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Summary. The determination of earthquake locations requires a good 
velocity model for the region of interest, appropriate statistics for the 
residuals encountered and an efficient, stable inversion algorithm. 

A direct nonlinear inversion scheme has been constructed which can use 
any velocity model for which travel times can be calculated from an arbitrary 
source position to the receivers in the seismic network. The procedure is 
based on the minimization of a misfit function depending on the residuals 
between observed and calculated arrival times. Different statistics, e.g. 
Gaussian and Jeffreys distributions, can be accommodated by the choice of 
misfit function. The algorithm is based on a directed grid search which 
narrows down the range of possible origin times whilst carrying out a spatial 
search in the neighbourhood of the current minimum of the misfit function. 
No numerical differentiation of travel times is required, and convergence is 
rapid, stable and tolerant of occasional large errors in reading observed travel 
times. A useful product of the method is that the misfit function values are 
available in the neighbourhood of the minimum, so that a fully nonlinear 
treatment of the statistical confidence regions for a particular location can be 
made. 

A prerequisite for the use of the algorithm is the delineation of bounds on 
the four hypocentral parameters. Epicentral bounds are constructed using a 
variant of the ‘arrival order’ technique, and rapid scanning in depth and origin 
time over this region yields useful bounds on these parameters. 

The new nonlinear algorithm is illustrated by application to the SE 
Australian seismic network, for an event in the most active seismic zone. Two 
different velocity models are used with both Gaussian and Jeffreys statistics 
and good convergence for the algorithm is achieved despite significant non- 
linearity in the behaviour. The Jeffreys statistics are more tolerant of large 
residuals and are to be preferred when the requisite velocity model is not too 
well known. 

Key words: hypocentre location, nonlinear inversion 
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680 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 Introduction 

Most earthquake location procedures commonly used today may be viewed in terms of an 
optimization problem. Although an underdetermined problem, due to our lack of knowledge 
of the real Earth, the nonlinear inversion of seismic data for hypocentral parameters is 
generally treated as one of overdetermined type. This is achieved by assuming knowledge of 
the compressional and shear wave velocity structure of the Earth in the form of a fixed 
seismic velocity model, which, therefore, reduces the number of unknowns in the problem 
to the four hypocentral parameters of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan earthquake. The data consist of observed first 
arrival times of the body wave phases of an event (say zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtoi, i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.N) at a network of 
seismic stations in the area. By using the assumed velocity structure with an initial set of 
hypocentral parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(hk, k = 1,4), theoretical arrival times zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( tc i )  may be calculated. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs 
an indication of the success of the trial hypocentre we may produce an error or ‘misfit’ 
statistic C using observed and calculated arrival times. If we define the ‘best’ or solution set 
of hypocentral parameters as that combination which produces a minimum misfit statistic, 
then the location problem reduces to the optimization of C in the hypocentral parameter 
space. 

The non-linearity in the problem arises because of the non-linear dependence of the 
travel times of seismic waves with respect to variations in both the hypocentral and velocity 
model parameters. The commonly used misfit statistic is an L2 -norm or squared residual 
statistic 

M. S. Sambridge and B. L. N. Kennett 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAui is the standard deviation of the i-th datum. It can easily be shown (Buland 1976) 
that the least-squares optimization is equivalent to  assuming a Gaussian distribution for the 
picking errors on the observed arrival times with no cross-correlation of errors (see Fig. 1) 

-4 -2 0 2 4 

Figure 1. Comparison of the Gaussian and Jeffreys distributions for picking errors. The Gaussian is shown 
in a solid line and the Jeffreys distribution which imposes a wider Gaussian beneath the normal 
distribution is shown in a dashed line. 
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Hypocentre location zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA681 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i.e. a probability distribution 

The squared residual statistic 

(1.2) 

(1.1) is usually minimized by a Gauss-Newton type of 
algorithm, or a related variant. The predominant techniques used in the hypocentre problem 
at the present time are: (a) Gauss-Newton, least-squares zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - [ATA]-’ATr 

(b) Damped least-squares 

ax = - [ A ~ A  + 02A]-’ATr 

where 6x is the estimated adjustment vector for the hypocentral parameters, r is the residual 
vector and A is the (n x 4) matrix of partial derivatives of the residual vector with respect to 
the hypocentral parameters. Both these algorithms define an improvement to an existing 
vector, x. 

The matrix A describes the way in which the travel times (and, hence, the residual vector) 
are related to the hypocentral parameters. Due to the nonlinearity of this dependence A is 
itself a function of the hypocentral parameters and varies with position. The problem is 
therefore solved iteratively. The numerical problems associated with the matrix inversions in 
(I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.3), (1.4) are well known (Lee & Stewart 1981). A local linearization is made at each 
iterative step and derivatives of travel times constitute the entries of A. In cases where the 
data poorly constrain the parameters, such as areas outside the network of stations, the 
similar dependence of derivatives at different stations on the hypocentre parameters may 
cause the matrix ATA to become rank defective. In this case an attempt to calculate its 
inverse as in (1.3) leads to wild oscillations in the estimated adjustment vector 6x, and, 
hence, numerical instabilities occur. The instability may be avoided by using a damped least- 
squares approach as in (1.4) but now zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO must be chosen carefully to avoid a reduction in 
parameter resolution. 

