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ABSTRACT Electrocardiogram (ECG) is an efficient and commonly used tool for detecting arrhythmias.

With the development of dynamic ECGmonitoring, an effective and simple algorithm is needed to deal with

large quantities of ECG data. In this study, we proposed a method to detect multiple arrhythmias based on

time-frequency analysis and convolutional neural networks. For a short-time (10 s) single-lead ECG signal,

the time-frequency distribution matrix of the signal was first obtained using a time-frequency transform

method, and then a convolutional neural network was used to discriminate the rhythm of the signal. ECG

data in multiple databases were used and were divided into 12 classes. Finally, the performance of three

kinds of time-frequency transform methods are evaluated, including short-time Fourier transform (STFT),

continuous wavelet transform (CWT), and pseudo Wigner-Ville distribution (PWVD). The best result was

obtained by STFT, with an accuracy of 96.65%, an average sensitivity of 96.47%, an average specificity

of 99.68%, and an average F1 score of 96.27%, respectively. Especially, the area under curve (AUC) value

is 0.9987. The proposed method in this work may be efficient and valuable to detect multiple arrhythmias

for dynamic ECG monitoring.

INDEX TERMS Arrhythmia detection, convolutional neural networks, ECG, time-frequency analysis.

I. INTRODUCTION

Cardiovascular disease is now the leading cause of mortality.

According to statistics, about 17 million people die of cardio-

vascular disease each year, accounting for 37% of the global

death toll. In developing countries, the mortality of cardio-

vascular disease is accounting for 3/4 of the total number

of deaths [1]. The incidence of cardiovascular disease will

further increase and this will become a serious public health

problem as the population ages and the causes of cardiovas-

cular disease increase, such as obesity, stress [2]. Arrhythmia,

which is mainly caused by the abnormal electrical activity of

the heart, is one of the main manifestations of cardiovascular

disease [3]. As a direct reflect of cardiac electrical activity,

The associate editor coordinating the review of this manuscript and
approving it for publication was Yongtao Hao.

body surface electrocardiogram (ECG) is an efficient and

low-cost way to detect arrhythmias [4]. With the develop-

ment of sensor technology and wearable devices, long-term

dynamic ECG is widely used in the detection of arrhythmia.

To deal with large amount of ECG data, it is necessary to

develop an automatic detection algorithm to classify different

arrhythmias.

In the past few decades, researchers have proposed lots

of methods in the field of automatic arrhythmia detection.

Early studies have mainly focused on the extraction of ECG

morphology features [5], [6] and heart rate variability [7]–[9].

In these studies, it is necessary to extract ECG features before

arrhythmia detection, including QRS complex [10], [11],

P wave and T wave [12]. In case of false or miss detection,

the performance of the algorithm will decrease significantly.

Other researchers used non-morphological features to detect
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arrhythmias, such as features in frequency domain [13] or

time-frequency domain [14], [15]. However, these features

cannot express all the characteristics of the signal and the

selection of features also depends heavily on the experience

of the researcher. Besides, a large number of feature calcu-

lations will slow down the processing speed and reduce the

efficiency of the algorithm.

In recent years, deep learning method has made great

progress in different fields, such as image classification [16],

speech processing [17] and many other research fields. This

method extracts more abstract and advanced features sim-

ply through deep networks and performs better than tradi-

tional feature extraction process [18]. With the growth of

medical information, the deep learning method began to be

applied in biological and medical data analysis [19], [20],

and some researchers began to explore the application of

deep learning method in the field of ECG analysis. For

example, A. Y. Hannun et al. [21], X. Fan et al. [22] and

S. L. Oh et al. [23] used end-to-end one-dimensional deep

neural networks for automatic diagnosis of arrhythmia.

M. M. Al Rahhal et al. [24], Y. Xia et al. [25] and

R. He et al. [26] proposed some methods similar to image

recognition. They converted the signal into a time-frequency

distribution and then classified it by a two-dimensional con-

volutional neural network. These methods have achieved

better performance than traditional arrhythmia detection

algorithms. Nevertheless, the research of deep learning meth-

ods in the field of ECG is still in its infancy due to the difficult

annotation of ECG data and so far there are few studies on

classifications of multiple arrhythmias.

