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Introduction

Along with the growth of data such as image data, meteorological data, particularly doc-

uments, dimensions of these data also increase [1]. According to the studied extensively, 

the accuracy of current machine learning methods generally decreases with high dimen-

sional data that event referred to as the curse of dimensionality. An essential issue with 

machine learning techniques is the high-dimensionality problem of a dataset where the 
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feature subset size much greater than pattern size. For example, in the medical applica-

tions that include very high-dimensional datasets, the classification parameters are also 

increased. �erefore, the performance of the classifier declines significantly [2–4].

For preventing the curse of dimensionality, some dimension (feature) reduction tech-

niques are used [5–7]. Traditional techniques to reduce the dimensions are divided into 

two main categories: feature extraction and feature selection [8]. In the first approach, 

instead of the original features, secondary features with low dimensions are extracted. 

�at means that a high dimensional space is transferred to low dimensional space. How-

ever, the second approach includes four sub-categories that include filter method, wrap-

per method, hybrid methods, and embedded methods [9, 10]. �e subset of features in 

the pre-processing step is selected in filter methods independent of any learner method 

[11]. In contrast, Wrapper methods apply a learner method to investigate the subsets of 

features based on their predictive power. Dealing with extensive data and side informa-

tion, each of these methods has advantages and disadvantages regarding the time being 

used, consistency with data, efficiency, and accuracy.

�e feature selection approaches are divided into three main groups: supervised, 

unsupervised and semi supervised [7]. In the supervised method, the label of dataset 

exists, based on which the evaluation and selection of suitable features are made. �at 

is, while in unsupervised type, the classes of the label are not available, and evaluating 

and selecting are done based on the ability to meet some of the properties of the data 

set, including the locality preserving ability and/or variance. Since in most datasets, 

label or side information is available in small quantities, and obtaining these labels is 

costly, semi-supervised or constrained methods are used. �e semi-supervised feature 

selection method uses data with labels and unlabeled; in contrast, the other choice of 

semi-supervised method is the pairwise constraint. In this method, not all data sets have 

labels, but there is side information like a pairwise constraint [12, 13].

A pairwise constraint is a pair of data belonging to the different clusters (cannot-link) 

or the same cluster (must-link) [14]. In fact, in the real world, in case of lack of label, the 

best possible information to select the feature is pairwise constraints. Overall, obtain-

ing label is too costly, and in many cases, these constraints inherently exist. In the case 

of the existence of labels, one can turn this type of data set into pairwise constraint (by 

transitive closure and vice versa), which is one of the advantages of working on the pair-

wise constraint [15]. Because of the importance of pairwise constraint and inherent and 

low-cost nature of this pairwise constraint, many studies have been conducted such as 

the development of constrained algorithms to consider the pairwise constraint in the 

process of the machine learning task, active learning algorithms to obtain the best and 

most valuable pair to increase the accuracy, the transformation of the objective func-

tions in the machine learning task, and the like. One of the studies that have rarely been 

done in the field of feature selection on the basis of the pairwise constraint. �e purpose 

of this method is to reduce the dimension size by considering the pairwise constraint so 

that the constraint algorithm has the best results, accuracy, and efficiency. Most of the 

methods available in this field are improvements to previous similar methods (usually 

unsupervised feature selection).

In the present paper, a novel pairwise constraints-based method is proposed for fea-

ture selection and reduce dimensions. Our method is complementary to previous 
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methods. In this study, in addition to the constraints, the quality of the constraints is 

also used. �e quality of the pair of constraints is the power of the relationship between 

two pairs of data or vice versa (uncertainty). In the proposed method, in the first, the 

similarity between the pair constraints is calculated. �en an uncertainty region is cre-

ated based on it. �e uncertainty region and its coefficient are used to indicate the power 

and quality of the pair of constraints. �ese coefficients are then ensemble with a previ-

ous basic method, then in an iterative process are selected most informative pairs. �ere 

was a considerable improvement by comparing the proposed method with the previous 

methods. It might be argued that the proposed method has reduced the computational 

complexity of the machine learning algorithm despite increasing the classification accu-

racy. On the other, the number of final selected features imposes another challenge on 

feature selection methods. In other words, the number of relevant and non-redundant 

features is unknown; thus, the optimal number of selected features is not known either. 

In this proposed method, unlike many previous works, the optimal number of selected 

features is determined automatically based on the overall structure of the original fea-

tures and their inner similarities.

�e rest of this paper is organized as follows. “Related work” section summarizes 

related works to feature selection. “Proposed methodology” section introduces some 

preliminaries of this work, and our proposed method (PCFS) in details. �e results of 

simulation and experimental analysis are illustrated in “Experimental analysis” section. 

�e conclusion is given in “Conclusion” section.

Related work

�e dimensionality reduction techniques are mostly divided into two categories: feature 

extraction and feature selection [16–18]. In the feature extraction methods, the data is 

transformed from the original space into a new space with fewer dimensions. On the 

contrary, the size of the dataset is directly reduced by the feature selection methods by 

picking a subset of relevant and non-redundant features and retaining adequate infor-

mation for the learning task [19]. �e objective of the feature selection methods is seek-

ing the related features with the most predictive information from the original feature 

set [20]. �e feature selection was determined to be an essential technique in many prac-

tical applications, including text processing [21–23], face recognition [24–26], image 

retrieval [27, 28], medical diagnosis [29], case-based reasoning [30] and bioinformatics 

[31]. One of the basic research subjects in pattern recognition is feature selection, with 

a long history started in the 1970s. Also, many attempts have been made to review the 

feature selection approaches [2–4].