Another factor common to earthquake location procedures is that events are located 
relative to a fixed Earth model and all errors associated with that model will be treated as 
errors in the position of the event, with a consequent shift in the hypocentre. This has the 
result that the minimum of the misfit statistic, which we consider as the goal of the 
optimization process, will only give us a solution which is as good as the velocity model will 
allow. The statistic used to estimate the picking errors (which is usually assumed to be 
Gaussian) is in fact inherently being used to model the errors in our velocity model, as 
compared with the real Earth, which may be far from Gaussian. 

However, attempts to use other error statistics, or combinations of error distributions 
are very uncommon. Jeffreys (1 932) introduced a modification to the Gaussian distribution 
which he noted to be representative of teleseismic traveltime residuals. The Jeffreys 
distribution, which consists of a Gaussian combined with a smaller background Gaussian of 
greater width (see Fig. I), is known to be robust (unlike the simple Gaussian distribution) 
i.e. it tolerates occasional outlying values in the residuals. I t  is less influenced by a single 
relatively large station residual which may arise from a misrecording of a time pick or, 
perhaps, an anomaly in the velocity model error due to local lateral heterogeneity. An 
attempt to model both observational and velocity model errors simultaneously has been 
made by Tarantola & Valette (1982). They combined probability density functions (p.d.f.’s) 
of both observational and velocity model errors and then integrated over origin-time to 
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produce a statistic which is independent of the origin-time of the event. Few attempts seem 
to have been made to incorporate these variations on the Gaussian statistic into routine 
location algorithms, most probably due to the difficulty of formulating the problem in terms 
of the usual matrix inversion procedure. 

In this paper we describe a fully non-linear hypocentral location algorithm which is 
completely independent of the type of statistics employed. It may, therefore, be used to 
examine the effect the chosen statistic has on the final location of events. No local 
linearization of the problem is made and derivatives of travel times are not required. All 
matrix inversions are avoided and so the method has beneficial stability in cases where the 
hypocentral parameters may be ill-constrained. 

The algorithm falls into the class of grid search methods, which are usually deemed too 
inefficient in cases where more than one dimension of parameter space must be searched. 
However, by separating the spatial and temporal searches and using some simple 
optimization techniques, we have been able to produce an efficient and robust algorithm. As 
with most search type algorithms, a function evaluation is the only type of repetitive 
information used and so the resulting method is rather general in nature. Just as one may 
choose any type of objective function to be minimized, one is at liberty to replace the 
velocity model with any other desired, including 3-D laterally heterogeneous models. This 
full non-linear approach to inversion allows us to make a direct estimate of the size of the 
confidence region about the solution. We are able to examine the distortions in the 
confidence region imposed by the nonlinearity in the problem, and also look at the relative 
constraints placed on the solution in the epicentral and depth planes. 

The method requires an initial region of hypocentral parameters on which the grid search 
procedure acts. Although this region need not necessarily enclose the actual hypocentre of 
the event, the size and accuracy of the initial region affects the rate of convergence of the 
algorithm. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA technique has therefore been devised which quickly generates a fairly accurate 
first estimate of the region of parameter space containing the solution, which will be 
described before the treatment of the main algorithm. 

The new algorithm is illustrated by application to hypocentral estimates for local and 
regional events using the network of seismic stations in southeastern Australia. However, 
once a suitable travel time routine has been supplied for the phases picked from the seismo- 
grams, the algorithm may be used for teleseismic problems or in regions of strong lateral 
heterogeneity. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

M. S. Sambridge and B. L. N. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKennett 

2 Hypocentral bounds: the arrival order method 

All earthquake location algorithms require an initial guessed set of hypocentral parameters, 
which will hopefully be improved during the course of the inversion. In this section we 
describe a procedure which leads to upper and lower bounds on all four hypocentral para- 
meters. 

The method employs the time picks of the first arriving P-wave phases at each station 
and, where available, the corresponding initial S-wave times. A quick, robust and fairly 
accurate estimate of a region of parameter space surrounding the hypocentre is generated 
and used as the starting point for the main nonlinear location algorithm described below. 

2.1 E P I C E N T R A L  B O U N D S  

The estimation of bounds on the epicentral position is based on a variation of the technique 
proposed by Anderson (1981) using the order of arrival of the P-waves at the different 
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X km 
Figure 2. Construction of arrival order zone for a theoretical network of four stations, including the effect 
of picking errors. The constraints zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare labelled by the pairs of station used. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
stations of the network. The basic assumption is that for any particular phase those stations 
with the earliest time picks are closest to the epicentre. 

The system is best illustrated by a simple example (Fig. 2) using a four station network. 
The stations are numbered according to the arrival order of the P-waves. Each pair of 
stations then provides a geometrical constraint on the position of the epicentre. If we take 
the two earliest stations 1 and 2 then the epicentre must lie closer to 1 than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 ,  i.e. the epi- 
centre must lie below the perpendicular bisector of the line joining 1 and 2 .  Similarly taking 
all the other possible combinations of pairs of stations in turn, we define a set of geometrical 
constraints on the epicentre location. We select the region which satisfies the maximum 
number of constraints, region A in Fig. 2 which is determined by the relative arrival times of 
the pairs 1 and 2 , 2  and 3 , 3  and 4. 

