begins. Using a custom tool we have developed, called “k2vhdl,” STGs corresponding

Very High Speed Integrated Circuit (VHSIC) HDL (VHDL-93) [82] model is automatically

generated. Figure 33 shows the system flow diagram for this tool.

The tool initially accepts a Kiss2 file and the desired Xilinx encoding scheme. The

tool first checks the Kiss2 file for states that have no accepting edges from states connected

to the starting state. This process is performed by calling a vertex cover function from the

starting state of the FSM using an adjacency matrix computed during parsing. To better

illustrate this process Fig. 34 shows the pseudo-code for the V ertexCover() function.

Following this the trimmed FSM is then passed to another custom tool, called “k2net,”

which automatically generates the Pajek netlist for viewing the FSM graph. Finally, the

VHDL file has the Xilinx Synthesis Technology (XST) scripts generated automatically which

allow for automation of the synthesis process. This function initially accepts the pre-

53

Kiss2 File

k2vhdl

Trimming

VHDL-93

k2net XST Script

Encoding

Pajek Netlist

Figure 33: Flow diagram for the custom tool “k2vhdl”

Input: AdjacencyMatrix(G(V,E)),
Initial State (S0) ∈ G(V,E)

Output: Set of Reachable States (R)

1: VertexCover(AdjacencyMatrix(G(V,E)), Initial State (S0))
2: begin
3: Reached ← ∅

4: Reached ← Reached ∪ S0

5: AdjMat ← AdjacencyMatrix(G(V,E))
6: foreach k ∈ Reached do
7: foreach m ∈ AdjMat.row(k) do
8: if m == TRUE and m 6∈ Reached then
9: Reached ← Reached ∪ m

10: end

11: end

12: end
13: return Reached

14: end

Figure 34: Algorithm for VertexCover

computed adjacency matrix for the FSM and the starting state of the system (line 1).

Initially the starting state is added to the reached set (line 3) and the adjacency matrix is

copied to AdjMat (line 4). On the first iteration the outer loop of the algorithm starts with

k as the starting state (line 5), the inner loop traverses k’s adjacency matrix row (line 6)

checking to see if k is adjacent to m and has not been reached (line 7). If m is adjacent to k

and has not been previously reached then m is added to the reached set (line 8). By adding

54

adjacent nodes during the inner loop reached continues to traverse the expanded set on

the following iteration. Upon completing this process the Reached set is returned (line 12).

From the reached set the Kiss2 structure parsed removes the states not found in the reached

set.

Through the use of Xilinx Integrated Software Environment (ISE) and target plat-

form specific synthesis options, Xilinx ISE synthesis scripts, and Xilinx ISE project files, the

synthesis results can be automatically obtained through commandline usage. During this

process we are able to load, into the custom tool, an associated Xilinx synthesis script which

will place the appropriate model information into the script for quick, and automated, com-

mandline synthesis. Currently, only Xilinx VHDL compiler specific directives are generated,

in the VHDL model, that allow further specifying and controlling XST options during the

synthesis process. This allows for greater control of the synthesis process to prevent the

watermark from being compromised at any point during synthesis.

1 -- --------------------------

2 -- state encoding enabled |

3 -- --------------------------

4 -- TYPE "StateType" IS (idle_state, state_1, state_2,)

5 TYPE StateType IS (st0,st1,st2,st3);

6 -- --

7 -- Attribute, Type, and Signal Definitions

8 -- --

9 ATTRIBUTE ENUM_ENCODING OF StateType : TYPE IS "00 01 10 11";

10 ATTRIBUTE SAFE_IMPLEMENTATION OF StateType : TYPE IS "yes";

11 ATTRIBUTE SAFE_RECOVERY_STATE OF StateType : TYPE IS "st0";

12 ATTRIBUTE REGISTER_POWERUP OF StateType : TYPE IS "st0";

13 SIGNAL CS : StateType;

14 ATTRIBUTE SAFE_IMPLEMENTATION OF CS : SIGNAL IS "yes";

15 ATTRIBUTE SAFE_RECOVERY_STATE OF CS : SIGNAL IS "st0";

16 SIGNAL NST : StateType;

17 ATTRIBUTE SAFE_IMPLEMENTATION OF NST : SIGNAL IS "yes";

18 ATTRIBUTE SAFE_RECOVERY_STATE OF NST : SIGNAL IS "st0";

Figure 35: Sample VHDL signal generation for Lion.kiss2

Figure 35 shows an example of the VHDL-93 code that is automatically generated

by the “k2vhdl” tool. The VHDL type StateType (line 5) shows how the FSM states

55

are specified. Following (line 9) is example of the of the User specified state encoding

allowed by Xilinx. These state encoding values, listed for the “ENUM ENCODING” at-

tribute, will specifically map to the states as they are listed in the body of the state ma-

chine process and for this example will specifically produce the state encoding mappings

of “{(st0,00),(st1,01),(st2,10),(st3,11)}”. Additionally, the attribute safe implementation is

used (line 10), which specifies that in the event of an erroneous transition the state machine

should go back to the safe recovery state. Lastly, the known starting state of the machine

is specified, such that, the system powers up in this state (line 12).

1 -- State Controller Process (Sensitive to clock and Next State Events)

2 STATE_CONTROL : PROCESS (clk, rst, NST)

3 BEGIN

4 IF(rst = ’1’) THEN

5 CS <= st0;

6 ELSIF(rising_edge(clk)) THEN

7 CS <= NST;

8 ELSE NULL;

9 END IF;

10 END PROCESS STATE_CONTROL;

Figure 36: Sample VHDL state controller for Lion.kiss2

Figure 36 shows the process for controlling state transitions within the state machine,

the process is sensitive to events on the clock, reset, and next state signals (line 2). Events

in VHDL are specifically those which cause a logical transition, i.e., logical one to zero

or vice verse. Additionally, the machine employs an asynchronous reset condition (line 4)

while only updating the state register on a rising clock edge (line 6).

Lastly, Fig. 37 shows the state machine process itself. The state machine process is

sensitive (line 2) to events on the input to the system (datai) and events on the current state

(CS) which are assigned through the state control process. An output register is initialized

to the length of the systems output as all zeroes (line 3). The state machine is based on a

case style implementation where the current state determines the case statement which will

be processed (line 5). Additionally, at each state the respective input conditions which are

mapped to transitions and output functions are checked (line 6). The order in which this

56

1 -- State Machine Process (Sensitive to datai and Current State Events)

2 STATE_MACHINE: PROCESS (datai, CS)

3 VARIABLE OREG: STD_LOGIC_VECTOR(0 downto 0) := (others => ’0’);

4 BEGIN

5 CASE CS IS

6 WHEN st0 => IF(datai = "11") THEN OREG := "0"; NST <= st0;

7 ELSIF(datai = "01") THEN NST <= st1;

8 ELSIF(datai(0) = ’0’) THEN OREG := "0"; NST <= st0;

9 ELSE NST <= st0;

10 END IF;

11 WHEN st1 => IF(datai = "11") THEN OREG := "0"; NST <= st0;

12 ELSIF(datai = "10") THEN OREG := "1"; NST <= st2;

13 ELSIF(datai(1) = ’0’) THEN OREG := "1"; NST <= st1;

14 ELSE NST <= st1;

15 END IF;

16 WHEN st2 => IF (datai = "00") THEN OREG := "1"; NST <= st1;

17 ELSIF(datai = "01") THEN OREG := "1"; NST <= st3;

18 ELSIF(datai(1) = ’1’) THEN OREG := "1"; NST <= st2;

19 ELSE NST <= st2;

20 END IF;

21 WHEN st3 => IF(datai = "11") THEN OREG := "1"; NST <= st2;

22 ELSIF(datai(1) = ’0’) THEN OREG := "1"; NST <= st3;

23 ELSE NST <= ST3;

24 END IF;

25 WHEN OTHERS => NST <= st0;

26 END CASE CS;

27 datao <= OREG;

28 END PROCESS STATE_MACHINE;

Figure 37: Sample VHDL state machine for Lion.kiss2

is done in VHDL is important, first, the completely specified input conditions are checked,

then don’t care conditions (lines 7 & 8). This is due to the fact that comparing input data to

a don’t care condition, i.e., “-0” in VHDL will always evaluate to false. Thus, the specific

positions of the input bit string which will cause a transition or output are specifically

checked (line 8). If there is an input not handled in the current state, the system remains

in the current state and the output is not affected (line 9). If there was a condition where

the output was known to be a don’t care the system holds the output (line 7). In addition

to system transitions, output updates are stored to a process variable to be updated once

the case statement has ended. This update to the register is instantaneous rather than that

57

of the signal which experiences a natural delay (line 6). Once the case statement has ended

the output register is pushed to the system output port (datao) experiencing the natural

propagation delay, known as delta delay, of the the system (line 31).

4.8 Watermark Extraction Sequence Generation

Finally once the model has been generated, we need to generate an sequence for the

watermark extraction. This is automated by a tool that checks the original hash sequence

against the newly created STG. In doing so it simply accepts the hash signature in state

form, and finds the associated input sequence for traversing to the next hash signature

state. These input pairs can either be the added dummy edges or an already specified

input combination of the state. The program simply finds the first edge input combination

that will take it to the next adjacent signature state. At synthesis level the watermark

can easily be extracted, such that, Xilinx simulation allows you to trace the state encoding

value throughout simulation. Shown in Fig. 38(a) and Fig. 38(b), is an example VHDL

simulation that traces the state encoding through the simulation. Through the use of

simulation state tracing embedded watermarks can easily be verified by simply applying

the known sequence that will reproduce the hexadecimal hashing signature that is know

represented in binary format as the state encoding.

