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Abstract—S-boxes are used in block ciphers as the important 

nonlinear components. The nonlinearity provides important 

protection against linear and differential cryptanalysis. The S-

boxes used in encryption process could be chosen to be key-

dependent. In this paper, we have presented four simple 

algorithms for generation key-dependent S-boxes. For quality 

analysis of the key-dependent S-boxes, we have proposed eight 

distance metrics. We have assumed the Matlab function 

“randperm” as standard of permutation and compared it with 

permutation possibilities of the proposed algorithms. In the 

second section we describe four algorithms, which generate key-

dependent S-boxes. In the third section we analyze eight 

normalized distance metrics which we have used for evaluation 

of the quality of the key-dependent generation algorithms. 

Afterwards, we experimentally investigate the quality of the 

generated key-dependent S-boxes. Comparison results show that 

the key-dependent S-boxes have good quality and may be applied 

in cipher systems. 

Keywords—data encryption; substitution boxes; generation 

algorithms; distance metrics; quality analysis 

I. INTRODUCTION 

Cryptographic objects are private key algorithms, public 
key algorithms and pseudorandom generators. Block ciphers 
usually transform the 128 or 256 bits string of the plaintext to 
a string of the same length cipher text under control of the 
secret key. The private key cryptography, such as DES [1], 
3DES, and Advanced Encryption Standard (AES) [2], uses the 
same key for the sender and for the receiver to encrypt the 
plaintext and to decrypt the ciphertext. The private key 
cryptography is more suitable for the encryption of a large 
amount of data. The public key cryptography, such as the 
Rivest-Shamir-Adleman algorithm defined by the National 
Institute of Standards and Technology of the Unite (RSA) or 
Elliptic Curve algorithms, uses different keys for encryption 
and decryption. The AES has been accepted to replace DES. 
AES overpasses DES in an improved security because of 
larger key sizes. AES is suitable for 8 bit microprocessor 
platforms and 32 bit processors [3]. 

The essential part of every block cipher is an S-box. To 
secure the cipher against attacks, the nonlinearity of the S-box 
should have a maximum nonlinearity, and the difference 
propagation probability should be minimum. Substitution is a 

nonlinear transformation that performs confusion of bits. A 
nonlinear transformation is important for every encryption 
algorithm and it is proved to be a strong cryptographic method 
against the linear and differential cryptanalysis. Nonlinear 
transformations are implemented as lookup tables (S-boxes). 
An S-box with p input bits and q output bits is denoted as p
 q. The DES uses eight 6  4 S-boxes. S-boxes are 

designed for software implementation on 8-bit processors. The 
block ciphers with 88 S-boxes are SAFER, SHARK, and 

AES. For processors with 32-bit or 64-bit words, S-boxes with 
more output bits provide a high efficiency. The Snefru, 
Blowfish, CAST, and SQUARE use 832 S-boxes. The S-

boxes can be selected at random as it is in Snefru, and can be 
computed using a chaotic map, or have some mathematical 
structure over a finite Galois field. Examples of the last 
approach are SAFER, SHARK, and AES. Key-dependent S-
boxes are slower, but more secure than the key independent S-
boxes [4]. The use of the key independent chaotic S-boxes are 
analyzed in [5], in which the S-box is constructed with a 
transformation F((X+K) modM), where K is the key [6]. 

There are two ways to fight against the linear and 
differential cryptanalysis. The first one is to create S-boxes 
with low linear and differential probabilities. The other is to 
design the round transformation so that only trails with many 
active S-boxes would occur. The round transformation must 
be designed in such a way that differential steps with few 
active S-boxes would be followed by differential steps with 
many active S-boxes [6]. 

Two general principles of block ciphers are confusion and 
diffusion. Confusion is transformation that changes the 
dependence of the statistics of the cipher text on the statistics 
of the plaintext. Diffusion is spreading of the influence of one 
plaintext bit to many cipher text bits with the purpose to hide 
the statistical structure of the plaintext. In most cipher systems 
the confusion and diffusion are achieved by means of round 
repetition. Repeating a single round contributes to the cipher’s 
simplicity [6]. Modern block ciphers consist of four 
transformations: substitution, permutation, mixing, and key-
adding [7], [8]. 