Following the availability of the class labels of training data, the feature selection 

methods can be roughly divided into three categories: supervised feature selection, 

unsupervised feature selection, and semi-supervised feature selection [2, 29, 32]. In 

the supervised approaches, training samples are characterized by the vector of feature 

values with class labels, which are applied to direct the search process to associated 

information; however, in the unsupervised feature selection, the feature vectors value 

are described without class labels [33]. Since the labeled information is used, the super-

vised feature selection methods often show better performance compared to unsuper-

vised and semi-supervised techniques [34]. In a large number of real-world applications, 
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collecting the labeled patterns will be hard, and there are abundant unlabeled data and 

small labeled patterns. In order to handle this ‘incomplete supervision,’ semi-supervised 

(pairwise constraint) feature selection methods were developed, which use both unla-

beled and labeled data for the machine learning task. In the semi-supervised feature 

selection methods, the local structure of both labeled and unlabeled data or the label 

information of labeled data and data distribution is used for the purpose of selecting 

final related and non-redundant features. In semi-supervised learning, part of the data 

is labeled and part of it is unlabeled. Consequently, the interesting topic of feature selec-

tion for semi-supervised feature selection is a more complex problem, and researching 

this area is recently attracting more interest in many communities. Sheikhpour et al. [35] 

provides a survey of feature selection methods. In this study, semi-supervised feature 

selection approaches are surveyed and taxonomies of these methods are introduced 

based on two different aspects. In [36] a novel Graph-based Semi-Supervised Sparse 

Feature Selection method is developed based on the mixed convex and non-convex 

minimization. �e reported results of this method showed that the method selects the 

non-redundant and optimal subset of features and improves the performance of the 

machine learning task. In [37] a semi-supervised feature selection method is presented 

that integrates the neighborhood discriminant index and the Laplacian score method to 

efficiently work with both unlabeled and labeled data. �e aim of this method is to find 

a set of relevant features that has a good ability to hold local geometrical structure and 

to identify samples belonging to different classes. Moreover, in [38] a semi-supervised 

feature selection method is developed for bipolar disorder. In this method, a novel semi-

supervised technique is utilized to reduce the dimension of high-dimensional data. Also, 

Liu et al. [39] proposed Rough set based semi-supervised feature selection method. In 

this method, the unlabeled data can be predicted via various semi-supervised learning 

methods and the Local Neighborhood Decision Error Rate is developed to create multi-

ple fitness functions to evaluate the relevance of the generated feature sets.

Feature selection methods might be divided into four categories: filter, wrapper, 

embedded, and hybrid approaches [40, 41]. In the filter-based methods, every single fea-

ture is ranked with no consideration of learning algorithms on the basis of its discrimi-

nating power among various classes. �e statistical analysis of the feature set is required 

in the filter approach to select the final feature set [42, 43]. On the contrary, a learn-

ing algorithm is applied in the wrapper-based feature selection methods to assess the 

quality of feature subsets in the search space iteratively [44, 45]. �e wrapper approach 

needs a high computational cost for high-dimensional datasets since every single sub-

set is investigated by a specified learning model. In the embedded model, it is consid-

ered that the model building process includes the feature selection procedure as a part of 

it, in which both redundant and irrelevant features can be handled; as a result, training 

learning algorithms with a considerable number of features will take a great deal of time. 

On the other hand, the purpose of the hybrid-based approaches is employing the proper 

performance of the wrapper model and the computational efficiency of the filter model. 

However, the accuracy issue may be challenging in the hybrid model since the filter and 

wrapper models are taken into account as two separate steps [46].

Term Variance (TV) [47], Laplacian Score for feature selection (LS) [48], Relevance-

Redundancy Feature Selection (RRFS) [49], Unsupervised Feature Selection based on 
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Ant Colony Optimization (UFSACO) [50] are some existing filter-based unsupervised 

feature selection methods. Furthermore, a clustering algorithm is used in the unsuper-

vised wrapper feature selection methods to investigate the quality of picked features. On 

the one hand, the higher computational complexity in learning is considered as the major 

disadvantage of these approaches, which is because of the application of specified learn-

ing algorithms. Also, the inefficiency of them on the datasets with many features has 

been shown. On the contrary, the statistical analysis of the feature set is required by the 

unsupervised filter method only for solving the feature selection task without employing 

any learning models. A feature selection method may be investigated in accordance with 

effectiveness and efficiency. Although the time needed to discover a subset of features is 

important for the efficiency, the effectiveness is associated with the quality of the subset 

of features. �ese issues are in disagreement with each other: in general, one is reduced 

by improving the other. Alternatively stated, the computational time is advantageous 

in the filter-based feature selection methods, and they are typically faster, although the 

quality of selected features is considered in the unsupervised wrapper methods.