The means of extraction during run-time or operation are generally left to the IP

owner, this is simply due to the versatility of this system, such that, additional output

logic could be generated automatically or the decision can be left to the IP owner and

the extraction techniques for which they desire. State encoding values could be output

through ports, output by seven-segment displays, stored to memory, accessed through side-

channel properties, such as power, etc. If we were to constrain the user to implement a

specific system for extracting the watermark we believe it would potentially degrade the

favorability of the system removing from the benefits due to large numbers of constraints

required for an additional layer of protection and security.

58

(a) State Trace “st0” (b) State Trace “st7”

Figure 38: Xilinx simulation state encoding trace

4.9 On the Tampering Hardness of State Encoding Based Watermarking

In this section we perform an analysis of the tampering hardness of state encoding

based watermarking. Specifically, we will focus on the complexities involved in certain

scenarios, later covered in this section, that are required in tampering the watermark. We

will refer to this scenario as the Bill and Mallory scenarios, where Bill represents the IP

core owner and Mallory represents the malicious attacker. For this section, we make this

assumption that we standardize the hashing function for this system to a hexadecimal hash

sequence generated by the RIPEMD-160 hash function, such that, we have standardized

both the length of the hash sequence and digest size to 40 and 160 respectively.

Mallory believes that Bill has watermarked his IP core and wishes to find the water-

mark Bill used. For Mallory to reverse engineer Bill’s watermark Mallory must perform the

following actions: (1) find any hidden functionality, (2) find all paths from all nodes, and

(3) perform preimage attacks on each path. Step (1) in the process requires that Mallory

formally verify the functionality of the FSM. This process requires that Mallory applies

all possible input combinations for each state O(2inputs × states) to expose any hidden

functionality. In the event that Mallory exposes hidden functionality then Mallory must

compute all paths of length 40 (the length of the RIPEMD-160 hash sequence) starting at

every in the FSM. The number of paths can be computed through the connectivity matrix

of the FSM [83]. The connectivity matrix is built by multiplying the FSM adjacency matrix

by itself x times, where x is the length of the desired path. Assuming Mallory carries out

matrix multiplication in O(n3) time, where n is the size of the n×n adjacency matrix, and

59

this process must be performed 40 times. Once Mallory has generated all paths, she must

perform a preimage attack on each path. A preimage attack is where an attacker attempts

to find the original file m for a hash sequence h that was generated by the hashing function

H [84]. The complexity of this process is determined by the digest size of the hashing

function and in the case of RIPEMD-160 is O(2160). This is now the complexity required

to attack a single path that was generated, and O(P × 2160) represents the complexity for

attacking all paths in the system.

Recent advances in High-Performance Computing (HPC) [85] show that systems can

attempt 63 billion brute force attacks on the SHA-1 hash function per second. The SHA-1

hash is similar to the RIPEMD-160 algorithm, only in that both algorithms implement the

use of a digest of 160-bits. If we neglect the finer details of these hashing functions, and their

complexities, we can assume that 63 billion attempts per second on a RIPEMD-160 hash

sequence. Additionally, we neglect the collision resistances of both algorithms, as SHA-1

has been shown to have collisions [86] while the RIPEMD-160 hash has been shown to

be collision free [72]. We examine the situation of performing exhaustive preimage attacks

under the assumption that this HPC cluster [85] can attempt the same number of attempts

on a hashing function with the same digest (RIPEMD-160). It is known that the preimage

complexity for both SHA-1 and RIPEMD-160 is 2160, or 1.5 × 1048, based on the digest

size used. We also know that the HPC cluster make 63 billion, or 6.3 × 1010, attempts

on SHA-1 per second. We can represent the time it takes for this system to complete a

preimage attack by equation 6. Where the number of unchecked sequences U in the preimage

attack is the total number of sequences minus the number of attempts per second. We

desire the point where s equates U to being zero, such as the attack has completed, which

is s = 2.3× 1037 seconds. Relating this number to functions of time Table 12 shows that

even with HPC systems a preimage attack on this system is still computationally infeasible.

UncheckedSequences(U) = (1.5× 1048)− ((6.3× 1010)s) (6)

60

Table 12: Time for HPC preimage attacks

Time Unit Equation Value

Seconds sSeconds = 1.5×1048

6.3×1010
2× 1037

Minutes sMinutes = sSeconds

60 4× 1035

Hours sHours = sMinutes

60 7× 1033

Days sDays = sHours

24 3× 1032

Weeks sWeeks =
sDays

7 4× 1031

Years sY ears = sWeeks

52 8× 1029

Decades sDecades = sY ears

10 8× 1028

Centuries sCenturies = sDecades

10 8× 1027

Millenniums sMillenniums = sCenturies

10 8× 1026

Alternatively, consider the scenario where Mallory discovers Bill’s signature and

corresponding hash sequence. Mallory now wishes to find an alternative signature to Bill’s

which will also produce the same hash sequence for the ability to claim false ownership of

Bill’s IP core. This type of attack is known as a secondary preimage attack and is known

to be computationally equivalent to a preimage attack [84]. Thus, both attacks are known

to be computationally infeasible.

Lastly, consider the scenario where Bill publicly discloses the signature and corre-

sponding hash sequence embedded. Mallory now wishes to use Bill’s signature find another

signature which will produce the same hash sequence. This is what is known as a collision

attack and is where an attacker attempts to find a pair or signatures which will produce

the same hash sequence [84]. Collision resistance is defined as 280, or 1.2 × 1024, for hash

functions using a 160-bit digest which is due to probabilities of random selection for data

blocks in this type of attack [84]. From this we can modify equation 6 to equation 7 and

solve for s. Table 13 shows that even though the complexity has been cut in half, the time

taken to perform a collision based attack is still computationally infeasible.

UncheckedSequences(U) = (1.2× 1024)− ((6.3× 1010)s) (7)

61

Table 13: Time for HPC collision attacks

Time Unit Equation Value

Seconds sSeconds = 1.2×1024

6.3×1010
2× 1013

Minutes sMinutes = sSeconds

60 3× 1011

Hours sHours = sMinutes

60 5× 109

Days sDays = sHours

24 2× 108

Weeks sWeeks =
sDays

7 3× 107

Years sY ears = sWeeks

52 6× 105

Decades sDecades = sY ears

10 6× 104

Centuries sCenturies = sDecades

10 6× 103

Millenniums sMillenniums = sCenturies

10 6× 102

4.10 Chapter Summary

Table 14 summarizes the three watermark construction methods, it is shown that

the HSD watermark construction method is the best possible implementation. While both

BSD and FSD have better time complexity, they lack the overall flexibility and low overhead

that can be observed from the sparse watermark FSMs generated by HSD.

Table 14: Summary of proposed watermark construction phase methods

Method Advantages Disadvantages

BSD Flexible for bitmaps Requires simple bitmaps

Sparse watermarks Lacks flexibility in signatures

Low complexity O(n×m)

Low overhead

FSD Flexibility in signature Requires files < 1KB

Low complexity O(n×m) Completely connected FSMs

Larger overhead

HSD Extremely flexible Higher complexity O(n2)

Secure collision free algorithm

shortest collision free hash sequence

Sparse watermark FSMs

Lowest overhead

Signature can be any possible format

62

Table 15 tabulates the advantages and disadvantages of the algorithms proposed for

the watermark embedding phase of this system. While the greedy approach provides the

desired scalability and complexity, it typically returns solutions that are not globally optimal

thus incurring higher cost. Conversely, the globally optimal solutions produced from the

brute force algorithm are ideal, but the system is not scalable for complex FSMs and incurs

extreme run-time complexities. We summarize the advantages and disadvantages of the

Table 15: Summary of proposed watermark embedding phase methods

Method Advantages Disadvantages

Brute Force Ideal for small FSMs O(nPm) complexity

Best possible matching Lacks scalability for complex systems

Greedy Scalability for complex systems Non-optimal solutions

O(n log n) complexity Higher cost implementations

methods proposed in model generation and verification phase of this system. From the

information provided in Table 16, it can be seen that these methods are advantageous in

this system but are typically limited by the capabilities of the software for which their use

relies. For example, by using the Pajek netlist format limits the functionalities that can be

taken advantage that are offered by Gephi [87]. Conversely, because the visualization tool

Gephi is still a beta version tool, support of multi-graphs (Mealy Model) FSMs is limited.

This does not allow for complete visualization of a FSM with multiple edges from a current

state to the same next sate.

Additionally, the Hash-2-Kiss2 algorithm is currently limited to only hexadecimal

hash signatures. Extraction techniques are very advantageous and the watermark is easily

verified post embedding. Additionally, the post-synthesis method implemented is extremely

flexible and can be altered to the IP owner’s choice for extracting the watermark.

Table 17 summarizes the computation complexities involved with specific attacks

that can be performed on this watermarking method. Additionally, the run-time complex-

ities involved in attacks past finding all paths of length 40 in the FSM were shown to be

computationally infeasible.