Block cipher systems depend on the S-boxes, which are 
fixed and have no relation with the secret key. So only a 
changeable parameter is the secret key. The only nonlinear 
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component of AES is S-boxes, so they are an important source 
of cryptographic strength. Research of the S-box design has 
focused on determination of S-box properties which yield 
cryptographically strong ciphers, with the aim of selecting a 
small number of good S-boxes for use in a block cipher DES 
and CAST [8]. Some results have demonstrated that a 
randomly chosen S-box of sufficient size will have several of 
these desirable properties with a high probability [9]. In [10] a 
dynamic AES-128 with a key-dependent S-box is designed 
and implemented. The paper of [11] presents a new AES-like 
design for key-dependent AES using the S-box rotation 
method. An approach for designing a key-dependent S-box 

defined over )2( 4GF in AES is presented in [12]. A key-

dependent S-box of AES algorithm using a variable mapping 
technique is analyzed in [13]. A key-dependent S-box 
generation algorithm in AES block cipher system is proposed 
in the paper [14]. Hamdy et al. [15] have proposed a 
customized version of the AES block cipher in which the key-
dependent S-box generation algorithm is used. In the paper 
Hosseinkhany et al. the dynamic S-box is generated in the 
AES cipher system using the secret key [16]. Other systems, 
using key-dependent S-boxes were proposed in the past, the 
most well-known of which is Blowfish [7] and Khufu [17]. 
Each of these two systems uses the cryptosystem itself to 
generate the S-boxes. In [19] for generation S-boxes an 
algorithm based on chaotic map and composition method is 
used. In [20] a method for the construction of block ciphers 
with multi-chaotic systems is proposed. In the paper of D. 
Lambic the security analysis and improvement of a block 
cipher with dynamic S-boxes based on tent map is analyzed 
[21]. In the paper of Ozkaynak et al., is done analysis of a 
novel image fusion encryption algorithm based on DNA 
sequence operation and hyper-chaotic system [22]. 

This paper outlines the work of the authors’ investigation 
into the design of a new pseudo-randomly generated key-
dependent S-boxes. We have presented four simple algorithms 
for generation key-dependent S-boxes. For quality analysis of 
the key-dependent S-boxes, we have proposed to use eight 
distance metrics.  Modeling results show, that the proposed 
algorithms have a good cryptographic strength, with an 
additional benefit that the algorithms are resistant to the linear 
and differential cryptanalysis, which require that the S-boxes 
be known. In the second section, we analyze four algorithms 
for generation of key-dependent S-boxes. In the third section 
we propose eight distance metrics for evaluation of the quality 
of key-dependent S-boxes. Afterwards, we discuss the 
experimental results and give conclusions. 

II. ALGORITHMS FOR GENERATION KEY-DEPENDENT S-

BOXES 

In this section we analyze four algorithms for generation 
of key-dependent S-boxes Sboxm. These algorithms use some 
key-dependent permutations of the elements of the initial 
substitution box Sbox to get key-dependent substitution box 
Sboxm. Algorithm 1 was proposed in the paper [18]. 

The initial substitution box Sbox may be the AES 
substitution box (table) or the ordered numbers 0,1,…,255, or 
these numbers mixed in any order. In all these cases the sender 
and the receiver must know these initial S-boxes. We assume 

that the S-boxes are rearranged according to the rows to the 
256-size vectors, i.e., the initial substitution box  Sbox(i), i = 
0,1,…,255 and the key-dependent substitution box Sboxm(i), 

 i = 0,1,…,255 are 256-size vectors of the different integer 

numbers (bytes) from the interval [0, 255]. The indexes i of 

these vectors are also the integer numbers (bytes) from the 

interval [0, 255]. In the encryption process, the indexes i of the 

vector Sbox (or Sboxm) are replaced by the corresponding 

values Sbox(i), (or Sboxm(i)). In the decryption process, the 

values of the vector Sbox(i), (or Sboxm(i)) are  replaced by the 

corresponding indexes of the vector Sbox (or Sboxm). 

A. Algorithm 1 (A1) 

Input: 
The secret key key(i), i = 1,…, l  is the vector of  l integer 

numbers (bytes) from the interval [0, 255]. 

The initial substitution box Sbox(i), i = 0,1,…,255 is the 
vector of different integer  numbers (bytes) from the interval 
[0,255]. 