Recently, the graph-based methods, including graph theory [51–53], spectral embed-

ding [54], spectral clustering [55], and semi-supervised learning [56], have contributed 

significantly to feature selection because of their capability of encoding similarity rela-

tionships among the features. Recently, many graph-based unsupervised and semi-

supervised feature selection methods are presented to extract the relationships among 

the features. For example, a spectral semi-supervised feature selection criterion called 

the s-Laplacian score was presented by Cheng et al. [57]. According to this criterion, a 

Graph-based Semi-Supervised Feature Selection method called GSFS was proposed. In 

this method, in order to select relevant features as well as to remove redundant features, 

the conditional mutual information and spectral graph theory are employed. Moreover, 

in [58], the authors designed a graph-theoretic method for non-redundant unsupervised 

feature selection. In this method, the feature selection tasks as the densest subgraph 

finding from a weighted graph. In [59], a dense subgraph finding method is selected for 

the unsupervised feature selection problem. In this paper, a novel normalized mutual 

information is used to calculate the similarity among two features.

Proposed methodology

�e detail of the proposed method will be explained in this section. First, the general 

concepts related to the proposed method will be expressed, and then the details of the 

proposed semi-supervised feature selection method are introduced.

Background and notation

Let us review some definitions and concepts, which are the foundations of the proposed 

algorithm, before getting to the algorithm.

Neighborhoods and pairwise constraint

Laplacian ranking is the basis for the unsupervised method, including the selection of 

features with pairwise constraints, and in this method, the strongest feature in terms 

of the ability for preserving local is selected. �e main key in assumptions in Laplacian 

feature selection is on the basis that the data belonging to the same class are closing 
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together and more similar. Laplacian ranking of the  rth feature of Lr that should be a 

minimum is expressed by Eq. (1):

which Sij can be expressed based on the relationship between the neighborhood and 

each data, and t is a fixed value that is initialized and neighborhood means that xi via the 

K of the nearest neighborhood reaches xj and neighborhoods can have various concepts 

such as the similarity of data to each other. Rankings expressed are unsupervised and use 

no other information except for the data set. �is article uses concepts such as Laplacian 

ranking and neighborhood, and on the assump.ion that pairwise constraint exists as ML 

(Must-link) and CL (Cannot-link), it attempts to select and rank appropriate features. 

So, all ML and CL set with datasets are prepared. �en, using Eq. (2), it is attempted to 

rank features. It should be noted that with the use of concepts of the neighborhood.

In where, C1
r
 and C2

r  represent two types of rankings based on the pairwise constraint. 

In fact, features are selected that have the best ability to protect constraints. If there are 

two samples are in the ML set so the relevant feature means that the feature values are 

close together. If the two samples are in the CL set, relevant feature means that features 

values are far apart. In the follow.ng, for each feature, two types of ranking are calculated 

and from the maximum value, two rankings, feature selection is done.

In general, if 
{

xi, xj , xk
}

 is the three data of the data set, then each pair’s relationship is 

expressed as {ML,CL} , and the clustering label is expressed with lab, then relations and 

Eq.  (3) must be established. By closure of pairwise constraints, neighborhoods can be 

formed.

(3)

Neighborhoods are a set of a neighborhood whose number is usually smaller or equal 

to the number of clusters defined in the algorithm. Each neighborhood includes several 
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sample data that must be in the same cluster together. �e basic premise in that neigh-

borhood is that different data in different clusters should be placed in different neigh-

borhoods, and no two Neighborhoods should be found where data exists as the same 

cluster.

Measuring the uncertainty of constraints

In the real world, constraints arise from domain knowledge or expert knowledge. Pair-

wise constraints have weak relationships, and strangeness (uncertainty) of the relations 

is variable. Hence, it is needed to create an uncertainty region. By finding the region, it is 

easy to have an impact on our ranking and see better results in reduced dimensions. In 

order to do this, the authors use the thresholding histogram method. �is method actu-

ally used the classifying method with two classes, and its purpose is to reduce ambiguity 

in the range of values. First, the similarity values of each pair Sen matrix are collected, 

and then these values are divided into intervals, and the average of each interval is deter-

mined as ( Di ). In the next step, for each interval, the number of pairs in this range is 

counted as the g ( Di ). So, from these values, a weighted moving average with five win-

dows, f ( Di ), is calculated by Eq (4). �e authors start from the beginning of the intervals 

and find the first valley points in the modified histogram f (Dv) . Finally, the uncertainty 

region is calculated.

Step 1:

Step 2: find the first valley points subject to:

Step 3: find the boundary of the uncertainty region:

Step 4: find the pairs in similarity matrix that h.ve uncertainty relationship:

Weights of the terms obtained

Given that each feature has a certain weight and importance, and not all features may 

be required for the machine learning task, so in the first step it is necessary to deter-

mine the weight of each feature. For this purpose, Laplacian Score (LS) is used. LS is an 

unsupervised univariate filtering method which is based on the observation that if a data 

point is close to each other; it may belong to the same class. �e basic idea of LS is to 

evaluate the feature relevance according to its power of locality preserving. �e LS for 

the feature A is determined using Eq. (8):

(4)

f (Di) =
g(Di)

∑z−1
e=1 g(De)

×
g(Di−2) + g(Di−1) + g(Di) + g(Di+1) + g(Di+2)

5
, ∀i = 2, 3, . . . ., z−3

(5)f (Dv−1) > f (Dv) and f (Dv) < f (Dv+1)

(6)md = Dvandmc = max(Di) − md

(7)SimilarityMatrixSenij :

{

md ≤ ifSenij ≤ mc : uncertainity region

else : strong region
∀i, j
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where, A(i) represents the value of the feature A in the i-th a pattern, Ā denotes the 

average of the feature A, D is a diagonal matrix that Dii =

∑
j Sij , and Sij represents the 

neighborhood relation between patterns, calculated as Eq. (9):

where, t is a suitable constant, xi represents i-th pattern, and xi and xj are neighbors if xi 

is among k nearest neighbors of xj or xj is among k nearest neighbors of xi.