63

Table 16: Summary of proposed model generation and verification methods

Method Advantages Disadvantages

Hash-2-Kiss2 Low complexity O(n2) Limited to hexadecimal hashes

k2net Low complexity O(n) Limited by the format & software

k2vhdl Proper VHDL-93 syntax Limited to Xilinx ISE

Handles don’t cares correctly

Signal encoding flexibility

Properly generates XST scripts

Extraction Flexible extraction options

Watermark easily verified

Watermark easily extracted

Table 17: Summary of security run-time analysis

Attack Run-Time

Data-Mining Hidden Functionality O(2inputs × states)

All Paths in the FSM X O(n3)

Pre-Image Single Path O(2160)

Pre-Image All Paths O(X × 2160)

Secondary Pre-Image Single Path O(2160)

Secondary Pre-Image All Paths O(X × 2160)

Collision Single Path O(280)

Collision All Paths O(X × 280)

64

5 Experimental Results

5.1 Note to Reader

Portions of this chapter have been previously published (Lewandowski et al., 2012)[45]

and are utilized with permission of the publisher.

5.2 Xilinx Synthesis Options

All of our experiments are done with Xilinx ISE version 13.2, the synthesis options

specified are for the Xilinx Virtex5 FPGA (XUPV5-LX110T-F1136). Using the custom

k2vhdl tool, the synthesis options shown in Fig. 39 are inserted in the generated VHDL-93.

We performed simulations and obtained data for all benchmarks under the same synthesis

settings, which are listed in the VHDL code shown by Fig. 39. In the remainder of this

section explain synthesis options exercised.

Xilinx ISE offers a plethora of optimization options throughout the design process.

Table 18 shows the area and power optimization options. Further, more detailed explana-

tions of these synthesis options can be found in [88,89].

Table 18: Xilinx XST optimization options

XST Option XST Value Purpose

OPTIMIZE AREA Global Optimization {Combinatorial Logic}

OPTIMIZE PRIMITIVES YES Global Optimization {Primitives}

OPT MODE AREA Global Optimization Strategy {Area}

OPT LEVEL 2 High Level Optimization {Area:Speed}

POWER YES Global Optimization {Power}

PWR MODE LOW Power Optimization {Macrocells}

NOREDUCE [Signal] Prevents Minimization of Signal Logic

Additionally, as to not compromise the signature that was embedded the water-

marked FSMs were constrained to prevent to reduction of logic which update the output

65

1 -- --

2 -- Attribute Definitions

3 -- --

4 ATTRIBUTE OPTIMIZE OF lion : ENTITY IS "AREA";

5 ATTRIBUTE OPTIMIZE_PRIMITIVES OF lion : ENTITY IS "YES";

6 ATTRIBUTE OPT_MODE OF lion : ENTITY IS "AREA";

7 ATTRIBUTE OPT_LEVEL OF lion : ENTITY IS "2";

8 ATTRIBUTE POWER OF lion : ENTITY IS "YES";

9 ATTRIBUTE PWR_MODE OF lion : ENTITY IS "LOW";

10 ATTRIBUTE NOREDUCE OF datao : SIGNAL IS "TRUE";

11 ATTRIBUTE NOREDUCE OF svnx : SIGNAL IS "TRUE";

12 ATTRIBUTE NOREDUCE OF ansig : SIGNAL IS "TRUE";

13 ATTRIBUTE FSM_ENCODING OF lion : ENTITY IS "gray";

14 ATTRIBUTE FSM_EXTRACT OF lion : ENTITY IS "YES";

15 ATTRIBUTE SIGNAL_ENCODING OF lion : ENTITY IS "USER";

16 ATTRIBUTE REGISTER_BALANCING OF lion : ENTITY IS "YES";

17 ATTRIBUTE EQUIVALENT_REGISTER_REMOVAL OF lion : ENTITY IS "YES";

18 ATTRIBUTE BUFGCE OF lion : ENTITY IS "YES";

19 ATTRIBUTE CLOCK_SIGNAL OF clk : SIGNAL IS "YES";

20 ATTRIBUTE LUT_MAP OF lion : ENTITY IS "YES";

21 ATTRIBUTE RESOURCE_SHARING OF lion : ENTITY IS "YES";

22 ATTRIBUTE PRIORITY_EXTRACT OF lion : ENTITY IS "YES";

23 ATTRIBUTE RAM_EXTRACT OF lion : ENTITY IS "YES";

24 ATTRIBUTE ROM_EXTRACT OF lion : ENTITY IS "YES";

25 ATTRIBUTE MUX_EXTRACT OF lion : ENTITY IS "YES";

26 ATTRIBUTE SHIFT_EXTRACT OF lion : ENTITY IS "YES";

27 ATTRIBUTE SHREG_EXTRACT OF lion : ENTITY IS "YES";

28 ATTRIBUTE DECODER_EXTRACT OF lion : ENTITY IS "YES";

29 ATTRIBUTE XOR_COLLAPSE OF lion : ENTITY IS "YES";

30 ATTRIBUTE BOX_TYPE OF lion : ENTITY IS "USER_BLACK_BOX";

Figure 39: Sample VHDL synthesis options generation for Lion.kiss2

signal. Biased results have the potential to occur by only minimizing one FSM. From un-

fair minimization practices the overhead of an implementation would no longer accurately

portrayed by the results. To prevent such bias each of the benchmark files used the same

synthesis options which prevented the FSMs from having state reduction techniques per-

formed. Instead of model level reduction these synthesis options were used to attempt to

find optimal low-level hardware implementations for all benchmarks without compromising

the signature or unfairly represent overhead.

66

For the sake of clarity, we note that for “NOREDUCE” the “[Signal]” value is that of

the FSM output. By implementing this synthesis constraint, XST identifies the output node

of combinatorial feedback, preventing its removal, and ensuring its correct mapping [89].

5.3 Benchmark Suite

The benchmark suite for evaluating the proposed method is the International Work-

shop on Logic Synthesis (IWLS) ’93 benchmark suite [90, 91]. It contains roughly 50 Kiss2

format files that were developed for the use with FSM optimization tools. However, the

only optimization techniques we performed were the removal of unreachable states in the

machine. Table 19 shows the ten largest state FSM benchmarks after trimming unreachable

states and their respective sizes.

Table 19: Top ten largest IWLS’93 Kiss2 files

File Number of States Number of Edges

bbara bbtas 30 268

keyb 19 170

kirkman 16 381

s298 218 1096

s820 25 232

s832 25 245

s1488 48 251

s1494 48 250

sand 23 184

tbk 28 1569

Table 20, summarizes the state encoding options used in the experiments with the

watermarked and original benchmark sets. In the last column we summarize the design

metric optimized with the given state encoding scheme. We note that only the User encoding

scheme can be employed with the watermarked FSM.

5.4 Overhead Calculations

In the following sections we provide details pertaining to each encoding scheme

and provide the calculated overhead results. Overhead calculations are computed with

67

Table 20: Encoding schemes used

Benchmark Set

State Encoding Original Watermark State Encoding Metric Notes

Gray X – Minimize Hazards & Glitches

Johnson X – FCFS Gray

One-Hot X – Speed & Power Dissipation

Sequential X – Minimized Next State Equations

Speed1 X – Speed Optimization

User X X Specified in Source by User

equations 8 and 9. Equations 10 and 11 are used for calculating overhead percentages for

the results reported in the tables comparing the watermarked and original FSM designs.

∆Area[LUT](x
′, x) = (

∑
LUT[x′])/(

∑
LUT[x]) (8)

∆Frequency[Max](x
′, x) = (Frequency[x′])/(Frequency[x]) (9)

%Overhead[∆Area](x
′, x) = 100[(∆Area[LUT](x

′, x))− 1] (10)

%Overhead[∆Frequency](x
′, x) = 100[(∆Frequency[Max](x

′, x))− 1] (11)

We note that, x′ and x represent the watermarked and original FSMs, respectively. To

provide a baseline for computing these overhead calculations, original and watermarked

designs are synthesized with the same synthesis options with the exception of state encod-

ing. All results were generated using pre-generated XST synthesis scripts through Xilinx

commandline usage of the Xilinx Tcl Shell.

5.4.1 User Encoding

Xilinx ISE Design Suite allows users to alter synthesis constraints and settings, which

allows for FSMs to implement a user specified state encoding. Using this XST command

allows us to enforce the specified state encoding after the watermark had been embedded

into the original FSMs. This user encoding is specified as a sequential state encoding that

follows the state labels from the watermarked Kiss2 file, such that, “st0” in a Kiss2 file

68

has its state encoding value strictly enforced as “...000” during synthesis. This allows us

to preserve the watermark state encoding and mappings created during the watermarking

phase from Section 4.6. Table 21 shows the baseline synthesis results of the benchmarks.

Each of the two FSMs, original and watermarked, utilize the enforced User state encoding

scheme.

Table 21: Xilinx synthesis results for User & User encoded FSMs

Un-Watermarked Watermarked Overhead (%)

File Area Frequency Area Frequency Area Frequency

LUTs MHz LUTs MHz LUTs MHz

bbara bbtas 59 328 141 354 139 8

keyb 120 348 114 313 -5 -10

kirkman 90 381 163 480 81 26

s298 360 244 514 242 43 -1

s820 90 409 384 260 327 -36

s832 101 379 349 232 246 -39

s1488 147 332 223 317 52 -5

s1494 152 369 199 340 31 -8

sand 235 282 506 215 115 -25

tbk 180 331 278 344 54 5

Average 108 -9

5.4.2 Gray Encoding

The Gray state encoding scheme operates in the same manner as binary Gray

code [92], such that, given a list of binary numbers two successive numbers are separated

at most by a Hamming Distance [93] of one. This is illustrated with a 2-bit example in

Table 22.