Inspired by some studies using time-frequency analy-

sis and CNNs to detect atrial fibrillation (AF) [25], [26]

or to classify different ECG beats [24], this study pro-

posed a method to detect multiple arrhythmias based

on time-frequency analysis and CNNs, and has achieved

excellent performance on public databases. We used three

kinds of time-frequency transform methods to compare

the performance of different time-frequency transforms,

including: short-time Fourier transform (STFT), continuous

wavelet transform (CWT), and pseudoWigner-Ville distribu-

tion (PWVD). Then a convolutional neural network (CNN)

with a fixed architecture was designed to classify twelve

heart rhythms including normal sinus rhythm, pacing rhythm,

noise and nine kinds of arrhythmia. To summarize, this study

classified more kind of ECG rhythm classes than many previ-

ous studies and was the first work to compare performances

between different time-frequencymethod in the research field

where time-frequency analysis and deep learning were used

to classify ECG signals. Compared to those methods using

many manually proposed features, the proposed method with

simple CNN structure may be an effective method to detect

multiple arrhythmias in clinical practice.

The rest of this paper is organized as follows: Section II

describes the detailed methods, including the overview

of the proposed method, the selection and preprocessing

of data used in this study, the time-frequency transform of

ECG signal, the CNN architecture and the training method.

Section III shows the results of the experiment and eval-

uate the performance of the proposed method. Section IV

presents the discussion on this study, and SectionV concludes

this study.

II. METHODS AND MATERIALS

A. OVERVIEW

Fig. 1 illustrates the schematic of the proposed method.

Length of each signal segment used in this study was fixed

to 10 s. Each signal segment was resampled to 125 Hz

due to different sampling frequency in different databases.

A second order high-pass with a cutoff frequency of 0.5 Hz

was used to remove the baseline of each signal segment.

Then a time-frequency transform was used to obtain the

time-frequency distribution matrix. The matrix was normal-

ized and used as input of the designed CNN. Finally, the net-

work extracted the deep features of the input matrix and

output the classification result. We conducted three trials,

each using a different time-frequency transform method and

a same network architecture.

FIGURE 1. Schematic of the proposed method.

In order to overcome the limitations of insufficient data,

we used a five-fold cross-validation method. Due to the

unbalanced data distribution of different heart rhythms,

we had adopted oversampling method for the training set in

each training process. A variety of metrics including accu-

racy, sensitivities, specificities, F1 scores and the area under

curve (AUC) values were used to evaluate the performance

VOLUME 7, 2019 170821



Z. Wu et al.: Novel Method to Detect Multiple Arrhythmias Based on Time-Frequency Analysis and CNNs

of the proposed method. The final results showed that the

method has excellent performance on detecting arrhythmias.

The detailed experimental process of each step is described

below.

B. DATA SELECTION AND PREPROCESSING

To obtain ECG data of different heart rhythm, we used

ECG data in multiple databases in physionet.org [27].

These databases include the MIT-BIH Arrhythmia Database

(DB1) [28], the MIT-BIH Malignant Ventricular Arrhythmia

Database (DB2) [29], the MIT-BIH Atrial Fibrillation

Database (DB3) [30], the Long-Term AF Database (DB4)

[31], the MIT-BIH Normal Sinus Rhythm Database

(DB5) [27], the MIT-BIH Noise Stress Test Database

(DB6) [32]. Data in DB1 to DB5 contain ECG records of two

channels, and we selected data of the first channel. We split

the data in DB1 to DB5 into segments with a fixed length

of 10 s due to the rhythm annotations which were stored along

with the data in the online database. Each segment contains

only one kind of rhythm, and there is no overlap between

different segments.

In practical applications, the signals severely contaminated

by noise have no diagnostic significance, but these signals are

quite common during ECG measurement process due to the

presence of human respiration, myoelectric signals and noise

from environment. Since the labeled noise-contaminated

ECG signals were rare in public databases, we used the

DB6 to generate the simulated noise-contaminated ECG

signals. The DB6 was commonly used in the research field

of ECG signal quality [33], and it includes 3 half-hour

recordings of noise typical in ambulatory ECG recordings

including baseline wander (BW), muscle artifact (MA) and

electrode motion artifact (EM). These noise recordings were

made using physically active volunteers and standard ECG

recorders, leads, and electrodes. These three types of noise

data were split into segments with a fixed length of 10 s. All

these segments made up the raw noise data. We generated

noise-contaminated ECG signals by adding these noise sig-

nals to the raw ECG signals in DB1-DB5. The data of BW

was not selected to generate noise-contaminated ECG sig-

nals, as the baseline affects little on the morphological feature

of ECG signals and the high-pass filter in the preprocessing

can remove some of its influence.