The proposed PCFS algorithm

In this section, a novel Pairwise Constraint Feature Selection method (PCFS) is pro-

posed. �is method uses pck-mean which is one of the soft constraints clustering algo-

rithms with small and effective changes. �e proposed method has been able to use both 

standard objective function and a penalty for the violation of constraints, with changing 

the objective function. �ese two sections together constitute the objective function and 

are locally minimized. �e proposed method, named-Dim-reduce() function, is affected 

by the current clustering and vice versa.

Briefly, the data set are embedded as a data-term matrix, and then other variables val-

ues are initialized. �e whole of the procedure is repeated in a loop until the clusters 

not changed (or with the predefined number of the loop). In each iteration, given the 

current clustering and set of constraints ML and CL, Dim-reduce() performs to produce 

a reduced feature (line 2). After this, neighborhoods are formed from the closure of pair-

wise constraints, and then the center of pairwise constraints of each neighborhood is 

calculated. If a neighborhood does not have any data, randomly a data, it should not 

be a member of other neighborhoods, is as the center of that cluster. Finally, centers of 

clusters are initialized by the center of neighborhoods (lines 3–6). For assigning clusters 

(8)LS(S,A) =

∑
i,j (A(i) − A(j))Sij

∑
i (A(i) − Ā)Dii

(9)Sij =

{

e
xi−xj

t , ifxi and xj are neighbors

0, otherwise
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and estimating (updating) center of clusters, section A and B is performed (8–9). �ese 

two sections are repeated until convergence, as pck-means. After convergence, the pro-

cedure is repeated until meet stop conditions. Dim-reduce() function is the core of PCFS 

that is summarized in Algorithm 2. In this method, in addition to the usual input in fea-

ture selection, pairwise constraints arise as input.

�ere are two main functions in this algorithm that respectively,  Sen-func() in algo-

rithm  3 and Str-unc() in algorithm  4 are expressed. �e first function extracts the 

matrix of similarities between data pairs, and then in the second function, the uncer-

tainty region and strength of the relationship is calculated for each pair. After calculating 

the two functions within an iterative process, the authors rank the features by Eq. (10). 

Finally, Repeat will continue until the selected features are changed.

In which,  Strij indicates the quality (power) of the relationship between each data pairs, 

and each element in the matrix are calculated through the uncertainty region. For the 

ranking of features, this formula assumes that if the power of pairs (in the set of pairwise 

constraints) is low, the authors mostly use similarity matrix; otherwise, (in case of reli-

ability and high strength of the relationship of pairwise), Minkowski distance is used. 

In fact, using this method, strength and quality are added to the formula, and thereby 

better results can be obtained. �e summarization of calculating the similarity matrix 

is possible in algorithm 3. First, the authors assigned clusters as labels of data set (lines 

3–6). �en the classification model is performed on the dataset with produced labels 

from clustering (line 8). In the iterative process, a similarity matrix based on anticipated 

labels (from the classification model) is created. During different iterations, this similar-

ity matrix is updated and normalized.

(10)Cb =

∑

(xi ,xj)∈ML

(

fbi − fbj
)2

× Strij +
(1−Senij)

∑

(xk ,xz)∈ML
(1−Senkz)

×
(

1 − Strij
)

∑

(xi ,xj)∈CL

(

fbi − fbj
)2

× Strij +
(1−Senij)

∑

(xk ,xz)∈cL
(1−Senkz)

× (1 − Strij)
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Finally, the Matrix calculation of strength,  Str and the uncertainty region as algorithm 4 

is summarized. After finding the uncertainty region (line 3), it is time to calculate  Str 

matrix. For data pairs that are in the uncertainty region, the relative strength of them is 

equal to β, and outside of this range, it is 1–β. �is β parameter was chosen after several 

preliminary runs, and this the value of β is empirically considered as 0.3.

Experimental analysis

To investigate the performance of the proposed method (i.e., PCFS), several extensive 

experiments are performed. �e obtained results are compared with six state-of-the-art 

and well-known methods such as LS [48], GCNC [60], FGUFS [61], FS [62], FAST [63], 

FJMI [64], LS [48], PCA [65] and the description of this method is described below.

LS (Laplacian Score): this is a graph-based feature selection method that works in 

unsupervised mode. �is method models the data space into a graph, and probably 

belong to the same class based on the idea of whether two data points are near to each 

other.

GCNC (Graph Clustering with the Node Centrality): GCNC is a feature selection 

method, in which the concept of graph clustering is integrated with the node centrality. 

�is approach can handle both redundant and irrelevant features.