As illustrated, the Hamming Distance of one can be simply explained as, if two rows

are adjacent then the difference in the summation of “1s” in each of the binary strings in

the rows being compared is one. From this, Gray code can be used to avoid hazards and

logic glitches in the system by guaranteeing that only one state variable will switch [88],

69

Table 22: 2-bit Gray encoding & Hamming distance

Value Gray Value

[0] [1] [2]

0 0 0 0

1 0 0 1

3 0 1 1

2 0 1 0

maintaining a hamming distance of one, between two consecutive states. Table 23 reports

the synthesis results and calculated overhead for the watermarked and original FSMs.

Table 23: Xilinx synthesis results for Gray & User encoded FSMs

Un-Watermarked Watermarked Overhead (%)

File Area Frequency Area Frequency Area Frequency

LUTs MHz LUTs MHz LUTs MHz

bbara bbtas 54 361 141 354 161 -2

keyb 120 275 114 312 -5 13

kirkman 72 379 163 480 126 26

s298 357 235 514 241 43 2

s820 87 384 384 260 341 -32

s832 96 370 349 231 263 -37

s1488 147 344 223 316 51 -8

s1494 154 341 199 340 29 0

sand 220 280 506 214 130 -23

tbk 189 317 278 343 47 8

Average 119 -5

5.4.3 Johnson Encoding

The Johnson encoding scheme operates in a similar method to Gray, showing ben-

efit for long paths with no branching [88]. The Johnson Encoding scheme is based off of

Johnson’s original algorithm for shortest paths which operated on sparse graphs [17]. Under

these conditions it is most likely to return poor results for CSFSM. Using the FSM from

Fig. 1, and Xilinx Synthesis, Table 24 illustrates this encoding scheme.

70

Table 24: Johnson encoding

State Johnson Value

st0 00

st1 01

st2 11

st3 10

Table 24 shows that the Johnson encoding scheme only slightly differs from Gray

code. For the Johnson encoding rather than assigning “st3” the value of “11,” as the Gray

encoding scheme would, the Johnson encoding scheme instead applies a Gray coding in a

FCFS manner and assigns “st3” the value of “10.” Table 25 reports the synthesis results

and calculated overhead for the original FSMs using the Johnson encoding algorithm and

the watermarked FSMs using the User enforced state encoding.

Table 25: Xilinx synthesis results for Johnson & User encoded FSMs

Un-Watermarked Watermarked Overhead (%)

File Area Frequency Area Frequency Area Frequency

LUTs MHz LUTs MHz LUTs MHz

bbara bbtas 214 279 141 354 -34 26

keyb 167 282 114 312 -31 10

kirkman 115 346 163 480 41 38

s298 5276 117 514 241 -90 105

s820 192 261 384 260 100 0

s832 191 231 349 231 82 0

s1488 544 175 223 316 -59 80

s1494 541 183 199 340 -63 85

sand 297 247 506 214 70 34

tbk 564 196 278 343 -50 74

Average -3 46

5.4.4 One-hot Encoding

One-hot state encoding is a state encoding method that ensures that each state

register is dedicated solely to a single state, therefore a single register is active at a given

71

time. This means that the number of registers needed is equal to the number of states in

the system and the length of the encoding string will be of the same length. Table 26 shows

an example of the One-hot encoding scheme.

Table 26: One-hot encoding

State Value One-Hot Value

st0 1000

st1 0100

st2 0010

st3 0001

Under most cases, One-hot encoding can be employed for power reduction and per-

formance improvement [88]. Table 27 reports the synthesis results and calculated overhead

for the original FSMs using the One-hot encoding algorithm and the watermarked FSMs

using the User enforced state encoding.

Table 27: Xilinx synthesis results for One-hot & User encoded FSMs

Un-Watermarked Watermarked Overhead (%)

File Area Frequency Area Frequency Area Frequency

LUTs MHz LUTs MHz LUTs MHz

bbara bbtas 195 263 141 354 -27 34

keyb 223 268 114 312 -48 16

kirkman 167 219 163 480 -2 118

s298 2384 136 514 241 -78 76

s820 211 268 384 260 81 -3

s832 226 245 349 231 54 -5

s1488 612 184 223 316 -63 71

s1494 626 158 199 340 -68 114

sand 373 191 506 214 35 73

tbk 489 198 278 343 -43 72

Average -16 57

72

5.4.5 Sequential Encoding

Sequential state encoding is the standard binary counting scheme, state-by-state

and in-order, where states are assigned their appropriate binary value counterpart. This is

illustrated in Table 28.

Table 28: Sequential encoding

State Value Sequential Value

st0 00

st1 01

st2 10

st3 11

Through the use of this state encoding systems can have their next state equations

minimized [88], which will help reduce the area. Table 29 reports the synthesis results and

calculated overhead for the original FSMs using the Sequential encoding algorithm and the

watermarked FSMs using the User enforced state encoding.

Table 29: Xilinx synthesis results for Sequential & User encoded FSMs

Un-Watermarked Watermarked Overhead (%)

File Area Frequency Area Frequency Area Frequency

LUTs MHz LUTs MHz LUTs MHz

bbara bbtas 50 408 141 354 182 -13

keyb 116 296 114 312 -1 5

kirkman 90 380 163 480 81 26

s298 373 288 514 241 37 -16

s820 93 367 384 260 312 -29

s832 96 340 349 231 263 -31

s1488 147 332 223 316 51 -4

s1494 152 369 199 340 30 -7

sand 214 327 506 214 136 1

tbk 201 316 278 343 38 8

Average 113 -6

73

5.4.6 Speed1 Encoding

The Speed1 Encoding algorithm is designed for speed optimization [88]. The state

register size is significantly increased due to the manner in which this algorithm operates,

such that the number of bits used is FSM dependent. In general the Speed1 encoding

scheme will assign state encoding values with a length greater than the number of states in

the FSM. Using the FSM from Fig. 1, Table 30 shows this state encoding.

Table 30: Speed1 encoding

State Value Speed1 Value

st0 1000

st1 0100

st2 0010

st3 0001

It can be seen that, in this example, the Speed1 encoding scheme produces the same

encoding scheme as One-Hot but offers a different optimization metric in doing so. Table 31

reports the synthesis results and calculated overhead for the original FSMs using the Speed1

encoding algorithm and the watermarked FSMs using the User enforced state encoding.

Table 31: Xilinx synthesis results for Speed1 & User encoded FSMs

Un-Watermarked Watermarked Overhead (%)

File Area Frequency Area Frequency Area Frequency

LUTs MHz LUTs MHz LUTs MHz

bbara bbtas 458 163 141 354 -69 116

keyb 250 231 114 312 -54 35

kirkman 160 283 163 480 1 69

s298 5669 117 514 241 -90 105

s820 373 241 384 260 2 7

s832 376 195 349 231 -7 18

s1488 693 178 223 316 -67 77

s1494 706 151 199 340 -71 124

sand 397 222 506 214 27 49

tbk 866 182 278 343 -67 88

Average -40 69

74

5.5 Discussion of Results

We discuss the results gathered and evaluate the performance of our method. We

provide a summary of the watermarked and un-watermarked findings for the six state

encoding schemes. We first look at discrepancies discovered in the synthesis results.

5.5.1 Synthesis Discrepancies

The user enforced encoding scheme specified in the experiments follows a sequen-

tial encoding scheme. From the behavior of the k2vhdl tool, previously covered, during

VHDL model generation states in the Kiss2 file are written using a sequential ordering,

such that, in the body of the “state machine” VHDL process the ordering of the states

within the case statement is sequential. The User encoding scheme is specified by a list

of encoding values, i.e., {00, 10, 11, 10} will specifically map as the encoding values for

the states found in the case statement. If this case statement ordering happens to be

{st0, st3, st2, st1} then the corresponding state encoding mappings will be the set of ordered

pairs {(st0, 00), (st3, 10), (st2, 11), (st1, 10)}. With this knowledge, we expect the overhead

comparisons between User and Sequential encoding schemes to be zero in all cases. This is

based on the knowledge that Xilinx Synthesis should produce same results for the same file,

which is further supported by Xilinx guarantees that Xilinx Synthesis Technologies should

be deterministic [94].

Table 32 reports the synthesis results of benchmarks using User & Sequential state

encoding. On average there was a 3% increase in LUT usage and a 1% decrease in the

performance of the FSMs. Additionally, it can be seen that only 3 out of the 10 synthesis

results return the 0% expected overhead.

5.5.2 Synthesis Results

Table 33 summarizes the results for the six state encoding schemes. We report

minimum, maximum, and average overheads for area and frequency. Table 34 lists the

advantages and disadvantages that this method offers with respect to the encoding schemes.

75

Table 32: Xilinx synthesis discrepancies for User & Sequential encoded FSMs

Un-Watermarked Un-Watermarked Overhead (%)

File Area Frequency Area Frequency Area Frequency

LUTs MHz LUTs MHz LUTs MHz

bbara bbtas 59 328 50 409 18 -20

keyb 120 348 116 296 4 17

kirkman 90 381 90 381 0 0

s298 360 244 373 288 -4 -16

s820 90 409 93 367 -3 11

s832 101 379 96 340 5 11

s1488 147 332 147 332 0 0

s1494 152 369 152 369 0 0

sand 235 282 214 327 10 -14

tbk 180 331 201 317 -11 4

Average 3 -1

Table 33: Summary of Xilinx synthesis results

Synthesis Overhead (%)

(Min,Max,Avg) (Min,Max,Avg)

Encoding LUTs Frequency LUTs Frequency

Watermarked

User (114,514,287) (215,480,310) (–,–,–) (–,–,–)

Un-Watermarked

User (59,360,153) (244,409,340) (-5,327,109) (-38,27,-8)

Gray (54,357,150) (235,385,329) (-5,342,120) (-37,27,-5)

Johnson (115,5276,810) (118,346,232) (-90,100,-4) (0,106,47)

One-Hot (167,2384,551) (137,285,234) (-78,82,-16) (-3,119,59)

Sequential (50,373,153) (288,409,343) (-1,313,114) (-31,27,-6)

Speed1 (160,5669,995) (117,284,197) (-90,28,-40) (8,125,70)

76

Table 34: Summary of performance

Advantages Against Metrics

Johnson Minimize Hazards & Glitches

One-Hot Speed & Power Dissipation

Speed1 Speed Optimization

Disadvantages Against Metrics

User Minimized Next State Equations

Sequential Minimized Next State Equations

Gray Minimize Hazards & Glitches

77

6 Future Work

6.1 Sequential Circuit Logic Synthesis: k3

New methods for the advancement of this work are currently underway. These

methods consist of a custom tool, dubbed “k3,” that encapsulates a range of options for

the minimization and optimization of FSMs. In addition, a more intuitive sequential circuit

modeling language is being adapted from current, and newer, methods. Table 35 gives an

overview of some of the optimization techniques, options, and support for the in-progress

k3 system.