With an n station network there are n(n - 1)/2 such geometrical constraints and we 
would choose the zone satisfying the maximum number of constraints as that most likely to 
contain the actual epicentre. Inaccurate time picks may mean that some stations get inter- 
changed from the true order of arrival and so prevent the constraints from being entirely 
consistent. 

Anderson (1981) seeks only an initial epicentral solution and takes the vertex of the zone 
satisfying the largest number of constraints which lies nearest to the station which detects 
the event first. The problem then becomes one of linear programming and is solved using a 
Simplex algorithm (Whittle 1971). However, we wish to examine the entire zone and 
determine the smallest rectangle that encloses the arrival order zone, thereby giving our 
epicentral bounds. A quite different method of solution is therefore required. We first 
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represent the region containing the network of seismic stations by a system of equally 
spaced grid points. To each point a rank is then assigned according to the number of geo- 
metrical constraints satisfied by its position. We then define the arrival order zone as the 
region containing the points of highest rank. In this way we obtain a ‘discretized’ version of 
the required zone. This approach has the advantage of being tolerant of a set of inconsistent 
constraints brought about by errors in the observed arrival times. In practice, however, due 
to the size of the average station separation in most local to regional seismic networks, this 
rarely becomes a problem. We usually obtain an epicentral zone satisfying all or nearly all 
possible constraints. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A further advantage of this type of approach is that one may perturb the boundaries that 
define the arrival order zone, to make allowance for the estimated picking errors in arrival 
times. This may be achieved by sampling grid points on either side of a boundary 
(perpendicular bisector) and finding all those which satisfied a ‘perturbed constraint’. The 
perturbed or ‘fuzzy’ constraint is generated by looking at a set of points along the boundary, 
calculating the P-wave travel times from the point to both stations and then selecting those 
epicentral points whose travel times would lie in a specified range about the travel times for 
the boundary point. Fig. 2 shows this perturbation of boundaries about the arrival order 
zone for a four station network. 

The method described here will generate a pair of upper and lower latitude and longitude zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

M. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASambridge and B. L. N. Kennett zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

33.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S 

35.0 

36.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1L7.5 1L9.0 150.5 

E 
Figure 3. Practical example of the arrival order method for an event near station CAN in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 ,  
illustrating the 66 constraints imposed by time picks at 12 stations. The rectangular zone needed for 
further inversion is stippled. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/8
7
/2

/6
7
9
/6

2
0
1
1
0
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Hypocentre zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlocation 685 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
bounds on the epicentre efficiently and quite accurately. The underlying assumption in the 
method is that the arrival order implies distance order, which is true for most velocity 
models. The arrival order is therefore insensitive to changes in velocity model and also to 
picking errors. As a result we get a very robust result. An example with real data is shown in 
Fig. 3 where a 12 station network is used. The small, shaded, rectangle represents the epi- 
central bounds determined for the event, while the triangular region within the rectangle is 
the arrival order zone produced by the combination of the 66 geometrical constraints. 

2.2 D E P T H  A N D  O R I G I N  T I M E  B O U N D S  

An extension of the above approach can be used to obtain an estimate of depth and subse- 
quently origin time bounds, with the use of both zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP- and S-arrival times. Given a velocity 
model we may calculate the travel times of P- and S-phases from each of the points 
previously used to define the arrival order zone to each station in the network. If S wave 
data are available at several stations then the time separation S-P may be calculated and 
compared with the theoretical predictions. If this is done for a fixed range of depths for each 
grid point then we may determine the depth which produces a minimum S-P discrepancy 
between the observed and calculated values. In this way a depth may be associated with each 
point across the zone and an upper and lower depth bound may be found. In practice, 
however, S-wave data may be of poor quality or unavailable at most stations and in this case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a priori depth bounds are used. 

For the crustal events located using the southeast Australian network a priori depth 
bounds of 0 to 5 km have proven to  be useful in generating robust origin time bounds. These 
may be calculated by a similar procedure to that above. Once again we sample the grid 
points that span the arrival order zone at both upper and lower depth bounds and calculate 
the P-wave travel times to each station in the network. By subtracting the observations from 
the theoretical times and averaging over stations we may associate an origin time with each 
point sample. The variation across the arrival order zone provides the upper and lower origin 
time bounds. We have found that a very simple velocity model is usually adequate to give 
effective bounds so the required calculations can be carried out very quickly. A more refined 
model may be appropriate for the actual hypocentre locations. 

2.3 R E S U L T S  O F  TESTS 

The Dalton/Gunning seismic zone in SE Australia about 60 km north of Canberra is a region 
of considerable repetitive activity (Cleary 1967). 45 events were selected from this region 
and hypocentral bounds were generated for each event using the arrival order method we 
have just described. The velocity model was that proposed by Finlayson zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& McCracken 
(1981) derived from a refraction experiment with a line of stations passing through the 
Dalton/Gunning zone. 

These estimates of the hypocentral parameters were compared with the conventional 
initial estimates obtained from the direct use of S-P times and the standard regional travel 
time model (Doyle, Everingham & Hogan 1959). In addition a full location was made for 
each event using the nonlinear algorithm described in the next section. 