FGUFS (Factor Graph Model for Unsupervised Feature Selection): �e similarities 

between features are explicitly measured in this method. �ese similarities are passed to 

each other as messages in the graph model. �e message-passing algorithm is applied to 



Page 11 of 21Rostami et al. J Big Data            (2020) 7:83  

calculate the importance score of each feature, and then the selection of features is per-

formed on the basis of the final importance scores.

FS (Fisher Score): �is method is a univariate filter method that scores features such 

that based on that feature, the distance between the samples from the same class is 

short, and the distance between the samples from different classes is long. �erefore, 

this criterion gives higher ratings to features that have such a separation property.

FAST (Fast clustering-based feature selection method): In this method, the graph-theo-

retic clustering methods are used to divide the features into clusters. �en the most rep-

resentative feature that is significantly associated with target classes is picked from each 

cluster to develop a subset of features.

FJMI (Five-way Joint Mutual Information): In this paper, a feature selection method is 

proposed, in which a two-through five-way interaction between features and the class 

label is considered.

PCA (principal component analysis): PCA is a linear transformation-based multivari-

ate analytical dimensionality reduction algorithm. PCA is often utilized to extract sig-

nificant information from the high dimensional dataset.

�e results are reported in terms of two measures, including the classification accu-

racy (ACC) and the number of selected features. ACC is defined as follow:

where TP, TN, FP, and FN stand for the number of true positives, true negatives, false 

positives, and false negatives, respectively.

Datasets

In the present study, a large number of datasets with different properties are applied 

in the experiments to demonstrate the robustness and effectiveness of the proposed 

approach. SPECTF, SpamBase, Sonar, Arrhythmia, Madelon, Isolet, Multiple Features, 

and Colon has taken from the UCI repository are included in these datasets [66] and 

have been extensively used in the literature. Table 1 presents the basic characteristics of 

these datasets. �e datasets have been chosen in such a way that they consider several 

characteristics, including the number of different classes, the number of features, and 

(11)ACC =
TP + TN

TP + TN + FP + FN

Table 1 Characteristics of the used datasets

Dataset Features Classes Patterns

SPECTF 44 2 80

SpamBase 57 2 4601

Sonar 60 2 208

Arrhythmia 279 16 351

Madelon 500 2 4400

Isolet 617 26 6238

Multiple Features 649 10 2000

Colon 2000 2 62



Page 12 of 21Rostami et al. J Big Data            (2020) 7:83 

the number of samples. For instance, Colon is a significantly high dimensional dataset 

with a small sample size; however, SpamBase is the example of a low dimensional with a 

large sample size dataset. Again, Isolet is a multi-class dataset that has 26 different kinds 

of classes. In these experiments, the generations of pairwise constraints are simulated 

as the following: �e pairs of samples from the training data and created cannot-link 

or must-link constraints are randomly selected on the basis of whether the underlying 

classes of the two samples are similar or dissimilar.

Some of these datasets contain features that take a wide range of values. Note that fea-

tures with small values will be dominated by those features with large values. �e nor-

malization of datasets is performed to tackle this issue. �e primary reason for selecting 

this normalization method is that the information related to standard deviation can 

be partially preserved by the other methods; however, the topological structure of the 

datasets is retained by the max–min normalization in many cases. For each dataset, the 

results are achieved over ten independent runs to obtain relatively more stable and accu-

rate approximations. In every single run, each dataset is firs normalized and is randomly 

split into a test set (1/3 of the dataset) and a training set (2/3 of the dataset). �e test set 

is applied for evaluating the selected features, while the training set is applied to pick the 

final feature subset. A number of these datasets include features with missing values; 

thus, every single missing value was replaced with the mean of the available data on the 

respective feature to handle these kinds of data in the experiments.

Classi�ers used in the experiments

In order to demonstrate the generality of the proposed method, several well-known clas-

sical classifiers such as Support Vector Machine (SVM), Decision Tree (DT), and Naïve 

Bayes (NB) were employed to test the classification prediction capability of the selected 

features. SVM is a learning machine which is generally used for the classification prob-

lem. SVM was presented by Vapnik and became very popular over the past 10  years. 

�e maximization of a margin between data samples is the purpose of SVM. NB is a 

family of simple probabilistic classifiers on the basis of using Bayes theorem with strong 

(naive) independence assumptions between the features. In simple terms, it is assumed 

in a Naïve Bayes classifier that in terms of the target class, the features are conditionally 

independent of each other. Decision Tree (DT) is considered as one of the most suc-

cessful methods for the classification problem. �e tree is created by training samples, 

and a rule is represented by each path from the root to a leaf, which gives a classification 

of the pattern. �e normalized information gain is examined in this classifier to make 

decisions.

Moreover, Weka (Waikato Environment for knowledge analysis) is the experimen-

tal workbench [67], which is a collection of machine learning algorithms for mostly 

data mining tasks. In this work, SMO, AdaBoostM1, and Naïve Bayes as the WEKA 

implementation of SVM, NB, and AB have been applied. WEKA can be considered an 

advanced tool for machine learning and data mining. �is free software can be used 

under the GNU General Public License. �e software includes a set of “visualization” 

tools, data analysis methods and forecasting models that are put together in a graphical 

interface so that the user has the best way to execute commands. For this purpose, first 

the selected feature subset is determined by each feature selection method and then each 
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selected subset is sent to Weka tool for evaluation. Moreover, the used parameters of the 

mentioned classifiers have been set to the default values of the WEKA software. �e pro-

posed method involves several parameters that must be set before starting the method. 