Output: 
The key-dependent substitution box Sboxm(i), i = 

0,1,…,255 is the vector of the integer numbers (bytes) from 
the interval [0, 255]. 

The key-dependent inverse substitution box invSboxm(i), i 
= 0,1,…,255 is the vector of different integer numbers (bytes) 
from the interval [0, 255]. 

1. Compute the initial value j, which depends on all the 
secret key’s values key(i), i = 1,2,…,l from the interval [0, 
255]: 

                                



l

i

ikeyj
1

256mod)(

 
 

                                  for all i = 0,1,…,255 do 
2. Compute the index j which depends on the values of the 

initial substitution box Sbox and on the values of the secret 
key key:  

                                ljSboxiSboxk mod))()((   

                                256mod))(( kkeyjj   

3. Replace the values Sbox(i) by the values Sbox(j), and the 
values Sbox(j) by the values Sbox(i): 

                                )(iSboxp   

                                )()( jSboxiSbox   

                                pjSbox )(  

                                 end for 
4. Write the key-dependent substitution box values to 

Sboxm: 

                                SboxSboxm   

5. Compute the key-dependent inverse substitution box 
values invSboxm: 

                               doiallfor 255,...,1,0  

                               iiSboxminvSboxm ))((  

                                end for 
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B. Algorithm 2 (A2) 

Input: 
The secret key key(i), i = 1,…, l  is the vector of  l integer 

numbers (bytes) from the interval [0, 255]. 

The initial substitution box Sbox is (16x16)-size matrix of 
the different integer numbers (bytes) from the interval [0, 
255]. 

Output: 
The key-dependent substitution box Sboxm(i), i = 

0,1,…,255 is the vector of the different integer numbers 
(bytes) from the interval [0, 255]. 

The key-dependent inverse substitution box invSboxm(i), i 
= 0,1,…,255 is the vector of different integer numbers (bytes) 
from the interval [0, 255]. 

1) 128 bits of the secret key key divide to the left (key1 ) 

and right (
2key ) equal parts.  

2) The left part of the key key1  divide into 16 equal parts 

)(1 ik , i = 1,2,…,16. )(1 ik are the integer numbers from the 

interval [0,15]. 

3) for all i = 1,2,…,16 do 
cyclically rotate bytes of the rows of the initial substitution 

box Sbox to the left according to )(1 ik   

end for 

The result is the intermediate substitution box Sbox1 . 

4) The right part of the key 
2key  divide to the 16 equal 

parts )(2 jk ,  j = 1,2,…,16. )(2 jk are the integer numbers from 

the interval [0,15]. 

5) for all j = 1,2,…,16 do 
cyclically rotate bytes of the columns of the intermediate 

substitution box 
1

Sbox to the left according to )(2 jk . 

end for 

The result is the key dependent substitution box Sboxm. 

6) Rearrange key-dependent substitution box ((16x16)-size    

       matrix) Sboxm to the vector. 

7) Compute the key-dependent inverse substitution box 

        invSboxm: 

       doiallfor 255,...,1,0  

        iiSboxminvSboxm ))((  

         end for 

C. Algorithm 3 (A3) 

Algorithm 3 is a mixed version of Algorithm 1 and 
Algorithm 2. In that case, the initial substitution box Sbox is 
the input of the Algorithm 1. The output of the Algorithm 1 is 
the intermediate substitution box Sboxm1. The input of the 
Algorithm 2 is the intermediate substitution box Sboxm1. 
Finally, the output of the Algorithm 2 is the output of 
Algorithm 3, i.e., Sboxm. 

D. Algorithm 4 (A4) 

Algorithm 4 is a mixed version of Algorithm 2 and 
Algorithm 1. In that case, the initial substitution box Sbox is 
the input of the Algorithm 2. The output of the Algorithm 2 is 
the intermediate substitution box Sboxm2. The input of the 
Algorithm 1 is the intermediate substitution box Sboxm2. 
Finally, the output of the Algorithm 1 is the output of 
Algorithm 4, i.e., Sboxm. 