Table 35: k3 overview

Offered Minimization Techniques

Legacy & New Model Support

Trap/Dead State Removal

Unreachable State Removal

State Table Minimization

Don’t Care Collapsing & Decomposition

Clique Based Maximal Compatibility Groups

Visualization Format File Outputs

Legacy & New Model Generation

HDL & Synthesis File Generation

In addition to this new system, we will explore of new methods for the embedding

algorithm. As a greedy heuristic has proven to be a non-optimal, proof of concept, for

embedding the watermark into the original FSM. Due to the nature of the problem and

its associated complexity this can prove to be a difficult task. Currently this task is being

explored through the implementation, and construction, of a simulated annealing based

approach. However, while simulated annealing has a greater potential to produce desirable

results, alternative algorithmic solutions are to be explored. In addition to this on-going

78

work, the watermarking edge creation method is going to be further analyzed. Watermark-

ing techniques currently available, that do not implement the use of state addition, utilize

specific or unused input sequences available at a given state, we intend to explore the option

of the “phantom edge,” which is explained at length in the next section.

6.2 Phantom Edges

We define a phantom edge to be an edge in the system which does not exist, or affect

the system, in normal functionality. This is achieved through the utilization of extra input

bits that are otherwise non-functional, or non-system affecting, during normal operation.

An example of an FSM which utilizes this technique and implements these phantom edges

is shown in Fig. 40 (the phantom edges are represented by dashed lines). It can be seen

that these edges are only active in a separate mode, other than the normal, in which

system output is in no way affected. This absence of observable functionality allows for a

better disguise of internal system behavior in the event a malicious user is observing output

behavior to data mine functionality. As illustrated, the FSM utilizes modal functionality

known only to the user, we also note that the bit which will cause a modal change does not

have to be the least significant bit (LSB) or most significant bit (MSB) of the system, but

rather, it can be inserted at any location of the input bit string and, exhibiting the same

edge behavior, can achieve replication of the functionality shown.

st0 st1 st2 st3

000 / 11 010 / 01 000 / 11

000 / 10 011 / 00010 / 10

000 / 01
1-- / -- 1-- / --

1-- / --

Figure 40: FSM with phantom edges

Along with phantom edge creation, this method utilizes overlapping functional

edges, such that the sequence derived for recreation of the signature requires a more complex

79

interaction with the system. The idea behind this is that these edges may help obfuscate

functionality when an attacker attempts to formally verify all functionality.

6.2.1 Cost of a Phantom Edge

To further examine these phantom edges, we looked at the actual cost of the addition

of a series of phantom edges through an FSM constructed using the VHDL modeling. Table

36 shows the Xilinx Synthesis results for the series of cost experiments for phantom edges.

Table 36: Xilinx synthesis results of phantom edge FSMs

Fig. 40 FSM

Number of Phantom Edges

(0) (1) (2) (3) (12)

States 4

Transitions 11 12 13 14 23

Input Bits 3 4 5

Output Bits 4

Encoding Gray

Implementation LUT

Registers Used 2

Look-Up Tables (LUTs) Used 4 5

Max. Frequency (MHz) 1075.963

It can be seen from the results in Table 36 that, based on this particular example,

Phantom Edges can be expected to provide a low cost impact on area even though the num-

ber of edges in the system more than doubled. It can also been seen from this example that

the addition of these edges doesn’t immediately show a negative impact on the maximum

frequency for which the system can operate at either.

6.3 Watermark Extraction

Recent exploration of side-channel watermarking from [60] employ side-channel

methods for watermarking circuits. Alternative to the current watermark extraction method

which requires extra means to read the state register, the exploration of the techniques em-

80

ployed in this method may be beneficial for implementation within this system. In addition,

this method can easily be stacked with a power profiling method and phantom edges, thus

enabling the watermark to only be extracted through these hidden side-channels in the

effort to prevent the system from exhibiting behavior that exposes or outputs part of the

watermark.

6.4 Metric Stacking

The exploration of further state encoding possibilities and stacked implementations

is being looked into. This is the manner of minimizing a system and strictly enforcing the

state encoding beneficial to the system prior to watermarking. Conversely, embedding a

signature whose watermark states are strictly enforced while the remainder of states in the

FSM can have their state encoding values assigned to a given scheme for metric benefits is

being explored.

81

7 Conclusions

The proposed method of watermarking sequential circuits via state encoding is a

feasible technique that can be easily employed. The proposed methods for watermark

construction show that HSD is best implementation. It was shown to offer sparse watermark

FSMs which lower overhead and provides the greatest flexibility allowing the signature to

be a file of any format or size. Additionally, by using the RIPEMD-160 hashing function

we produce the shortest secure and collision free hash sequence known.

The proposed greedy solution for watermark embedding showed to be scalable for

FSMs of varying complexity and offered a significant decrease in run-time complexity. Scal-

ability and low run-time complexity however led to higher overhead from non-optimal so-

lutions.

Model generation and verification methods proved to be very advantageous. The

“k2net” tool, for generating visualization files, provides low run-time complexity while pro-

viding a method for visualizing the Kiss2 representations of FSMs. The “Hash-2-Kiss2”

tool, for generating watermark FSMs from hash sequences, proved to be a powerful tool

with low-run time complexity. Most importantly, the “k2vhdl” tool proved to be an ex-

tremely powerful tool for verification, synthesis, and simulation of Kiss2 FSMs. This tool

automatically generates VHDL-93 syntactically correct code, allowing for flexibility through

the ability to specify state encoding schemes to be used, and reducing complications from

don’t care statements and unspecified state behavior.

Through the use of Xilinx simulation the watermark can easily be verified. The

process of watermark extraction provides many flexible options for obtaining state encoding

values at run-time. Additionally, the watermark can be easily extracted by applying the

sequence used for verification. Lastly, the security of this method proves to be extensive.

HPC solutions that can attempt billions of brute force attacks per second can be shown to

still require a computationally infeasible amount of time.

82

References

[1] R. S. Chakraborty and S. Bhunia, “HARPOON : An Obfuscation-Based SoC Design
Methodology for Hardware Protection,” Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, vol. 28, no. 10, pp. 1493–1502, 2009. [Online].
Available: http://goo.gl/eizHC

[2] A. Tirkel, G. Rankin, R. van Schyndel, W. Ho, N. Mee, and C. Osborne, “Electronic
Watermark,” Digital Image Computing: Techniques and Applications, 1993., 1993.

[3] F. Lancaster, “The Evolution of Electronic Publishing,” Library Trends, vol. 43, no. 4,
pp. 518–527, 1995.

[4] J. T. Brassil, S. Member, S. Low, N. F. Maxemchuk, and L. O. Gorman, “Electronic
Marking and Identification Techniques to Discourage Document Copying,” Selected
Areas in Communications, IEEE Journal on, vol. 13, no. 8, pp. 1495–1504, 1995.
[Online]. Available: http://goo.gl/RLDQH

[5] E. Charbon, “Hierarchical watermarking in IC design,” Pro-
ceedings of the IEEE 1998 Custom Integrated Circuits Confer-
ence (Cat. No.98CH36143), pp. 295–298, 1998. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=694985

[6] J. Lach, W. Mangione-Smith, and M. Potkonjak, “FPGA fingerprinting techniques
for protecting intellectual property,” Proceedings of the IEEE 1998 Custom Integrated
Circuits Conference (Cat. No.98CH36143), pp. 299–302, 1998. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=694986

[7] A. Oliveira, “Robust techniques for watermarking sequential cir-
cuit designs,” Proceedings 1999 Design Automation Conference
(Cat. No. 99CH36361), pp. 837–842, 1999. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=782155

[8] A. L. Oliveira, “Techniques for the Creation of Digital Watermarks in Sequential
Circuit Designs,” Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 20, no. 9, pp. 1101–1117, 2001. [Online]. Available:
http://goo.gl/7ihp4

[9] Z. Kohavi, “Finite state machine,” in Switching and Finite Automata Theory . Tata
McGraw-Hill, 1998, p. 275.

[10] F. Vahid and T. Givargis, “State machine and concurrent process models,” in Embedded
System Design, A Unified Hardware/Software Introduction. John Wiley & Sons, 2002,
pp. 212–213.

[11] B. D. C. Victor P. Nelson, H. Troy Nagle and J. D. Irwin, “State assignment,” in
Digital Logic Circuit Analysis & Design. Prentice-Hall, 1995, p. 605.