�e appropriate values for some of these parameters are chosen as trial and error after a 

number of primary runs so they do not mean the best value for these parameters. More-

over, in all of these experiments, the values used in each of the compared methods were 

used to adjust the parameters.

Experimental result and discussion

In the experiments, the number of selected features and the classification accuracy is 

used as the performance measures, and first, the performance of the proposed method is 

investigated over different classifiers. �e summary of average classification accuracy (in 

%) over ten independent runs of the different feature selection methods using SVM, NB, 

and DT classifier is listed in Table 2. Each entry of these tables denotes the mean value 

and also standard deviation (indicated in parenthesis) of 10 independent runs. �e best 

mean values of average percentage accuracy are marked in italicface. Table 2 reveals that 

in most case, the proposed method performs better compared to other feature selection 

methods.

Moreover, Figs.  1, 2, 3 show the average classification accuracy over all datasets on 

the SVM, Naive Bayes, and Decision Tree classifiers, respectively. As can be seen in 

these figures, on SVM and Naive Bayes classifiers, the proposed method had the highest 

average classification accuracy, and on the Decision Tree classifier, FJUFS method won 

the highest rank. �e results of Fig. 1 show that the proposed method obtained 82.87% 

average classification accuracy and achieved the first rank with a margin of 1.95 percent 

compared to the FJMI method, which obtained the second-best average classification 

accuracy. Moreover, from the Fig. 2 results, it can be seen that the differences between 

the obtained classification accuracy of the proposed method and the second-best ones 

(FJMI) and third-best ones (FGUFS) on Naive Bayes classifier were reported 1.17 (i.e., 

80.38–79.21) and 3.07 (i.e., 80.38–77.31) percent. Furthermore, on the Decision Tree 

classifier, FGUFS method feature selection method gained the first rank with an average 

classification accuracy of 79.66%, and the proposed PCFS method was ranked second 

with an average classification accuracy of 79.02%.

Also, Tables 3, 4, 5 show the number of times the best results are achieved by differ-

ent feature selection methods in ten independent run on SVM, NB and DT classifiers, 

respectively. It can be seen from Table 3, 4, 5 results that in most cases, the proposed 

methods obtained the highest rate compared to those of other methods in ten independ-

ent run with different classifiers.

Table 6 records the average number of selected features of the seven feature selection 

methods in the ten independent runs for each dataset. It can be observed that, in gen-

eral, a significant reduction of dimensionality is achieved by all the different methods by 

picking only a small portion of the original features. Overall, the proposed method the 

minimum number of selected features of 40.3 features. While this value for LS, GCNC, 

FGUFS, FS, FAST, FJMI, and PCA equal to 40.7, 41.2, 46.5, 47.0, 46.2, 46.6, and 44.4 

respectively.
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Table 2 Performance comparison of di�erent feature selection methods on eight datasets

Dataset Method Evaluation criteria

SVM NB DT

SPECTF LS 75.87(1.78) 76.79(1.84) 76.88(1.19)

GCNC 77.32(0.35) 78.18(1.05) 77.07(1.92)

FGUFS 78.68(0.83) 78.19(2.15) 76.23(2.08)

FS 77.83(2.32) 73.83(0.92) 69.25(1.78)

FAST 78.91(1.24) 76.78(0.25) 73.18(1.60)

FJMI 79.08(2.18) 78.29(1.45) 74.22(2.43)

PCA 75.56(1.98) 75.72(1.83) 77.81(1.71)

PCFS 79.41(0.92) 78.10(0.31) 78.94(1.04)

SpamBase LS 85.69(0.17) 75.63(0.12) 75.71(1.15)

GCNC 88.27(1.19) 88.11(0.75) 88.96(1.09)

FGUFS 88.63(1.16) 87.71(2.37) 86.71(1.35)

FS 86.23(0.08) 86.42(3.89) 86.49(2.81)

FAST 87.47(1.87) 80.50(4.14) 88.88(1.93)

FJMI 86.89(3.21) 86.97(3.44) 87.35(2.36)

PCA 87.17(1.13) 84.12(0.75) 83.66(1.11)

PCFS 90.06(1.28) 90.76(2.34) 88.46(1.63)

Sonar LS 79.21(1.38) 69.42(0.94) 79.09(1.94)

GCNC 82.33(2.52) 74.36(2.48) 78.72(1.65)

FGUFS 80.34(1.34) 75.73(1.84) 79.96(1.42)

FS 73.81(1.89) 73.31(3.06) 73.76(0.54)

FAST 75.95(0.98) 72.52(1.51) 73.24(2.73)

FJMI 77.31(0.66) 75.96(1.16) 78.68(1.83)

PCA 77.20(1.38) 68.42(2.31) 79.35(1.84)

PCFS 81.81(2.09) 77.28(1.88) 80.89(2.42)

Arrhythmia LS 56.78(2.34) 56.36(3.24) 57.49(3.24)

GCNC 58.18(1.28) 59.04(2.30) 58.99(2.43)

FGUFS 59.37(1.26) 59.37(1.67) 57.81(2.12)

FS 52.89(0.25) 59.34(4.81) 54.15(2.68)