III. DISTANCE METRICS FOR EVALUATION OF THE QUALITY 

OF S-BOXES 

We introduce several distance metrics that are able to 
calculate a distance between the given initial S-box Sbox and 
the key-dependent S-box Sboxm. We assume that the S-boxes 
are rearranged according to the rows to the N-size vectors. The 
key-dependent S-box Sboxm is key-dependent permutations 
without repetition of a given set of N integer elements of the 
initial box Sbox. The initial S-box Sbox and the key-dependent 
S-box Sboxm have the same length. For AES S-box N = 256. 
The i-th integer element of S-box is represented as Sbox(i). 
We have normalized all distances between the S-boxes. The 
smaller the value of the normalized distance, the more similar 

are the Sbox and Sboxm, and vice versa. For example, the 
normalized distance between Sbox and Sbox is equal to 0. For 
convenience, in this chapter we use indexes of S-boxes from 1 
to N instead of from 0 until N–1. 

1) The Hamming distance. The Hamming (H) distance 

between two S-boxes of equal length is defined as a number of 

not equal elements in the same positions in the initial S-box 

Sbox and in the key-dependent S-box Sboxm 



 

 
 otherwise

iSboxmiSboxif
dwheredSboxmSboxd i

N

i
iH

,0

)()(,1
,),(

1

(1) 
The mean of the H distance is equal to (N+1)/2. The 

maximal H distance is equal to N. The normalized H distance 

Hd is obtained by dividing the distance 
Hd  by the maximal H 

distance 

           
HH d

N
d

1
 .                                    (2) 

2) Spearman’s distance. Spearman’s (S) distance is an 

absolute distance between two rank vectors 

,(
1 ,1

),  
 


N

i

N

jij
S jid SboxmSbox

 
for such (i, j) that Sbox (i) = Sboxm(j)                                  (3) 

S distance is the summation of the absolute differences 
between two ranks of all equal elements from Sbox and 
Sboxm. S distance is similar to the Manhattan distance that 
used for quantitative variables. The mean of the S distance is 

equal to 3/2N . The S distance is maximal between Sbox and 

inverted Sbox, and is equal to 2/2N  for even N and to 

2/)1( 2 N  for odd N. The normalized S distance for even N 

is defined as 
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                   Sd
Sd

N 2

2
 ,  for even N.                          (4) 

3) Squared Spearman’s distance. The squared Spearman’s 

(SS) distance assigns a larger distance when deviations 

between equal elements of two S-boxes are larger. It is 

defined as follows:  

,)()(
1 ,1

2
,  

 


N

i

N

jij
SS jid SboxmSbox  

).()(),( jSboxmiSboxthatjisuchfor                                 
(5) 

The mean of the SS distance is equal to 3/3N . The 

maximal SS distance is equal to 3/)( 3 NN  . The normalized 

SS distance is defined as 

SSSS d
NN

d



3

3
.                                   (6) 

The SS distance is similar to Spearman’s rank correlation 
coefficient, a metric often used in statistics to calculate the 
correlation between two rankings. 

4) The T distance. The T distance is the number of 

transpositions required to transform Sbox into Sboxm. 



 



  








otherwise

jSboxmiSboxjSboxmiSboxif

dwheredSboxmSboxd ij

N

i

N

j
ijT

0

)1()1(&)()(1

,),(
1

1

1

1  

(7) 

The maximal value of Td is N–1. The normalized T 

distance is defined as 

  
TT d

N
d

1

1
1


 .                                 (8)                                                        

 

5) Kendall distance. The Kendall (K) distance is given by 

 



 



 
 

otherwise

iSboxmjSboxmjSboxiSboxif

dwheredSboxmSboxd ij

N

i

N

jij

ijK

0

)()(&)()(1

,),(
1 ,1       (9) 

This distance is equal to the number of pair-wise adjacent 
permutations required to transform Sbox into Sboxm. The 

mean of the K distance is equal to 4/2N . The maximal value 

of K distance is 2/)( 2 NN  . The normalized K distance is 

defined as 

.
2

2 KK d
NN

d


                            (10)     

The normalized K distance lies in the interval [0,1]. For 
example, the normalized K distance 0.3 indicates that 30 % of 
the pairs of S-boxes elements differ in ordering between Sbox 
and Sboxm. 