For the events tested 70 per cent of the final origin times from the nonlinear algorithm 
described below, were closer to the mean of the upper and lower bounds estimated from the 
arrival order method than the standard estimate. The mean error in the arrival order 
estimates was 0.25 s. For the epicentral locations, 10 per cent of the conventional estimates 
lay outside the corresponding arrival order zones, and all the final locations were within the 
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epicentral bounds produced by the arrival order method. All depth bounds were set at 0 to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 km, as S-wave data was not abundant. The conventional initial estimates are based on all 
available zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS-P time separations. However, in the arrival order method, to warrant the use of 
S-wave data we require sufficient information to constrain the depth bounds, typically 
readings at about three-quarters of the stations in the network. 

M. S.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASambridge and B. L. N. Kennett zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 Nonlinear grid search procedure 

We start from a set of bounds on hypocentral parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(xi, y j ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzj, ti, j = 1,2) which define 
the initial region of parameter space. These bounds may be determined by the method we 
have just described (or via some other technique e.g. by assigning generous error bounds to 
an estimated solution). 

We have also to establish some criterion, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC; a function of the observed times and 
estimated hypocentral parameters which we shall minimize to find our optimal solution. The 
choice of misfit function C depends on the class of statistics we wish to employ to describe 
the observational errors in the data and the imprecision of our assumed velocity model. We 
denote the observed travel times by t o j ,  i = 1, . . . ,Nand  their theoretical equivalents, calcu- 
lated for a fixed velocity model and some particular choice of hypocentral parameters by 
tci, i = 1, . . . , N .  The residual for the i-th datum is then 

r . = t  . - t .  

The commonly used assumption of a Gaussian distribution for the observational errors leads 
to a sum of weighted squared residuals for C: 

(3.1) I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA01 CI ’  

N 

i= 1 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC is the inverse covariance matrix, which with the assumption of no correlation 
between data picks reduces to a diagonal matrix of inverse variances. 

An alternative C function‘ results from the use of the Jeffreys error statistics with a super- 
position of Gaussians: 

c= - c log, ( ( 1 - 0  =- exp (3) + 
f exp (2) 1 ,  1)1/’ 2of u(2n)”Z i= 1 I uALn 

(3.3) 

where the small proportionfof a broader based probability distribution with variance uz can 
account for outlying misfit values. In a regional study this extra term can give a general 
account of the deficiencies of a single fixed velocity model in a three-dimensionally varying 
real world. 

A specific attempt to introduce the error in the modelling stage into the formulation of 
the problem was made by Tarantola & Valette (1982) who suggest a mismatch function 

N N  

in terms of the matrix 

P = fco + Ccl-l, 

where C o  and C, are the covariance matrices for observed and calculated travel times. The 
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Hypocentre location 687 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
travel times zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfoi, f c j  have a weighted mean removed 

and the vector p has components 

p . =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI CPIj. 
i 

The specific choice of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC does not affect the structure of the algorithm and so we are able 
to compare the results of different choices for the same data set. 

3.1 S E A R C H  A L G O R I T H M  

We partially separate the spatial and temporal parts of the search in our attempt to construct 
the global minimum of C(h) where h denotes a 4-D vector in hypocentral parameter space. 
We will denote the 4-vector at the minimum by 1;. At fixed origin time, T ,  we will denote the 
minimum of C over the three spatial parameters by C(h,, T ) ,  where hT is the 3-D spatial 
location of the minimum. 

We may now set up the problem of minimising C as one of finding C(h,, t )  for any given 
time t and then minimizing C(h, t )  along the temporal axis (see Fig. 4). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

TEMPORAL 
CA 

SEARCH 

SPATIAL SEARCH 
Figure 4. Schematic illustration of the nonlinear procedure, showing the interaction between temporal 
and spatial searches for a minimum of the misfit function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. 
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688 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 Temporal minimization 

We assume, for the moment, that we can find zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC(h,, t) ,  for any t ,  to any required accuracy, 
and then we have to perform a I-D minimization over t .  Although a variety of methods are 
available we would like to avoid the use of derivative information, in keeping with our aim 
of keeping the entire algorithm free of numerical differentiation. A suitable technique 
which requires only function evaluations is the Golden Section Search (Whittle 1971). We 
assume that the position of the global minimum of C(h) lies between the time bounds tl and 
t2 where C takes the values C(h,, t , ) ,  C(h,, t 2 )  respectively. 

Consider now two points tA, tB symmetrically placed about the midpoint of (t l, t 2 )  i.e. 
1/2(tl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtz> (see Fig. 4), and evaluate the spatial minima C(hA, t A ) ,  C(hB, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ~ ) .  If 

M. S. Sambridge and B. L. N. Kennett 

C(hA, t A )  c(hB, tB>, (3.5) 

then the minimum value must be confined to the temporal region ( t l ,  te), and we can 
restrict attention to this zone in which we already have one function evaluation at t A .  

Choosing a further point tc such that 

t c  - t1 = tB - f A .  (3.6a) 

we have a similar problem to the original one but over a smaller interval in time. When (3.5) 
does not hold, we restrict attention to ( t A ,  t,) and define tD such that 

cz - t B  = t D  - t A .  (3.6b) 

The Golden section search gains its name because the subintervals are always divided in the 
same ratio 

t A  - t l  - t B  - t l  
- P ,  

t g  - tl 

but 

t 2  - t ,  

t B - t l = ( t , - - l ) p ,  (3.8) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
tA - f l  = ( t Z  - [ l > ( l  (3.9) 

as t A ,  tB are symmetrically disposed about the midpoint of ( t l ,  t z ) .  Thus we require 

(1 - P N P  = P, (3.10) 

and solving for the Golden section number p we obtain 

p=0 .618  . . .  . (3.1 1) 

We define tB by (3.8) and t A  by (3.9) which we may also write as 

tz - f A  =P(tz - f1). (3.12) 

When (3.5) holds we apply the procedure to the new interval ( t l ,  tB)  to define a new value 
for by 

t B  - t A  = p ( t B  - t l ) .  