FAST 57.74(3.56) 52.72(4.33) 57.33(1.24)

FJMI 59.09(1.84) 58.74(3.22) 59.56(3.16)

PCA 56.72(2.67) 55.31(3.54) 57.40(3.92)

PCFS 61.61(2.34) 58.28(0.25) 59.34(2.76)

Madelon LS 65.76(1.27) 61.88(2.80) 64.48(2.28)

GCNC 66.56(1.38) 62.68(2.32) 63.68(2.48)

FGUFS 67.78(2.15) 63.55(1.76) 65.79(2.13)

mRMR 76.82(1.81) 73.15(2.14) 71.38(2.14)

FAST 71.43(1.24) 73.35(2.48) 70.91(1.94)

FJMI 77.12(3.02) 72.28(1.12) 71.44(2.54)

PCA 66.72(1.47) 62.58(2.66) 67.18(2.32)

PCFS 78.76(1.67) 76.24(3.08) 64.82(1.92)

Isolet LS 83.78(1.08) 83.61(1.22) 82.72(2.42)

GCNC 88.58(2.29) 82.78(2.42) 81.29(3.39)

FGUFS 91.74(3.08) 86.66(1.82) 84.44(2.56)

FS 87.95(2.21) 75.41(0.27) 75.58(1.31)

FAST 84.28(2.48) 81.25(0.78) 80.49(3.16)

FJMI 91.16(1.48) 88.92(1.92) 81.08(2.88)

PCA 64.71(1.83) 61.81(2.89) 63.48(2.21)

PCFS 93.55(2.75) 87.06(1.39) 87.55(1.80)
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Table 2 (continued)

Dataset Method Evaluation criteria

SVM NB DT

Multiple features LS 91.36(0.13) 91.43(0.12) 90.62(0.12)

GCNC 91.81(2.26) 88.78(1.02) 92.55(0.54)

FGUFS 92.21(1.24) 89.93(1.35) 92.79(2.38)

FS 94.78(0.11) 92.32(1.42) 92.15(1.20)

FAST 94.91(1.91) 92.48(1.95) 92.59(2.67)

FJMI 95.82(0.64) 93.28(3.14) 93.04(2.05)

PCA 92.29(1.64) 89.82(1.98) 91.78(2.42)

PCFS 94.87(0.25) 94.90(2.68) 93.14(2.45)

Colon LS 74.10(1.18) 73.82(1.67) 76.03(2.48)

GCNC 75.17(1.76) 76.53(1.21) 76.47(3.38)

FGUFS 78.23(2.23) 75.91(2.34) 77.96(1.22)

FS 72.31(3.92) 69.15(2.26) 72.61(2.21)

FAST 74.11(1.71) 73.26(3.52) 71.83(1.65)

FJMI 82.37(4.04) 76.58(2.09) 81.48(1.72)

PCA 76.12(1.54) 76.43(1.51) 76.42(2.12)

PCFS 83.19(2.32) 79.24(3.01) 81.92 (1.33)
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Fig. 1 Average classification accuracy over all datasets on the SVM classifier
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Fig. 2 Average classification accuracy over all datasets on the Naive Bayes classifier



Page 16 of 21Rostami et al. J Big Data            (2020) 7:83 

Also, the comparison of the accuracy of the proposed method with the other feature 

selection methods according to the various numbers of selected features is performed 

by conducting several experiments. �e classification accuracy (average over ten inde-

pendent runs) curves of SVM and DT classifiers on multiple features and colon datasets 

are respectively plotted in Figs. 4 and 5. �e results of this table indicated that the pro-

posed method, in most cases, is superior to other methods and has highest classification 

accuracy.
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Fig. 3 Average classification accuracy over all datasets on the Decision Tree classifier

Table 3 Number of times di�erent methods achieve the best results with SVM classi�er

Dataset LS GCNC FGUFS FS FAST FJMI PCA PCFS

SPECTF 0 1 1 0 0 2 0 6

SpamBase 0 2 0 0 1 1 0 6

Sonar 0 1 0 0 0 1 1 7

Arrhythmia 0 1 1 0 0 0 0 8

Madelon 0 1 0 1 1 1 0 6

Isolet 0 1 1 0 2 1 0 5

Multiple Features 0 1 1 1 1 1 0 5

Colon 0 1 1 0 1 1 1 5

Average 0 1.12 0.62 0.25 0.75 1 0.25 6

Table 4 Number of times di�erent methods achieve the best results with NB classi�er

Dataset LS GCNC FGUFS FS FAST FJMI PCA PCFS

SPECTF 1 1 1 0 0 2 0 5

SpamBase 0 1 0 1 1 1 0 6

Sonar 0 1 0 0 1 0 1 7

Arrhythmia 0 1 1 0 0 1 0 7

Madelon 0 1 1 0 1 1 0 6

Isolet 0 1 1 1 1 1 0 5

Multiple features 0 2 1 1 1 1 0 4

Colon 0 1 0 0 0 2 1 6

Average 0.12 1.12 0.62 0.37 0.62 1.12 0.25 5.75
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Furthermore, a large number of experiments were performed to compare the execu-

tion time of the proposed method and other supervised and unsupervised feature 

selection methods. In these experiments, related execution times (in ms) for different 

methods are reported in Table 7. It can be concluded from the results reported in this 