One or two kind of noise signals including MA and EM

were added to the raw ECG signals in a way which is defined

as follows:
y = x + a ∗ n (1)

where y is the signal contaminated by noise, x is the raw ECG

signal, a is the gain of noise signal, n is the noise signal. The

value of a is calculated by:

a =
√

exp(
− ln(10) ∗ SNR

10
) ∗

S

N
(2)

where S is the power of raw ECG signal, N is the power

of noise signal, SNR is the signal-to-noise ratio and it is set

to −6 db or −12 db.

Fig. 2 shows the process of generating an ECG signal

contaminated byMAwhen SNR is set to−6 db. The raw noise

signal and the generated noise-contaminated data were both

labelled as noise.

FIGURE 2. Process of adding noise to a raw ECG signal segment. (a) the
raw ECG signal, (b) the noise signal, (c) the ECG signal contaminated by
noise.

The number of some rhythm segments in the datasets

were too small to be of experimental significance such as

pre-excitation (PREX), asystole (ASYS), so these rhythms

were neglected in this study. We just selected those heart

rhythms with a sample size larger than 200, and there are

finally 12 kind of heart rhythms in our selected dataset.

For heart rhythms which sample size were larger than many

other rhythms, we randomly selected 1500 samples for each

rhythm. For rhythms which size was smaller than 1500, all

the samples are selected. Meanwhile, 1500 segments of ECG

data labelled as NOISE were added to our dataset including

1000 noise-contaminated ECG data segments and 500 seg-

ments of raw noise data. The 1000 noise-contaminated ECG

data segments contains 200 segments of ECG data of normal

sinus rhythm (NSR) in DB5, 100 segments of ECG data of

NSR and 100 segments of ECG data of arrhythmias each

in DB1 to DB4. Table 1 shows the distribution of the heart

rhythm and Fig. 3 illustrates the examples of each rhythm.

The sampling rate in each database is different. Since the

most of the energy of QRS complex distributes between 3 Hz

and 40 Hz [34], we resampled each segment to 125 Hz which

was enough for dynamic ECG monitoring. The baseline drift

contains most of the energy of signal, and the low-frequency

coefficients of time-frequency matrix will be much larger

than the high-frequency components without removing the
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TABLE 1. Distribution of each heart rhythm.

FIGURE 3. Examples of each heart rhythm: (a) atrial bigeminy (AB), (b) atrial fibrillation (AF), (c) atrial flutter (AFL), (d) first degree
heart block (BI), (e) Noise and signal contaminated by noise (NOISE), (f) normal sinus rhythm (NSR), (g) paced rhythm (P),
(h) premature ventricular contractions (PVC), (i) sinus bradycardia (SBR), (j) supraventricular tachyarrhythmia (SVTA), (k) ventricular
flutter (VF), (l) ventricular tachycardia (VT).

baseline drift, resulting unstableness of experiments such as a

vanishing gradient, so a second-order high-pass Butterworth

filter with a cutoff frequency of 0.5 Hz was used to reduce

the baseline drift. After the above preprocessing was com-

pleted, the time-frequency transform was applied to each

segment.

VOLUME 7, 2019 170823



Z. Wu et al.: Novel Method to Detect Multiple Arrhythmias Based on Time-Frequency Analysis and CNNs

FIGURE 4. Time-frequency distribution matrices of an ECG signal segments of 10 s using different transform method: (a) STFT, (b) CWT,
(c) PWVD.

C. TIME-FREQUENCY ANALYSIS

Time-frequency analysis is one of the important methods to

process non-stationary signals and provides joint distribution

information of time domain and frequency domain [35].

It can clearly describe the change of signal frequency with

time. Conventional time-frequency analysis methods can

be divided into two major categories: linear methods and

quadratic transform methods. The linear method mainly uses

the linear correlation between the signal and the kernel

function to calculate the spectrum. The commonly used linear

method includes STFT [36], CWT [37], s-transform [38].

The main limitation of the linear transform method is that the

window function may cause the problem of spectrum leakage

and the time resolution and the frequency resolution cannot

be optimal at the same time, so the window function should

be selected carefully. A typical quadratic time-frequency

analysis method is Wigner-Ville distribution (WVD) [39].

The WVD method does not require the use of a window

function, so the time-frequency resolution is high. However,

when the signal contains multiple time components,

cross-terms interference will occur, causing blurring on the

time-frequency distribution matrix [40]. In order to reduce

the interference of cross-terms, some researchers proposed

improved quadratic time-frequency transform method, such

as the pseudo WVD (PWVD) method using window func-

tion [41] and the Cohen’s class distribution using kernel

functions [42]. In this study, we used three time-frequency

analysis methods: STFT, CWT and PWVD.