If, however, (3.5) is untrue we examine the interval ( t A ,  tz> and construct a new tB  by 

t B  - fA = p(t2 - t A ) ,  (3.14) 

In either case, we have arrived back at the original situation of having a minimum confined 
to a time interval with an interior function value at the interval ratio 1 :p.  We can therefore 

(3.13) 
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Hypocentre location zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA689 

repeat the process by considering the new inequality of the type zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3.5). At each stage the size 
of the interval which needs to be considered is reduced by a factor of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp. After k evaluations 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC(hr, t )  we will be able to locate the minimum in an interval reduced by pk - ’  of the 
original. 

The assumptioil that the minimum of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC lies between C(hl, t l )  and C(h2, t 2 )  along the 
origin time axis is not essential to the algorithm. If the global minimum lies outside this time 
interval the Golden Section search will converge on the closest of the two boundaries to the 
minimum. One may actually monitor the boundary points t ,  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt2 during the progress of 
the search to detect this situation. Alternatively, a simple procedure adopted here is to 
determine if 

(3.15) 

OI 

C(h*, t z ) < C ( h s , t ~ ) < C ( h ~ , r ~ ) < C ( h l ,  t i ) ,  (3.16) 

holds for the initial time interval. If (3.15) holds then this is an indicator that the global 
minimum C(6) may lie below C(h,, t l )  on the time axis. Although this condition is not 
sufficient to determine whether the initial interval of interest requires expansion, it seems 
prudent to decrease tl  (in this case) until (3.15) no longer holds i.e. C(hl, t l ) >  C(hA, t A ) .  

The upper limit may be treated in a similar manner using (3.16). 
This then completes the temporal part of the minimization process. We discuss the 

convergence criteria we have employed in section 3.1.3. At each stage of the temporal 
minimization we have assumed that for a given zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr the minimum of C over the three spatial 
coordinates, i.e. qh , ,  t ) ,  is available to us. I t  is here that the spatial search part of the 
algorithm is put to use. 

3.1.2 Spatial search 

The optimization of C(h,, t )  over the spatial coordinates is performed by searching on a 
spatial lattice with a fixed interval in all three dimensions (e.g. for regional studies we have 
taken the spacing to be 1 km). The major problem faced when attempting this type of 
procedure is in limiting the amount of redundant work. We need to be able to guide the 
algorithm in searching over regions of parameter space. If possible, we would prefer to 
always search in regions close to our desired minimum, and we therefore need to place as 
many constraints as possible on the choice of search regions. 

The procedure we have adopted is aimed at reducing the overall time taken in searching 
over the spatial grid. Initially we define a fixed grid in all three dimensions for the region of 
parameter space given by our bounds on the spatial coordinates (xi, yj, zj, j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1,2). This 
gives us a 3-D rectangular grid system over the arrival order zone. The centre of each unit 
cube in the lattice is taken to  represent the region of parameter space occupied by the cube, 
and the C statistic is evaluated at each central point. This search over the entire arrival order 
zone is performed for an origin time tM , which is the mean of the initial origin time bounds, 
and requires a considerable proportion of the overall computation time. However, it provides 
an initial point on the C(ht, t )  curve (Fig. 4), which acts as a ‘handrail’ for subsequent 
spatial searches. Once this initial large scale search is completed then all further searches are 
carried out over smaller portions of the 3-D grid. 
A box is set up with its centre at the location of the minimum at the time tM i.e. h M ,  

with sides of a suitable size for the class of location problem at hand. We have found 7 x 7 
km in latitude and longitude by 5 krn in depth to be adequate for the southeast Australian 
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network. The next spatial search occurs for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= t ,  (see Fig. 4)’and is carried out over this 
smaller region to obtain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC(h,, t l> .  The location of this minimum provides the central point 
for the next box search at t = t ,  and so on. Currently we have used a fixed size of box; 
ideally we would like the box dimensions to be always large enough to  just contain the next 
minimum C(h,, t ) ,  where t is given by the temporal search procedure. However, as the 
algorithm progresses the spatial distance between these minima decrease as the change in 
origin time parameter decreases with subsequent searches. The size of the box is therefore 
aimed at being efficient in the initial stages of the algorithm when the movement of the 
minimum is largest, 

If at any stage we find that C(h,, tj is on the boundary of the box suggesting that the true 
minimum lies outside, we use a simple tracking procedure. The box is moved in the direction 
of the minimum and its dimensions are reduced in the other directions (e.g. to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 km). For 
example, if we sample over an epicentral region at a shallow depth and the spatial minimum 
is located in the middle of the epicentral zone but at the deepest level sampled, then we may 
expect that the movement of C(h,, tj will be greater in depth than in the horizontal 
coordinates. We would therefore restrict the sampling in the horizontal directions during the 
next search. The interference of possible local minima of C can to some extent be avoided 
by increasing the box dimensions from the beginning but at the cost of increased 
computation. 