6) Correlation coefficient distance. We introduce the 

correlation (C) coefficient distance as follows: normalize 

Sboxm  elements x= },...,{ 1 Nxx  

                                   )(

)(

xstd

xmeanx
y


 ,                             (11)  

and define the correlation coefficient of Sboxm elements as 

                          
))(()( corrstdSboxmdC  ,                       (12) 

where mean is the arithmetic mean, std is the standard 
deviation, corr(  ) is the correlation function of y. We 

assume, that corr(0) = 0. The maximal value of the correlation 
coefficient is N–1. We define the normalized correlation 
coefficient distance as follows:  

1
1




N

d
d C

C
.                        (13) 

7) Pearson’s correlation coefficient distance. For the 

initial S-box Sbox with elements },...,{ 1 Nxx and for the key-

dependent S-box Sboxm with elements },...,{ 1 Nyy the 

formula of the Pearson (P) correlation coefficient is [23] 

    

,
)()( 2222

  

  






iiii

iiii

yyxx

yxyx
r

NN

N

            

(14) 

Pearson’s correlation coefficient distance between initial 
S-box Sbox and key-dependent S-box Sboxm can be rescaled 
to a distance measure of range [0 – 1] by: 

                              Pd = 1– abs(r).                                     (15) 

 
   The Pearson’s correlation coefficient distance between 

two S-boxes Pd  = 1 if correlation coefficient r is equal to 

zero and  Pd  = 0 if correlation coefficient r is equal to .1  

8) The longest common subsequence distance. The length 

of the longest common subsequence (LCS) is a measure of the 

similarity between Sbox and Sboxm. The minimum length of 

the LCS is equal to one and the maximum is equal to N. We 

define the LCS distance LCSd (Sbox, Sboxm) as N minus the 

length of the longest common subsequence. The LCS distance 

lies between 0 and N–1. The normalized longest common 

subsequence distance LCSd  is defined as  

 

                           LCSd = 
1N

LCSd
.                                       (16) 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Experiment 1 

Consider the 128 bit length secret key in hexadecimal 
form: 

     key = {CA, 6A, C5, 21, 5B, 46, 50, 3D, 98, 19, F0, 72, 6D, 

41, 43, C7}.                                  (17) 
We have generated the key-dependent S-box Sboxm using 

Algorithm 2 and key (17). The initial S-box Sbox is the AES 
S-box (Table I). The key-dependent S-box Sboxm is given in 
Table II. We have assumed that S-boxes are rearranged 
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according to the rows to the 256-size vectors, i.e., the initial 
substitution box  Sbox(i), i = 0,1,…,255 and the key-
dependent substitution box Sboxm(i), i = 0,1,…,255 are 256-
size vectors of the different integer numbers from the interval 
[0, 255]. Thus, AES S-box (Table I) is the 256-size vector in 
hexadecimal form: {63, 7C,…,76; CA, 82,…,C0; … ; 8C, 
A1,…,16} and the permuted key-dependent S-box Sboxm 
(Table II) is the 256-size vector {56, D6,…, 6A; 45, DD,…, 
CC;…; C5, 52,…, 47}. Using eight metrics, we have 
calculated normalized distances between these two vectors. 
The normalized distances between initial AES S-box Sbox and 
the key-dependent S-boxes Sboxm are given in Table III. In 
the row „Algorithm2“ of the Table III we have used algorithm 
A2 for key-dependent permutation of the AES S-box, while in 
the row „randperm“ of the Table III we have used Matlab 
function „randperm“ for permutation of the AES S-box. From 
Table III we can see that all distances between the Sbox and 
Sboxm for algorithm “randperm” and for algorithm A2 are 
similar. It follows that the proposed algorithm A2 permutes 
the bytes of the AES S-box no worse than the Matlab function 
„randperm“. It confirms the good quality of the proposed key-
dependent permutation algorithm A2. 