83

[12] U. Berkeley. (1992) Berkeley Logic Interchange Format (BLIF). [Online]. Available:
http://embedded.eecs.berkeley.edu/Alumni/teh/research/papers/blif spec 92.pdf

[13] E. Moore, “Gedanken-experiments on sequential machines,” Automata Studies, Annals
of Mathematical Studies , vol. 34, pp. 129–153, 1956.

[14] G. Mealy, “A method for synthesizing sequential circuits,” The Journal of Symbolic
Logic, vol. 22, no. 3, pp. 334–335, September 1957.

[15] J. L. M. Gideo Langholz, Abraham Kandel, “State assignment,” in Foundations of
Digital Logic Design. World Scientific, 1998, p. 385.

[16] G. Maki, I. Sawin, D.H., and B.-R. Jeng, “Improved state assignment selection tests,”
Computers, IEEE Transactions on, vol. C-21, no. 12, pp. 1443–1449, dec. 1972.

[17] D. B. Johnson, “Efficient algorithms for shortest paths in sparse networks,”
Journal of the ACM , vol. 24, no. 1, pp. 1–13, January 1977. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=321992.321993

[18] G. D. E. Micheli, R. Membe, and R. K. Brayton, “Optimal State Assignment for
Finite State Machines,” Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 4, no. 3, pp. 269–285, 1985. [Online]. Available:
http://goo.gl/cuu4a

[19] S. Devadas, H.-K. Ma, A. Newton, and A. Sangiovanni-Vincentelli, “MUS-
TANG: State Assignment of Finite State Machines Targeting Multilevel Logic
Implementations,” Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 7, no. 12, pp. 1290–1300, 1988. [Online]. Available:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=16807&isnumber=610

[20] B. Eschermann and H.-J. Wunderlich, “Optimized synthesis of self-testable
finite state machines,” [1990] Digest of Papers. Fault-Tolerant Comput-
ing: 20th International Symposium, pp. 390–397, 1990. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=89393

[21] S. Robinson and J. Shen, “Evaluation and synthesis of self-monitoring state
machines,” 1990 IEEE International Conference on Computer-Aided De-
sign. Digest of Technical Papers, pp. 276–279, 1990. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=129901

[22] D. J. Rosenkrantz, “Half-Hot State Assignments for Finite State Machines,”
Computers, IEEE Transactions on, vol. 39, no. 5, pp. 700–702, 1990. [Online].
Available: http://goo.gl/dgxLY

[23] M. Perkowski and L. Nguyen, “The encoding program for concurrent finite
state machines realized using PLD devices,” Proceedings of the 33rd Midwest
Symposium on Circuits and Systems , pp. 204–207, 1990. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=140687

[24] J.-j. Yang, H. Shin, J.-w. Chow, and G. Star, “New State Assignment Algorithms for
Finite State Machines Using Look Ahead,” Custom Integrated Circuits Conference,
1991., Proceedings of the IEEE 1991 , pp. 11.2/1–11.2/4, 1991. [Online]. Available:
http://goo.gl/6s69G

84

[25] L. Lavagno, C. Moon, R. Brayton, and A. Sangiovanni-Vincentelli, “Solving the state
assignment problem for signal transition graphs,” in Design Automation Conference,
1992. Proceedings., 29th ACM/IEEE , jun 1992, pp. 568–572.

[26] G. Rietsche and F. Informatik, “State Assignment for Finite State Machines
Using T Flip-Flops,” Design Automation Conference, 1993, with EURO-VHDL ’93.
Proceedings EURO-DAC ’93., European, pp. 396–401, 1993. [Online]. Available:
http://goo.gl/6khX8

[27] T.-a. Chu, N. Mani, and C. K. C. Leung, “A New State Assignment Technique
for Asynchronous Finite State Machines,” ’Design Automation of High Performance
VLSI Systems’, Proceedings., Third Great Lakes Symposium on, pp. 139–143, 1993.
[Online]. Available: http://goo.gl/0j4H6

[28] K.-H. Wang, W.-S. Wang, T. Hwang, A. Wu, and Y.-L. Lin, “State assignment for
power and area minimization,” in Computer Design: VLSI in Computers and Proces-
sors, 1994. ICCD ’94. Proceedings., IEEE International Conference on, oct 1994, pp.
250–254.

[29] T.-d. Her, W. K. Tsai, F. Kurdahi, and Y. Chen, “Low-Power Driven State
Assignment of Finite State Machines,” Circuits and Systems, 1994. APCCAS ’94.,
1994 IEEE Asia-Pacific Conference on, pp. 454–459, 1994. [Online]. Available:
http://goo.gl/dh494

[30] E. Olson and S. Kang, “Assignment for Low-Power FSM Synthesis Using Genetic
Local Search,” Custom Integrated Circuits Conference, 1994., Proceedings of the IEEE
1994 , pp. 140–143, 1994. [Online]. Available: http://goo.gl/D56EQ

[31] C. Bolchini, R. Montandon, F. Sake, D. Sciuto, and P. Milano, “A State Encoding
for Self-Checking Finite State Machines,” Design Automation Conference, 1995.
Proceedings of the ASP-DAC ’95/CHDL ’95/VLSI ’95., IFIP International Conference
on Hardware Description Languages; IFIP International Conference on Very Large
Scale Integration., Asian and South Pacific, pp. 711–716, 1995. [Online]. Available:
http://goo.gl/8qP7a

[32] J. Rutten and M. Berkelaar, “Improved State Assignment for Burst Mode Finite
State Machines,” Advanced Research in Asynchronous Circuits and Systems, 1997.
Proceedings., Third International Symposium on, pp. 228–239, 1997. [Online].
Available: http://goo.gl/oAh5V

[33] I. Ahmad and R. Ul-Mustafa, “On State Assignment of Finite State Machines Using
Hypercube Embedding Approach,” Computer Design, 1999. (ICCD ’99) International
Conference on, pp. 608–613, 1999. [Online]. Available: http://goo.gl/jAqLV

[34] P. Bacchetta, L. Daldoss, D. Sciuto, and C. Silvano, “Low-Power State Assignment
Techniques for Finite State Machines,” Circuits and Systems, 2000. Proceedings.
ISCAS 2000 Geneva. The 2000 IEEE International Symposium on, vol. 2, pp.
641–644, 2000. [Online]. Available: http://goo.gl/tgQWt

[35] L. Jozwiak and A. Slusarczyk, “A new state assignment method targeting fpga imple-
mentations,” in Euromicro Conference, 2000. Proceedings of the 26th, vol. 1, 2000, pp.
50–59.

85

[36] S. K. Kuusilinna, “Finite state machine encoding for VHDL synthesis,” Computers
and Digital Techniques, IEE Proceedings -, vol. 148, no. 1, pp. 23–30, 2001. [Online].
Available: http://goo.gl/wLACN

[37] M. Chyzy and W. Kosiski, “Evolutionary Algorithm for State Assignment of Finite
State Machines,” Digital System Design, 2002. Proceedings. Euromicro Symposium
on, pp. 359–362, 2002. [Online]. Available: http://goo.gl/VvY8K

[38] S. Roy, “Power conscious BIST design for sequential circuits using ghost-FSM,”
Proceedings of the 7th International Conference on Properties and Applications of
Dielectric Materials (Cat No 03CH37417) ATS-03 , pp. 190–195, 2003. [Online].
Available: http://goo.gl/qV8eS

[39] G. Venkataraman, S. Reddy, and I. Pomeranz, “Gallop: genetic algorithm based low
power fsm synthesis by simultaneous partitioning and state assignment,” in VLSI De-
sign, 2003. Proceedings. 16th International Conference on, jan. 2003, pp. 533–538.

[40] S. Chattopadhyay, P. Yadav, and R. Singh, “Multiplexer targeted finite state
machine encoding for area and power minimization,” India Annual Conference, 2004.
Proceedings of the IEEE INDICON 2004. First , pp. 12–16, 2004. [Online]. Available:
http://goo.gl/3nYHA

[41] B. Tawadros and R. Guindi, “State Assignment for Low-
Leakage Finite State-Machines,” The 3rd International IEEE-
NEWCAS Conference, 2005., pp. 115–118, 2005. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1496657

[42] L. Mengibar, L. Entrena, and M. Garc, “Partitioned state encoding for low power in
FPGAs,” Electronics Letters, vol. 41, no. 17, pp. 18–19, 2005. [Online]. Available:
http://goo.gl/E0kGx

[43] M. Damm, “State Assignment for Detecting Erroneous Transitions
in Finite State Machines,” 9th EUROMICRO Conference on Digi-
tal System Design (DSD’06), pp. 483–490, 2006. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1690077

[44] Y. Lee, K. Choi, and T. Kim, “SAT-based state encoding for peak current
Minimization,” 2009 International SoC Design Conference (ISOCC), pp. 432–435,
2009. [Online]. Available: http://goo.gl/Z1kLE

[45] M. Lewandowski, R. Meana, M. Morrison, and S. Katkoori, “A novel method
for watermarking sequential circuits,” 2012 IEEE International Symposium on
Hardware-Oriented Security and Trust , pp. 21–24, Jun. 2012. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6224313

[46] L. Zhang and C.-h. Chang, “State Encoding Watermarking for Field Authentication
of Sequential Circuit Intellectual Property,” Circuits and Systems (ISCAS), 2012
IEEE International Symposium on, pp. 3013–3016, 2012. [Online]. Available:
http://goo.gl/R32oH

[47] M. Karnaugh, “The map method for synthesis of combinational logic circuits,” Trans.
AIEE. pt I , vol. 72, no. 9, pp. 593–599, November 1953.