Overall, we have a progressive narrowing of the search region as the algorithm progresses. 
We have to strike a balance between the effort needed to perform the search over a box, 
which is least for a small box, and the number of times tracking is invoked, which increases 
the total computational effort and may occur frequently for too small a box. 

M. S. Sambridge and B. L. N. Kennett 

3.1.3 Convergence criteria and the final location 

One may define a convergence criterion for the algorithm by one or more means. We could 
choose a threshold on the misfit statistic C below which discrimination is not possible 
because of the likely errors in the data. However, such a condition would be dependent on 
the choice of misfit function C, a property which we would prefer to avoid. 

We have chosen therefore to define the convergence of the algorithm by imposing bounds 
on the spatial region within which the solution must lie. Tlus is done by testing the 
difference in the 4-vectors at the minima of C(h) at the current origin time bounds 

b = hz - hi. 

The algorithm is terminated when the b vector has components less than specified length and 
time measures (eg. we have taken 1 km and 0.1 s for our 1 km grid). b is an indication of 
the size of our best region of parameter space as measured by our 3-D grid system, and is 
therefore constrained by the lattice spacing. 

To obtain a single final location we resort to a quadratic fit of the C function over the 
region spanned by b and take the minimum found. Since this fit is performed over a small 
region of parameter space the effects of nonlinearity on the final location estimate are 
neghgible. 

3.2 C O N F I D E N C E  L I M I T S  

The estimation of a point solution to the location problem is not very informative unless 
some reliable estimate of its accuracy can be given. The relative errors in the solution can be 
determined by examining the variation of the C function in the region of parameter space 
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Hypocentre location zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA691 

about the proposed location. The approach we have adopted is particularly convenient since 
the values of the misfit function C are available on a regular grid about the calculated 
location. We may therefore readily examine the shape of the contours of C in this region. 
Figs 7 and 8 show such contours expressed as confidence levels on the probability of the 
location, when one assumes Gaussian and Jeffreys statistics for the picking errors. 

Buland (1976) describes a method by which we may obtain an estimate of the 95 per 
cent confidence limits for such contours. We introduce zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r(h) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= C(h) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC(6) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC(6) is the value of C at our solution point. Then we say that the surfaces of constant 
r(h) represent joint confidence levels for the estimation of hypocentral parameters as 
suggested by the data statistic. Buland (1976) notes that one may assign confidence levels to 
the raw C values when a least-squares misfit function (3.2) is assumed, by considering a chi- 
squared distribution with four degrees of freedom. If we assume that the dependence of C 
on the hypocentral parameters is approximately linear in a region close to the solution, then 
the chi-squared distribution may be used to determine values of r(h) corresponding to a 95 
per cent confidence limit. However, this scheme is only valid if the picking errors are truely 
Gaussian, and we have modelled them correctly by assuming accurate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAui in formulating the 
C function. 

The effect of the errors in the velocity model on the solution is unclear in most circum- 
stances. The direct use of the chi-squared estimation of confidence regions does not take 
into account any errors from this cause. In an attempt to do so, Tarantola & Valette (1982) 
treat the whole problem from a probabilitistic point of view and effectively increase the 
relative weights ui on the observational errors to account for errors in the velocity model. 
The result is to broaden the C function contours and then these may be modelled as a chi- 
squared distribution with (n  - 4) degrees of freedom. In this way the confidence limits may 
be more representative of the combined velocity model and picking time errors. 

The approach we have adopted here is to reduce the C statistic by a factor such that the 
value of C@) is rescaled to  the expectation value of a chi-squared distribution with (n  - 4) 
degrees of freedom which is just (n - 4), where n is the number of data values. After the 
rescaling we take r(h) as a chi-squared function with four degrees of freedom, i.e. we 
calculate the region of parameter space which satisfies 

r(h)iK c ~24(0.95), 

where 

K = c@i)/(n - 41, 
or 

[C(h) - C6)I xi(0.95) 
(3 .I-() < 

cG-1 (n - 4) 

K is the factor by which we reduce the function so that its value at our solution h is (n  - 4). 
By dividing by K we are in fact trying to eliminate the effect of velocity model errors on the 
spread of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC function about h. A drawback of this approach is that all the confidence 
regions are in fact based on the assumption of Gaussian statistics for picking errors; however 
the resulting regions seem quite reasonable. 

Koch (1985) has produced a similar method for estimating confidence regions with an 
allowance for inadequacies in the velocity model. He has defined his 95  per cent confidence 
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692 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. Sambridge and B. L. N. Kennett 

regions by the region such that the 4-vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh satisfies 

[C(h) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- ClL)l 4 F:,(0.95) 
< zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3.18) 

where F:-4 is the Fisher distribution with n and (n - 4) degrees of freedom. The Fisher 
distribution is usually used to  distinguish between hypotheses and has smaller values than 
appearing in (3.1 7), our estimates of confidence regions are therefore more conservative (i.e. 
larger) than those used by Koch. 