The STFT of the sequence x(t) is defined as:

STFT (t,w) =
+∞
∫

−∞

x(τ )w(τ − t)e−jwτdτ (3)

where w(t) is the window function. In this study, we used

a hamming window with a window width of 2 s and the

step length was set to 0.08 s. Length of each fast Fourier

transform (FFT) was 250, so the frequency resolution is

0.5 Hz. We used the frequency range from 0.5 Hz to 62.5 Hz

(the Nyquist frequency). The CWT of the sequence x(t) is

defined as:

CWT (a, b) =
+∞
∫

−∞

x(t)
1

√
a
ψ(

t − b

a
)dt (4)

where a is the scale factor and b is the time shift factor, ψ(t)

is the function of wavelet basis. The scale can be converted

to frequency by:

F =
FC ∗ fs
a

(5)

where FC is the center frequency of the wavelet basis, fs is the

sampling frequency of signal. In this study, we used a Morlet

wavelet basis, and it is defined as:

ψ(t) = exp(−
t2

2
) cos(5t) (6)

We used a specific set of scales, and it is a geometric

sequence, which makes the scales evenly distributed in the

logarithmic domain. The corresponding frequencies of the

scales range from 0.5 Hz and 62.5 Hz which are also evenly

distributed in the logarithmic domain. The time shift factor

increases evenly with a length of 0.08 s.

At last, the PWVD is defined as:

PWVD(t,w) =
+∞
∫

−∞

w(τ )x(t +
τ

2
)x∗(t −

τ

2
)e−jwτdτ (7)

where w(t) is the window function. In this study, we used

a hamming window, and the step length was set to 0.08 s.

After the time-frequency transform is done, the time-

frequency distribution amplitude matrix can be calculated as

follows:

|Y (a, b)| =
√

Y 2(a, b) (8)

where Y (a, b) is the time-frequency distribution matrix. Then

the matrix was scaled to a range between 0 and 1, the results

of time-frequency transform after normalizationwere showed

in Fig. 4.
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FIGURE 5. The basic architecture of the designed network.

D. THE ARCHITECTURE OF DESIGNED CNN

CNN is a widely used deep learning method. In this study,

we designed a relatively common but very effective convolu-

tional neural network. The network contains several common

structures in CNNs: convolutional layer, pooling layer, fully

connected layer, and dropout layer.

The basic architecture of the designed network is shown

in Fig. 5. It consists of three parts: an input layer to input the

matrix, the convolutional blocks to extract the deep features

of the input tensor, and the fully connected layer to connect all

the features output by the convolutional block and to finally

output the classification result. Table 2 lists the configurations

of each layer of the network. Each part of the network is

described as follows:

1) INPUT LAYER

The network input is a time-frequency distribution matrix,

which is a single-channel input, similar to the gray-scale

image in image processing.

2) CONVOLUTIONAL BLOCK

Each convolutional block consists of two convolution layers,

a pooling layer, and a dropout layer. The parameters of

the two convolution kernels are the same. Each convolu-

tional layer has 64 convolutional kernels with a kernel size

of 5×5 and a step size of 1, and the activation function

is Rectified Linear Unit (ReLU). After the input tensor is

processed by the two convolutional layers, a maximum pool-

ing of 2×2 is performed to reduce the number of features.

A dropout layer with a dropout rate of 0.3 was added after

the pooling layer. It is used to reduce overfitting of the

network and speed up the training process by randomly

removing some of neurons in each training iteration [43].

In this study, we used four convolutional blocks with the same

parameters.

3) FULLY CONNECTED LAYER

The input matrix is processed by four convolutional blocks

to obtain deep features of multiple channels. These features

are combined into a one-dimensional feature through a flatten

layer, then the features are processed by the first fully con-

nected layer, which has 128 cells, and an activation function

of ReLU.A dropout layer with a dropout rate of 0.5was added

after the first fully connected layer. The last fully connected

layer outputs the classification result. The output number

is 12, and the activation function is the softmax function

which outputs the probability that the input matrix belongs

to each category.

For the sake of simplicity, the network whose

time-frequency distribution matrix was obtained by STFT

is called Net1, by CWT is called Net2 and by PWVD is

called Net3.