Table 5 Number of times di�erent methods achieve the best results with DT classi�er

Dataset LS GCNC FGUFS FS FAST FJMI PCA PCFS

SPECTF 1 1 1 0 0 2 1 4

SpamBase 0 1 0 1 1 0 0 7

Sonar 0 1 0 0 1 1 1 6

Arrhythmia 0 1 1 0 1 1 0 6

Madelon 0 1 1 0 1 0 1 6

Isolet 0 1 0 0 1 1 1 6

Multiple Features 0 2 0 1 1 1 0 5

Colon 0 1 0 1 0 1 1 6

Average 0.12 1.12 0.37 0.37 0.75 0.87 0.62 5.75

Table 6 Average number of selected features in ten independent run

Data Set PCFS LS GCNC FGUFS FS FAST FJMI PCA

SPECTF 18.8 19.3 17.2 18.7 18.6 19.2 19.3 21.4

SpamBase 26.2 29.4 27.5 31.5 31.7 30.5 30.1 22.1

Sonar 16.8 18.2 17.4 23.4 21.5 21.7 22.6 18.2

Arrhythmia 19.2 18.7 18.3 20.3 21.5 21.6 21.7 22.8

Madelon 55.8 54.7 57.7 61.2 61.6 60.8 61.5 58.2

Isolet 73.4 71.8 72.8 81.3 83.4 80.2 81.5 79.1

Multiple Features 72.5 73.2 75.5 84.7 86.8 85.1 85.8 85.7

Colon 40.4 41.0 43.6 51.5 51.2 50.7 50.9 48.1

Average 40.3 40.7 41.2 46.5 47.0 46.2 46.6 44.4
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Fig. 4 Classification accuracy (average over 10 runs), on multiple features dataset with respect to the 

number of selected features with a SVM classifier, and b DT classifier
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table that, in most cases, the PCFS proposed method has lower running times than the 

other methods.

Complexity analysis

this subsection, the computational complexity of the proposed method is calculated. 

The first phase of the method which utilizes the PCFS clustering to determine of 

clusters. The time complexity of this phase is O
(

In
2
s
)

 where I  . Number of iterations 

for algorithm convergence indicates, n denotes the total number of initial features 

and s is the number of samples. In the next phase, Dim-reduce function is used to 

produce a reduced feature The complexity of Dim-reduce function is O
(

n
2
)

 . Con-

sequently, the final computational complexity of the PCFS methods is O
(

In
2
s + n

2
)

 . 

When the number of samples (i.e., s ), and number of iterations (i.e., I  ), much smaller 

than the total number of features, the final time complexity of the proposed method 

can be reduced to O
(

n
2
)

.

Conclusion

Over the last 10 years, the fast growth of computer and database technologies has led 

to the rapid growth of large-scale datasets. On the other hand, applications with high 

dimensional datasets that require high speed and accuracy are rapidly increasing. An 
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Fig. 5 Classification accuracy (average over 10 runs), on Colon dataset with respect to the number of 

selected features with a SVM classifier, and b DT classifier

Table 7 Average execution time (in ms) of  di�erent feature selection methods over  ten 

independent runs

Dataset PCFS LS GCNC FJUFS FS mRMR FAST FJMI PCA PCA

SPECTF 161 162 168 230 158 1906 87 2452 162 162

SpamBase 1456 1572 3780 5267 3926 15180 2908 17383 3921 3921

Sonar 260 289 275 741 165 3511 181 4781 2892 2892

Arrhythmia 4387 4088 7734 6282 5617 4842 2863 5906 5814 5814

Madelon 8932 17852 31849 44289 31795 19045 9642 22575 36725 36725

Isolet 8468 19710 33126 47891 32771 23734 11928 27826 31732 31732

Multiple Features 9765 18941 32674 36891 29810 21778 10403 27681 30348 30348

Colon 7987 10154 113598 139897 109884 11962 8295 16783 112864 112864
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important issue with data mining applications, including pattern recognition, classifi-

cation, and clustering, is the curse of dimensionality, where the number of features is 

much higher compared to the number of patterns. From a general perspective, feature 

selection approaches are categorized into three groups, supervised, unsupervised, 

and semi-supervised. Supervised feature selection methods have a set of training pat-

terns available, each of which is described by taking the values of the features with the 

labels, while in the unsupervised modes, feature selection methods encounter sam-

ples without labels. Semi-supervised feature selection is also a type of feature selec-

tion that employs both unlabeled and labeled data simultaneously to improve feature 

selection accuracy.

In the present paper, a novel pairwise constraints-based method is proposed for 

feature selection. In the proposed method, in the first, the similarity between the pair 

constraints is calculated. �en an uncertainty region is created based on it. �en in an 

iterative process, most informative pairs are selected. �e proposed method was com-

pared to different supervised, and unsupervised feature selection approaches, includ-

ing LS, GCNC, FJUFS, FS, FAST, FJMI and PCA. �e reported findings indicate that, 

in most cases, the proposed approach is more accurate and selects fewer features. For 

example, numerical results showed that the proposed technique improved the clas-

sification accuracy by about 3% and reduced the number of picked features by 1%. 

Consequently, it can be said that the proposed method reduces the computational 

complexity of the machine learning algorithm, despite the increase in classification 

accuracy.
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