All confidence regions are dependent on the statistics used to model picking errors and 
also therefore on the optimization function C. We may follow an analogous route to that 
described above to generate confidence regions with the Jeffreys statistic if the fraction of 
the broader distribution, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf, is small. In this case the analogue of chi-squared is 

m ( n  - 4) 

n 

+ 2 c log, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ U j ( 2 7 r ) 1 9 .  
i= 1 

S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
34 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
35 

36 

ANU net work 
1 I 

+ 

\O 

1 
PA VO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 

i 
DCM + + 

DKHn DUAM + f 
1 I 

149 150 
E 

148 I1 

Figure 5. The SE Australian seismic network administered by the Australian National University, with the 
location of the earthquake at Biala illustrated in Figs 7 and 8. 
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Hypocentre location zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA693 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The expectation value of X ,  on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 4) degrees of freedom is approximately 

(n - 4) {(I -a + u2f /u2> 

for small f, and equal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu;, and so is only slightly shifted from the former value. The 95 per 
cent confidence level for 4 degrees of freedom can be estimated for smallfas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
xi (0.95) ((1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-0 + fg(u/o)> 

where g(u/u) is typically of the order of 2-4. Thus only a slight modification of the right 
side of (3.17) is required. 

It should be noted that any estimate of such confidence regions is heavily dependent on 
the velocity model. A poor choice of velocity model may give a false impression of precision. 

4 Results of nonlinear inversion 

We will illustrate our nonlinear algorithm for the determination of hypocentres by 
examining the location of events in southeastern Australia using the seismic network shown 
in Fig. 5. The stations follow the southeastern highlands and mostly lie in the palaeozoic 
Lachlan fold belt. The three northernmost stations operated by the Sydney Water Board 
lie in the younger sediments of the Sydney Basin. 

The network was started in 1958 by the Australian National University in association 
with the major engineering works of the Snowy Mountain project and has subsequently 
been expanded to its present status of 16 stations. The seismicity of the area is in general 
quite widespread and diffuse with no clear correlations with the major faults of the fold belt 
(Lambeck et al. 1985). There are concentrations of events near the stations YOU and WAM, 
and an exceptionally active zone in the Dalton/Gunning region about 60 km north of 

a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkm/s 

501 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA60 
Fm 6. Velocity models for the crustal structure in SE Australia: (a) the simple regional model of 
Doyle, Everingham & Hogan (1959), (b) averaged velocity model for the Dalton/Gunning zone derived 
from the work of Finlayson & McCracken (1981). 
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694 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Canberra near station CAH. 400 events were recorded from this latter zone during 1984. 
We have chosen an event at Biala, with magnitude 2, from this region for detailed study. The 
geometry of most of the network has been dictated by the needs of line-of-sight radio 
telemetry and hence is not ideal for events in this neighbourhood. 

As the network covers a considerable linear extent from the Sydney Basin up into the 
Snowy Mountains and beyond, it is difficult to  construct a single, laterally homogeneous, 
model for the velocities in the entire region. However, a simple model which gives reasonable 
results is that proposed by Doyle, Everingham zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Hogan (1 959) from refraction experiments 
in the area (see Fig. 6a). More detailed refraction work has been carried out by Finlayson & 
McCracken (1981) using quarry blasts and profiles crossing much of the region of interest. 
We have used an averaged model for profiles passing near the Dalton/Gunning zone to try to 
improve the location of events in that region, the resulting gradient model is shown in Fig. 
6b. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

M. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. Sarnbridge and B. L. N. Kennett zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Gaussian Jef f reys zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

E 
Y 

5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 
Z 

0 

10 

20 

10 

0 

- 1  
-10 0 10 -10 0 10 

East km East km 
Figure 7. Comparison of nonlinear hypocentre locations using Gaussian and Jeffreys statistics for the 
Biala event. Contours of the misfit function are shown in vertical and horizontal sections for each case 
using the regional model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( F i g .  6a). The 95 per cent confidence regions are emphasized by shading. 
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Hypocentre location zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA695 

The arrival times for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP- and S-phases for the events were taken directly from the net- 
work data file. The typical picking errors are relatively uniform across all the stations and so 
we took standard deviations of 0.1 s for P-wave readings, 0.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs for S-wave readings. These 
can be used directly in the construction of the mismatch function (3.2) based on Gaussian 
statistics. When we employ the Jeffreys form (3.3), we need to introduce the size and 
’width’ of the underlying broader distribution, which we take to be representative of our 
modelling errors. A wide variety of trials with Gaussian forms showed that it was very 
difficult to reduce the minimum misfit below a level corresponding to errors of the order of 
two to three times our estimate of the reliability of our picks. We have therefore taken the 
background distribution to have a standard deviation of 0.3 s, with a weighting factor of 
0.005 chosen so that the dominant role in the inversion is played by the data constraints. 

We now consider a comparison of the use of the squared-residual (3.2) and Jeffreys (3.3) 
mismatch functions for the Biala event shown on Fig. 5. We could equally well include the 
Tarantola & Valette mismatch function (3.4) but results using this function are similar to 
the squared residual case. This arises because in the formulation of (3.4) both the ‘modelling’ 
and observational errors are assumed to have Gaussian probability densities. 