E. THE TRAINING METHOD

In the training process, the loss function is defined as cross

entropy:

loss = −
n

∑

i=1

yi log(y
′
i) (9)

TABLE 2. Summaries of the network.
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where yi is the actual label and y
′
i is the output of the network.

The root mean square prop (RMSprop) method was applied

to update the weights of network. The update functions for

weightW and offset b are defined as:

W = W − α
dW

√
sdw + ε

(10)

b = b− α
db

√
sdb + ε

(11)

where sdw, sdb is the accumulation of momentum and bias

in previous iteration, α is the learning rate, ε is a small

number to prevent the denominator from being zero. In this

study, the initial learning rate, decay of learning rate, number

of epochs and batch size were set to 0.0001, 0.0000001,

60 and 64.

As showed in Table 1, the dataset has some certain

limitations. For example, some rhythm classes have a small

number of samples, and the dataset is unbalanced. In order

to obtain a stable and reliable model, we used a 5-fold

cross-validation and adopted an oversampling method for the

unbalanced training set to balance the number of samples in

each training set. Fig. 6 shows the process of cross-validation

and oversampling.We divided the dataset into five equal sized

parts. In each training process, one of them was used as the

validation set and the other four were used as the training set.

In order to equalize the amount of samples for each rhythm

class in the training set, we randomly copied some samples

of the same rhythm class and added them to the training set.

Then we evaluated the performance of the algorithm using

the entire dataset.

FIGURE 6. The cross-validation and oversampling method.

III. RESULTS

A. TRAINING PROCESS

The experiments were conducted on a computer with 1 Intel

Core i7-8700 CPU at 4.2 GHz, 1 NVIDIA GTX-1060 GPU

and 32-Gb RAM. The models were trained efficiently in

GPU using the Keras [44] deep learning framework with a

tensorflow backend [45]. The average time for 1 iteration

was 4 millisecond, and 63 s for 1 epoch.

B. COMPARISONS BETWEEN TRADITIONAL FEATURES

AND DEEP FEATURES

In a large number of previous studies, the traditional method

of classifying ECG signals often relied on the selection and

calculation of various characteristics, which are dependent

on the extraction of ECG features, such as the location of

R wave and P wave, etc. When there are false or miss detec-

tions, the performance of the algorithm will be significantly

reduced. Besides, the selection of characteristics also depends

on the experience of researchers, and these characteristics are

often not comprehensive.

In this paper, the higher-level and more abstract

time-frequency features extracted by the CNNs contain more

information and are more stable than the traditional features.

Fig. 7 shows the 16 of 64 feature maps output by the second

convolutional block of Net1. The feature maps output by the

same convolutional layer represent features of the input data

on different bases (convolution kernels) at the same level,

which contain multifaceted information of the input data.

As the network goes from shallow to deep, feature maps

output by different layers change from specific to abstract,

which is a process changing from local to global.

FIGURE 7. Feature maps output by the second convolutional block of
Net1.

C. RESULTS AND PERFORMANCE EVALUATION

A five-fold cross-validation is introduced to train and test

CNNs. All the 10519 segments of ECG data were used to

evaluate the performance of the proposed method. The con-

fusion matrices for each classifier is drawn in Fig. 8. The per-

formancewas evaluated usingmetrics including the accuracy,

sensitivity, specificity, and F1 score which are defined as

follows:

Accuracy =
TP+ FN

TP+ FP+ TN + FN
(12)

Sensitivity =
TP

TP+ FN
(13)

Specificity =
TN

TN + FP
(14)

F1 =
2TP

2TP+ FN + FP
(15)

where TP, FN, FP, TN are true positive, false negative, false

positive and true negative for each rhythm. The definition of

these indexes are listed in Table 3 using NSR rhythm as an

example.
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FIGURE 8. Confusion matrices for each classifier: (a) Net1, (b) Net2, (c) Net3.

TABLE 3. Definition of indexes related to NSR rhythm.

The sensitivity, specificity, and F1 score for each of

the 12 rhythms are listed in Table 4 for each network.

Meanwhile, Table 5 shows the accuracy, the average sensi-

tivity, the average specificity, and the average F1 score.

We also use the receiver operating characteristic (ROC)

curve to measure the performance of the classifier. The ROC

curves of Net1, Net2 and Net3 are shown in Fig. 9, and

their area under curve (AUC) values are 0.9987, 0.9983 and

0.9963, respectively.

Considering all the evaluation metrics, Net1 performed

best in the dataset we selected, followed byNet2 and theworst

Net3.