B. Experiment 2 

In order to evaluate the performance of our four 
algorithms, we have generated initial S-box Sbox – ordered 
integer numbers {0,1,…,255}. Then, using Matlab function 
“randperm” and Algorithms A1 – A4, we have calculated 
randomly permuted integer numbers (bytes) without 
repetition, i.e. key-dependent S-boxes Sboxm. After, we have 
evaluated eight normalized distances between initial Sbox and 
generated key-dependent S-boxes Sboxm for function 
“randperm” and for A1 – A4 algorithms. Such experiments 
we have repeated 1000 times with different randomly 
generated keys and have calculated the means and standard 
deviations of these normalized distances. We have used 128-
bit length 1000 random keys, which we have generated using 
Matlab function “randperm”. We have assumed the Matlab 
function “randperm” as standard of permutation of the integer 
numbers. Hence, we could evaluate the performance of our 
four algorithms comparing the averaged normalized distances 

id (i =1,…,8) of the function “randperm” with the averaged 

normalized distances 
)( j

id  (i = 1,…,8;  j = 1,…,4) of the 

proposed four algorithms using the measure (18) 

          

%100
8

1ˆ
8

1

)(

)(






i i

j
iij

d

dd
d ,      j = 1,2,3,4         (18) 

in which  id  is the normalized mean of i-th distance 

between initial Sbox and Sboxm in case we have used for 

permutation of the initial S-box “randperm” function; 
)( j

id  is 

the normalized mean of i-th distance between initial Sbox and 
key-dependent Sboxm in case we have used for permutation of 
the initial S-box  j-th  algorithm. 

TABLE I.  AES S-BOX IN HEXADECIMAL FORM 

 0 1 2 3 4 5 6 7 8 9 A B C D E F 

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76 

1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0 

2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15 

3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75 

4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84 

5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF 

6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8 

7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2 

8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73 

9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB 

A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79 

B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08 

C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A 

D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E 

E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF 

F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16 

TABLE II.  KEY-DEPENDENT S-BOX SBOXM. GENERATION ALGORITHM IS 

A2. INITIAL S-BOX IS AES S-BOX. SECRET KEY IS AS IN (17) 

 0 1 2 3 4 5 6 7 8 9 A B C D E F 

0 56 D6 7F 4A D7 B2 9E BA 32 AA 0A 1C FC F7 F0 6A 

1 45 DD BE 21 50 A4 2F DF 70 C8 40 6D 48 4D 05 CC 

2 78 13 2E 69 9D 5A 9A BC 35 02 3D 10 D8 58 16 E1 

3 1E DA 14 64 27 9F 76 8C 3E 4F 66 BF 97 B1 A0 C4 

4 C0 63 F8 3A 11 F2 2A 33 5B 46 99 7E 62 DE E3 F3 

5 CA A1 37 0D FA 06 38 85 C2 01 B8 EA 91 4C 19 15 

6 F5 6C D4 AC 1F 65 3C 0B 75 B7 7C 25 7B 36 D5 44 

7 B5 7D 18 A6 90 17 E8 A5 F4 B9 4B FF E4 84 04 82 

8 24 88 61 12 74 E9 86 5D AE CF 09 FD 98 26 1B 03 

9 5E 8B A8 53 C7 89 C3 20 D9 4E 5C 9B 3B 57 0F CE 

A 43 E6 B4 A9 41 CB 87 2B B0 95 1D D2 D0 83 77 1A 

B D1 C9 ED 92 6B F6 C6 30 F9 2D AF FE 7A 28 73 51 

C 5F 59 8E 0E AD B6 67 F1 9C BD BB DB CD EF 93 FB 

D 8F 22 3F 42 94 34 A7 A2 E2 71 C1 AB 79 60 A3 23 

E EB 55 72 08 E0 0C 2C EC 49 96 6F 68 07 EE E5 B3 

F C5 52 D3 80 39 29 54 31 8A E7 81 00 DC 8D 6E 47 

TABLE III.  NORMALIZED DISTANCES BETWEEN AES S-BOX AND KEY-
DEPENDENT S-BOX S-BOXM. GENERATION ALGORITHM IS A2. SECRET KEY IS 

AS IN  (17) 

Distance 
Hd  Sd  SSd  Td  Kd  Cd  Pd  LCSd  

Algorithm2 0.9922 0.6282 0.4770 0.9961 0.4811 0.9605 0.9447 0.8980 

“randperm” 0.9960 0.6368 0.4805 0.9960 0.4908 0.9560 0.9496 0.8939 

In equation (18) and Table IV 1d , )(
1

j
d  are Hamming 

distances Hd ; 2d , )(
2

j
d are Spearman’s distances Sd ; 3d , 

)(
3

j
d  are squared Spearman’s distances SSd  and so on. 