In Fig. 7, we use the regional model of Doyle et al. (1959), shown in Fig. 6a, with the 
non-linear inversion algorithm and draw contours of the mismatch functions in horizontal 
and vertical sections through the proposed hypocentres. The vertical sections are taken along 
east-west lines through the hypocentres, extending 20 km both horizontally and vertically. 
The horizontal sections are taken at the depth of the proposed locations on a futed grid 20 
km in both northerly and easterly extent. The use of the fixed grid enables any shift in the 
epicentres to be more readily judged. The contours are drawn at confidence levels of 75,95 
and 99.9 per cent and then at equal intervals in the mismatch function. The 95 per cent 
confidence region is emphasized by a bolder outline and shading. 

For this Biala event, the contours of the mismatch function in the squared-residual 
(Gaussian) case show significant departures from ellipses, even at the 75 per cent confidence 
level. This indicates substantial nonlinearity in the location problem arising from the net- 
work geometry. We have one relatively close station (CAH) whose spatial location is marked 
by a triangle in Fig. 7 ,  and a number of other stations on a line through the epicentral 
region. Algorithms of the least-squares type (such as (1.3), (1.4)) assume that in the 
neighbourhood of the hypocentre the contours of the mismatch function are ellipsoids (see 
e.g. Kennett 1976). The nonlinear character shown in Fig. 7 ,  shows that for the Biala event 
such error estimates using local linearization would be, at best, misleading. 

From micro-earthquake surveys in the Biala region we know that the activity mostly lies 
shallower than 4 km. However, the hypocentre suggested by the use of the squared residual 
fit (3.2) is rather deep at 8.5 km. This discrepancy is probably mostly due to the use of the 
over simplified velocity model (c.f. Fig. 8). With the use of the Jeffreys function (3.3) the 
proposed hypocentre is shallower (4.9 km) because less weight is attached to the poorest 
data fits arising from the inadequacies of the velocity model. We note that the pattern of the 
misfit contours is rather different in the two cases, for example the 95 per cent confidence 
region for this simple model intersects the surface for the Jeffreys function but is almost 
closed in the Gaussian case. 

In order to show the very considerable influence of the choice of velocity model on the 
character of the solution, we show in Fig. 8 a similar set of misfit diagrams but now using 
the gradient model in Fig. 6(b). Once again we compare the use of the two choices (3.2) and 
(3.3) for the misfit criterion. With the improved velocity model we observe that the 
solutions have moved in space, especially in depth. The proposed locations in Fig. 8 are 
concordant with the micro-earthquake results. The contours for the squared-residual 
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Gaussian Je f fre ys zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

East km East km zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 8. Nonlinear hypocentre locations and misfit contours for the Biala event using the velocity 
gradient model shown in Fig. 6(b). Misfit functions based on both Gaussian and Jeffreys statistics are 
shown. The 95 per cent confidence regions are emphasized by shading. 

function (3.2) are somewhat smoother than in Fig. 7, and show significant flattening in the 
neighbourhood of the station CAH whose projection is indicated by the triangle. The 
character of the misfit contours for the Jeffreys function (3.3) is more complex but also 
shows flattening near CAH. The 95 per cent confidence regions estimated for this better 
velocity model are in much closer agreement for the two classes of statistics, even though the 
estimates of the optimum epicentres differ by about 1 km. Similar behaviour is displayed for 
many other events in the DaltonfGunning seismic zone. 

The inversion algorithm has been successfully employed for events over the whole region 
covered by the network. The estimates of the 95 per cent confidence regions show a strong 
dependence on velocity model (e.g. a much shallower depth with the gradient model) and a 
weaker dependence on the statistics employed. Even though the behaviour of the misfit 
contours implies very nonlinear dependence of the C function on the hypocentral para- 
meters, the non-linear algorithm we have developed performs well and will converge even if 
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the initial hypocentral bounds are misplaced. The algorithm is, however, at its most efficient 
when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC increases monotonically away from a unique global minimum. 

The tolerance of the Jeffreys function (3.3) to outlying residuals is particularly beneficial 
where the velocity distribution is less well determined. Since little more computation is 
needed with our non-linear algorithm, the Jeffreys function is to be preferred for general 
use. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 Discussion 

The non-linear approach adopted here avoids some of the major problems associated with 
iterative linear schemes for hypocentre locations. The generation of corrections to a best 
guess hypocentral parameter is avoided, and our algorithm deals with regions of parameter 
space which are more informative than point estimates. We also avoid numerical instabilities 
associated with matrix inversion. Due to the rather simple requirements of the algorithm 
i.e. evaluations of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC function alone, our location scheme is very versatile and rather 
general in character. We may substitute one misfit function for another without changing the 
form of the algorithm. The only requirement is that we have the ability to generate values of 
C for any given set of hypocentral parameters. In exactly the same way we may substitute 
any type of velocity model for which the travel times can be calculated. Layered velocity 
models, gradient zones or three-dimensionally laterally heterogeneous models may be used 
equally well. This independence of the form of the velocity model is a result of bypassing 
the use of analytical expressions for the derivatives of travel times with respect to the 
hypocentral coordinates. However, we do require an efficient forward modelling program 
for the travel times to avoid excessive computation times in complex models. 

The results of experiments with real data from a regional network indicate that we have 
been very successful in our main objective of finding a hypocentral location by the 
minimization of a misfit function, to some specified accuracy. An indication of the 
reliability of that solution is obtained directly by the examination of the contours of the 
misfit function about the proposed solution. The ability to relocate events with different C 
functions, and to examine the constraints placed on the location, means that we have a 
very powerful tool for investigating the distribution of earthquakes. 
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