86

[48] I. Tomnoglu and E. Charbon, “Watermarking-Based Copyright Protection of
Sequential Functions,” Custom Integrated Circuits, 1999. Proceedings of the IEEE
1999 , pp. 35–38, 1999. [Online]. Available: http://goo.gl/dDx6Z

[49] A. Abdel-Hamid, S. Tahar, and E. M. Aboulhamid, “IP watermarking techniques:
survey and comparison,” in System-on-Chip for Real-Time Applications, 2003. Pro-
ceedings. The 3rd IEEE International Workshop on, June-2 July 2003, pp. 60–65.

[50] A. Abdel-Hamid, S. Tahar, and E. Aboulhamid, “A Tool for Automatic Watermarking
of IP Designs,” Circuits and Systems, 2004. NEWCAS 2004. The 2nd Annual IEEE
Northeast Workshop on, pp. 381–384, 2004. [Online]. Available: http://goo.gl/iAoNh

[51] ——, “A Public-Key Watermarking Technique for IP Designs,” Design,
Automation and Test in Europe, pp. 330–335, 2005. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1395581

[52] A. T. Abdel-Hamid, S. Tahar, and E. Aboulhamid, “Finite State Machine IP
Watermarking: A Tutorial,” First NASA/ESA Conference on Adaptive Hardware and
Systems (AHS’06), pp. 457–464, 2006. [Online]. Available: http://goo.gl/hZUgT

[53] S. S. P. S. Nandgawe, “Intellectual Property Protection of Sequential Circuits Using
Digital Watermarking,” Industrial and Information Systems, First International
Conference on, no. August, pp. 8–11, 2006. [Online]. Available: http://goo.gl/ibpEU

[54] A. Stoica and S. Katkoori, “”Glitch Logic” and Applications to Computing and Infor-
mation Security,” in Bio-inspired Learning and Intelligent Systems for Security, 2009.
BLISS ’09. Symposium on, August 2009, pp. 107–112.

[55] A. Cui and C.-H. Chang, “Watermarking for IP Protection through Template
Substitution at Logic Synthesis Level,” 2007 IEEE International Symposium
on Circuits and Systems, pp. 3687–3690, May 2007. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4253481

[56] M.-C. Lin, G.-R. Tsai, C.-R. Wu, and C.-H. Lin, “Watermarking Tech-
nique for HDL-based IP Module Protection,” Third International Con-
ference on Intelligent Information Hiding and Multimedia Signal Pro-
cessing (IIH-MSP 2007), pp. 393–396, Nov. 2007. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4457732

[57] R. S. Chakraborty and S. Bhunia, “Hardware protection and authentication
through netlist level obfuscation,” 2008 IEEE/ACM International Confer-
ence on Computer-Aided Design, pp. 674–677, Nov. 2008. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4681649

[58] A. Abdel-Hamid and S. Tahar, “Fragile IP Watermarking Techniques,” in Adaptive
Hardware and Systems, 2008. AHS ’08. NASA/ESA Conference on, June 2008, pp.
513–519.

[59] F. Koushanfar and W. Marsh, “Provably Secure Obfuscation of Diverse
Watermarks for Sequential Circuits,” Hardware-Oriented Security and Trust (HOST),
2010 IEEE International Symposium on, pp. 42–47, 2010. [Online]. Available:
http://goo.gl/67KWA

87

[60] G. Becker, M. Kasper, A. Moradi, and C. Paar, “Side-channel based watermarks for
integrated circuits,” in Hardware-Oriented Security and Trust (HOST), 2010 IEEE
International Symposium on, June 2010, pp. 30–35.

[61] A. Cui, C.-h. Chang, S. Member, and S. Tahar, “A Robust FSM Watermarking
Scheme for IP Protection of Sequential Circuit Design,” Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, vol. 30, no. 5, pp. 678–690,
2011. [Online]. Available: http://goo.gl/cxivz

[62] A. Cui, C.-H. Chang, and L. Zhang, “A hybrid watermarking scheme
for sequential functions,” 2011 IEEE International Symposium of Cir-
cuits and Systems (ISCAS), pp. 2333–2336, May 2011. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5938070

[63] W. Xu and Y. Zhu, “A digital copyright protection scheme for soft-IP core
based on FSMs,” 2011 International Conference on Consumer Electronics,
Communications and Networks (CECNet), pp. 3823–3826, Apr. 2011. [Online].
Available: http://goo.gl/2DskW

[64] N. H. E. Weste and D. M. Harris, “Placing cute logos on a chip,” in CMOS VLSI
Design, A Circuits and Systems Perspective. Addison-Wesley, 2011, p. 136.

[65] MOSIS. (2010) ON Semiconductor C5 Process. USC Information Sciences Institute.
[Online]. Available: http://mosis.com/vendors/view/on-semiconductor/c5

[66] ——. (2010) Mosis faqs: Design issues. USC Information Sciences Institute. [Online].
Available: http://www.mosis.com/pages/Faqs/faq-design

[67] M. W. Davidson. (1995) Silicon Zoo. [Online]. Available:
http://micro.magnet.fsu.edu/creatures/index.html

[68] J.-B. Note and E. Rannaud, “From the bitstream to the netlist,” in Proceedings of
the 16th international ACM/SIGDA symposium on Field programmable gate arrays,
ser. FPGA ’08. New York, NY, USA: ACM, 2008, pp. 264–264. [Online]. Available:
http://doi.acm.org/10.1145/1344671.1344729

[69] Hackito-Ergo-Sum. (2010) FPGA Reverse-Engineering Challenge. [Online]. Available:
http://www.hackitoergosum.org/2010/HES2010-sbourdeauducq-FPGA-Challenge.pdf

[70] D. Ho. (2011) Notepad++ a free source code editor. [Online]. Available:
http://notepad-plus-plus.org/

[71] H. Dobbertin, A. Bosselaers, and B. Preneel, “RIPEMD-160: A Strength-
ened Version of RIPEMD,” Proceedings of the Third International Work-
shop on Fast Software Encryption, pp. 71–82, 1996. [Online]. Available:
http://dl.acm.org/citation.cfm?id=647931.740583

[72] F. Mendel, N. Pramstaller, C. Rechberger, and V. Rijmen, “On the collision resistance
of ripemd-160,” in Proceedings of the 9th international conference on Information
Security , ser. ISC’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 101–116.
[Online]. Available: http://dx.doi.org/10.1007/11836810 8

88

[73] OpenSSL. (1999) OpenSSL Cryptography and SSL/TLS Toolkit. [Online]. Available:
http://www.openssl.org/

[74] V. Batagelj and A. Mrvar, “Pajek Program for Large Network Analysis,” Connections,
Journal of International Network for Social Network Analysis , vol. 21, no. 1, pp. 1–11,
1998. [Online]. Available: http://vlado.fmf.uni-lj.si/pub/networks/doc/pajek.pdf

[75] M. Bastian and S. Heymann, “Gephi : An Open Source Software
for Exploring and Manipulating Networks,” International AAAI Confer-
ence on Weblogs and Social Media, pp. 1–2, 2009. [Online]. Available:
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154

[76] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, in Introduction to Algo-
rithms. MIT Press and McGraw-Hill, 1998.

[77] S. A. Cook, “The complexity of theorem-proving procedures,” in Proceedings
of the third annual ACM symposium on Theory of computing , ser. STOC
’71. New York, NY, USA: ACM, 1971, pp. 151–158. [Online]. Available:
http://doi.acm.org/10.1145/800157.805047

[78] S. S. Epp, “Basics of set theory,” inDiscrete Mathematics with Applications. Thomson,
2004, p. 260.

[79] G. D. Micheli, in Synthesis and Optimization of Digital Circuits. McGraw-Hill, 1994.

[80] R. Johnsonbaugh and M. Schaefer, in Algorithms . Pearson, 2004.

[81] J. B. Kruskal, “On the Shortest Spanning Subtree of a Graph and the Traveling
Salesman Problem,” in American Mathematical Society , vol. 7, no. 1, February 1956,
pp. 48–50. [Online]. Available: http://www.jstor.org/stable/2033241

[82] “IEEE Standard VHDL Language Reference Manual.” ANSI/IEEE Std 1076-1993 ,
p. i, 1994.

[83] L.-E. Thorelli, “An algorithm for computing all paths in a graph,” BIT
Numerical Mathematics , vol. 6, no. 4, pp. 347–349, 1966. [Online]. Available:
http://dx.doi.org/10.1007/BF01966095

[84] W. Stallings, “Requirements and security,” in Cryptography and Network Security .
Prentice Hall, 1998, pp. 335–341.

[85] J. M. Gosney, “Password Cracking HPC,” in Passwords1̂2 Security Conference,
December 2012, pp. 1–29. [Online]. Available: http://passwords12.at.ifi.uio.no/

[86] X. Wang, Y. L. Yin, and H. Yu. (2005) Finding Collisions in the Full SHA-1. [Online].
Available: http://people.csail.mit.edu/yiqun/SHA1AttackProceedingVersion.pdf

[87] M. Bastian and S. Heymann. (2009) Comparison of Supported Graph Formats in
Gephi. [Online]. Available: http://gephi.org/users/supported-graph-formats/

[88] Xilinx. (2009, September) Xilinx Synthesis Tech-
nology (XST) User Guide. [Online]. Available:
http://www.xilinx.com/support/documentation/sw manuals/xilinx11/xst.pdf

89

[89] ——. (2009, December) Xilinx Constraints Guide. [Online]. Available:
http://www.xilinx.com/support/documentation/sw manuals/xilinx11/cgd.pdf

[90] International Workshop on Logic Synthesis, IWLS’93. [Online]. Available:
http://www.iwls.org

[91] K. McElvain. (1993) IWLS’93 Benchmark Set: Version 4.0, distributed
as part of the IWLS’93 benchmark distribution. [Online]. Available:
http://www.cbl.ncsu.edu:16080/benchmarks/LGSynth93/

[92] F. Gray, “Pulse code communication,” U.S. Patent 2,632,058 , March 1953.