  



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 4, 2016 

98 | P a g e  

www.ijacsa.thesai.org 

The proposed normalized correlation distance cd and 

Pearson correlation distance
P

d  are similar, but standard 

deviation of the proposed distance cd  is about eight times 

less as compared with 
P

d .  From Table IV, and according 

with introduced quality measure (18), we can see that the best 
is Algorithm 3 – 0.3650 %, after follows Algorithm 4 – 0.4400 
%, Algorithm 2 – 2.2849 % and Algorithm 1 – 2.4240 %.  
From Table V, it follows that Algorithm 1 generates 1000 S-
boxes during 0.0940 sec., Algorithm 2 – during 0.2340 sec. 
and, finally, Algorithm 3 and Algorithm 4 – during 0.3280 
sec. 

TABLE IV.  MEANS AND STANDARD DEVIATIONS OF 8 

NORMALIZED DISTANCES BETWEEN INITIAL S-BOX SBOX 

(ORDERED INTEGER NUMBERS {0,1,…,255}) AND KEY-DEPENDENT 

S-BOXES SBOXM 

 

 

i 

Algorithm 

______ 

Distance 

 

„randperm“ 

id  

A1 

)1(
id  

A2 

)2(
id  

A3 

)3(
id  

A4 

)4(
id  

1 
Hd  

0.9960
0.0040 

0.9936
0.0326 

0.9961
0.0066 

0.9960


0.0039 

0.9961
0.0039 

2 
Sd  

0.6668
0.0253 

0.6381
0.0347 

0.6605
0.0762 

0.6586


0.0274 

0.6585
0.0269 

3 
SSd  

0.5005
0.0308 

0.4669
0.0372 

0.4969
0.0562 

0.4933


0.0319 

0.4899
0.0314 

4 
Td  

0.9961
0.0038 

0.9914
0.0186 

0.9393
0.0553 

0.9959


0.0040 

0.9959
0.0480 

5 
Kd  

0.5008
0.0204 

0.4803
0.0226 

0.4927
0.0376 

0.4998


0.0206 

0.5008
0.0211 

6 
Cd  

0.9560
0.0031 

0.9554
0.0115 

0.9495
0.0078 

0.9559


0.0032 

0.9559
0.0031 

7 
Pd  

0.9496
0.0368 

0.9246
0.0599 

0.9125
0.0660 

0.9495


0.0376 

0.9487
0.0382 

8 
LCSd  

0.8939
0.0081 

0.8861
0.0280 

0.8519
0.0313 

0.8940


0.0082 

0.8949
0.0080 

 )(ˆ jd   2.4240 % 2.2849 % 0.3650 % 0.4400 % 

TABLE V.  GENERATION TIME OF 1000 KEY-DEPENDENT S-BOXES S-
BOXM WITH COMPUTER AMD ATHLON-X2, 2.59 MHZ 

Algorithm A1 A2 A3 A4 “randperm” 

Time, sec. 0.0940 0.2340 0.3280 0.3280 0.0359 

V. CONCLUSIONS 

This paper proposes a new simple algorithms to generate 
key-dependent S-boxes. The generated key-dependent S-boxes 
can be used in block ciphers such as AES cipher. We suggest 
for testing key-dependent S-boxes to apply eight distance 
metrics. The results of the experiments and tests show that the 
new generated S-boxes are truly random. Using our 
algorithms, we can get 256! different substitution values 
instead of 256 values as it is in AES S-box. It increases the 

encryption complexity and aggravate the cryptanalysis 
process. It was established that for any changing secret key, 
the structure of the key-dependent S-boxes are changing 
essentially. Also it was shown that this is achieved with 
negligible time delay. For example, if we use algorithm A1, 
1000 S-boxes were generated during 0.0940 sec. These 
algorithms will increase the security of the cipher systems. As 
compared with algorithm in the paper [14], these algorithms 
generate S-boxes about eight times faster. For measure of the 
quality of the permuted S-boxes we have proposed to use eight 
distance metrics. The distances between initial S-boxes and 
key-dependent S-boxes of our algorithms we have compared 
with appropriate distances of the Matlab function “randperm”. 
We have assumed this function as standard of permutation of 
the integer numbers (bytes) of S-boxes. Also it was found that 

the proposed new correlation distance metric cd  as compared 

with Pearson distance metric 
P

d  is about eight times more 

accurate. 
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