[93] R. W. Hamming, “Error detecting and error correcting codes,” Bell System Technical
Journal , vol. 29, no. 2, pp. 147–160, 1950.

[94] Xilinx. (2009, January) AR #23904 - 10.1i MAP PAR - Will the Xilinx implementation
tools give the exact same results with the exact same source files, system, and software
version. [Online]. Available: http://www.xilinx.com/support/answers/23904.htm

90

Appendix A Glossary

3M

Terminology for the number of metal layers available in a CMOS design process. 14,
91

AMI

Semiconductor and Integrated Circuit Devices corporation, formerly AMI Semicon-
ductor. 14, 91

ASIC

Integrated Circuit designed using the full-custom design approach for use in a specific
application or setting. 91

ASICs

see ASIC. 1, 91

Asynchronous

Classification of an FSM which operates independently of a clock source and is driven
solely on input sequences. 91

Big Endian

Describes a binary string where the left most bit is the MSB and the right most bit
is the LSB. 91

BLIF

Format for describing circuits and systems through text to allow use in design au-
tomation tools. 6, 91

BSD

Method for converting a bitmap watermarking signature into a directed graph or
watermark FSM. vii, 91

CMOS

A technology for constructing Integrated Circuits. 14, 91

CSFSM

An FSM which has all possible behavior specified. 8, 9, 91

DEEP SUBM

Manufacturing feature size for Integrated Circuit technologies. 14, 91

91

Appendix A (Continued)

DFA

Class of Finite State Machines in which all sets of input sequences result in repro-
ducible behavior. 9, 91

DRC

Process in Integrated Circuit design to ensure that physical design layouts adhere to
the rules implemented for the manufacturing process being used. 14, 91

E

Terminology for the availability of a secondary polysilicon layer that can be used for
poly capacitors or transistor gates. 14, 91

FCFS

A method for processing elements, specifically, the first elements to arrive are pro-
cessed first. 49, 68, 91

FPGA

Reconfigurable computing device to allow for the rapid prototyping and development
of computer systems. 2, 91

FSD

Signature Decomposition Technique used on files for creating directed graphs or wa-
termark FSMs. vii, 35, 91

FSM

Abstract modeling method of sequential circuit systems that can be mathematical
described using a 6-tuple. 4, 91

Hard IP

IP in a format which is difficult to alter. 91

HDL

Language, in a human readable format, for designing and specifying the behavior of
computer systems. 2, 17, 53, 91

HPC

Typically a collection, or cluster, of computing resources that can be used collectively
to achieve a single task. 60, 91

HSD

Signature Decomposition Technique used on hash sequences for creating directed
graphs or watermark FSMs. vii, 37, 91

92

Appendix A (Continued)

I/O

Describes the interfaces between user and system for communication. 4, 19, 91

IC

System of combinational or sequential logic functions manufactured on a silicon wafer.
1, 2, 91

ICSFSM

An FSM which uses don’t care conditions or does not define all possible behavior. 8,
10, 91

IEEE

Organization consisting of academics and industry professionals for the advancement
of technology. 91

IP

Any material which an individual creates and holds the exclusive rights for. 1, 2, 91

IPC

Reusable hardware design containing logic functions that are IP for a given party. 91

ISE

Interactive software environment that has been integrated into a set of design tools
that can otherwise be used through a commandline. 55, 91

IWLS

Annual conference held for topics relating to synthesis, optimization, and verification
of integrated circuits. 67, 91

Kiss2

Subset of the BLIF syntax used for describing sequential systems in a modified state
table format. 91

Little Endian

Describes a binary string where the right most bit is the MSB and the left most bit
is the LSB. 91

LSB

Descriptor used for a position in a binary array based on whether Big or Little Endian
principles are used. 21, 22, 91

LUT

Hardware element used as memory array which returns predefined output conditions
based on the inputs to the device. 91

93

Appendix A (Continued)

MAX-SAT

Computationally complex problem which finds maximal group of variable configura-
tions that satisfy the boolean equation in which they are used. 91

Mealy Model

Modeling for an FSM where the outputs are updated during the transition to the next
state. 91

Moore Model

Modeling for an FSM where the outputs are updated after transitioning to the next
state. 91

MSB

Descriptor used for a position in a binary array based on whether Big or Little Endian
principles are used. 91

N

Terminology for Integrated Circuit Wafer Doping properties. 14, 91

NDFA

Class of Finite State Machines in which all sets of input sequences result in behavior
that is unlikely to be reproduced or occur again. 10, 91

Netlist

Hardware device designed at the HDL or transistor level. 91

NP

Describes a set of decision based problems which have verifiable solutions in polyno-
mial time. 91

NP-Complete

Describes a subset of decision based problems which have no polynomial time solu-
tions. 25, 41, 91

NP-Hard

Describes a subset of computation problems which have NP-Complete decision ver-
sions. 91

PNG

A raster image format that uses lossless data compression techniques. 37, 91

RIPEMD-160

160-bit cryptographic hash function. 37, 91

94

Appendix A (Continued)

SC

A method for CMOS fabrication processes that provide design abilities nearly inde-
pendent of process and metric. 14, 91

SCN3M

Terminology used for describing the AMI C5F CMOS Process, Scalable CMOS, N
substrate, 3 Metals. 14, 91

SCN3ME

Terminology used for describing the AMI C5N CMOS Process, Scalable CMOS, N
substrate, 3 Metals, Electrode. 14, 91

SHA-1

160-bit bit cryptographic hash function. 60, 91

SOC

Integrated circuit which includes all necessary components for an electronic system
on a single chip. 91

SOCs

See SOC. 91

Soft IP

IP in a format which can be easily altered. 91

SRAM

Type of volatile memory that uses cross-coupled inverters to maintain the internal
value and removes the need for this value to be refreshed. 91

State Encoding

An arbitrary or intentionally assigned binary or text string used for labeling states in
an FSM. 91

STG

Graphical method for representing FSMs as a collection of nodes and edges. 5, 91

STT

Tabular, non-graphical, method for representing an FSM. 6, 91

SUBM

Manufacturing feature for Integrated Circuit technologies.. 14, 91

Synchronous

Classification on an FSM which operates on the rising or falling edge of a clock signal.
91

95

Appendix A (Continued)

VHDL

Programming language for FPGA devices. 53, 91

VHDL-93

The IEEE Standard 1076, Revision 1993, version of VHDL. 53, 91

VHSIC

United States Department of Defense project which led to the development of VHDL.
53, 91

Watermark

A file, video, audio, or text message used as a unique signature hidden in IP. 91

XST

A tool in the Xilinx ISE Design Suite used for the synthesis and optimization of HDL
designs. 53, 55, 91

96

Appendix B Permission of Use

➞2012 IEEE. Reprinted, with permission, from M. Lewandowski, R. Meana, M. Morri-
son, S. Katkoori, ”A Novel Method for Watermarking Sequential Circuits,” 2012 IEEE
International Symposium on Hardware-Oriented Security and Trust, June 2012.

UNIVERSITY COMMUNICATIONS & MARKETING
University of South Florida • 4202 East Fowler Avenue, CGS 301 • Tampa, FL 33620-4301

(813) 974-4014 • FAX (813) 974-2888 • www.usf.edu

This letter is an electronic communication from the University of South Florida.

March 20, 2013

Matthew Lewandowski,
Graduate Student,
Computer Science and Engineering,
University of South Florida,
NarMOS Research Team

Dear Matthew,

You have permission to use the USF College of Engineering co-branded USF logo as an example of the
capabilities of the HASH-2-K2 method detailed in your Master’s Thesis. This permission is specific to use
of the logo for this purpose and does not include permission to mark any product for sale.

Thank you,

Anne Scott
Senior Graphic Designer
University Communications & Marketing
University of South Florida
4202 E Fowler Ave, STOP CGS 301
Tampa, FL 33620-4301
813-974-9043
fax 813-974-2888

97

About The Author

Matthew Lewandowski will be receiving both his Bachelor’s and Master’s Degree

in Computer Engineering Spring 2013 from the University of South Florida in Tampa, FL.

Upon graduation, he will be continuing on in academia and to pursue a Doctorate Degree

Fall 2013 with USF. His goal is to become a professor in the area of CMOS-VLSI Design and

has assisted Dr. Srinivas Katkoori in teaching the course at USF over the past two years.

His research interests are Design of Secure Hardware, Design Automation, and Reversible

Logic. He is a recipient of the Design Automation Conference Young Student Scholarship

Program, and has been awarded a Best Post Award for his research at both USF’s College of

Engineering Research Day, and 9th Annual Undergraduate Research Symposium. Recently,

with his research team dubbed “NarMOS,” he was awarded First Place at NYU-Poly’s

CyberSecurity Awareness Week Embedded System Challenge. He considers his personal

achievements to be his continued success in the development of a Cadence Design Kit and

ON-Semiconductor AMI C5N Process Design Kit which are being used with the CMOS-

VLSI Design, Design Automation, and Digital Design in Nano-Scaled Technologies courses

at USF.