IV. DISCUSSION

The performance of ECG classifiers is often affected bymany

factors, such as insufficient samples, the signal differences

caused by different sensor types and measurement envi-

ronments, and the physical conditions of different subjects.

To overcome such problems and to get a more stable and

robust model, we used multiple databases. The experiment

results show that the performance is excellent in our selected

dataset. This indicates that the proposedmethod is suitable for

a variety of situations and may be applied in clinical practice.

According to the literature, we found that in the same

kind of research field using the time-frequency distribution

combined with deep learning method, the classification of

heart rhythm types and the analysis of time-frequencymethod

in this paper is the most comprehensive. In other words,

this study was the first work to classify a wide range of

ECG rhythms using time-frequency analysis and CNNs, and

the performances of different methods of time-frequency

transform were evaluated for the first time. With multiple

databases used, the proposed method had good stability and

robustness. The results preliminarily imply that this method

is an excellent method to identify abnormal heart rhythm.

For the results of Net3, where PWVD and CNN were used

and get the worst effect, we can speculate that although the

window function is used to limit the influence of cross terms,

the influence of cross-terms in PWVD cannot be ignored.

The erroneous energy distribution and ambiguity caused by

the cross-terms will affect the information of time-frequency

domain, thus affecting the classification effect [40]. For ECG

signals which frequency domain components are more com-

plex, the impact of cross-terms is significant. And in this

study, we skipped some points between each time-frequency

transformation and resulted a loss of partial information of an

ECG signal when using the quadratic time-frequencymethod,

causing the decreasing of classification performance. For the

Net2 where the CWT was applied, we used scales evenly

distributed in the logarithmic domain, and it made the resolu-

tions of high frequency bands lower than the low frequency

parts, thus resulting a less information of high frequency

bands and a decreasing of classification performance.

Compared with the traditional methods, the proposed

method eliminates the extraction or calculation of manually

selected features of ECG signals, and extracts the abstract and

deep features in the time-frequency domain directly through

the deep network. The features obtained by this method are

more comprehensive and efficient, and in terms of the actual

effect, it also shows excellent classification performance.

Some traditional methods based on HRV or RR interval

analysis require a long duration signal segment, while this

method only requires a short length of 10 s. Once the network

is trained, the classification result can be obtained quickly

by inputting the time-frequency distribution matrix into the

network. It is more efficient than traditional methods.

For now, some end-to-end neural networks had been used

to classify ECG signals [21], [46], [47]. For one-dimensional

(1-D) CNNs, the depths of networks were too deep, and

it required a higher computing costs. The time-frequency

matrix was already an advanced feature, and the network

architecture was rather simple. The research of image classi-

fication using two-dimensional (2-D) CNNswas better devel-

oped and maturer than time sequence classification using 1-D

CNNs. Although end-to-end networks had many advantages,
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TABLE 4. Classification performance for each rhythm class using the proposed method.

TABLE 5. Classification performance for all rhythm classes.

FIGURE 9. ROC curves for each classifier.

considering the computational efficiency, the method of

using time-frequency transform and 2-D CNNs is still of

significance.

For the classification of multiple arrhythmias, the problem

of insufficient sample size and unbalanced sample

distribution is inevitable. We met the same problems even

though multiple authoritative databases were contained in

this study. To get a more stable and robust model, we used

a cross-validation method to compensate for the insufficient

sample size and an oversampling method to process the

training data to deal with the unbalanced data distribution.

The results of cross-validation showed that the proposed

method has stable performance on the whole dataset. From

the results, we can speculate that the effect of unbalanced

data on the results still exists. The two heart rhythms with

the fewest samples are VF and VT, whose performances are

not as good as others. However, it should be noticed that for

some heart rhythms such as BI we have achieved a better

classification performance than other rhythms. We can infer

that the reason lies in the small sample size of patients with

BI heart rhythm in the database, which leads to the lack of

individual differences in the interception of BI segments.

In fact, the ECG signals of different patients with the same

arrhythmia may vary from each other due to many factors,

such as the way the electrodes are attached, the physical con-

ditions of the human body, and the measuring environment.

Another point to be aware of is the classification accuracy

of NSR heart rhythm is a little lower, and the confusion

matrix shows that a lot of samples of NSR heart rhythm are

misclassified as AF or NOISE. We suspect that these signals

in the database carry a degree of noise, so they are easily

misidentified. In future studies, we expect that the proposed

method will perform well in a larger dataset of more patients

and be evaluated by clinical data.

V. CONCLUSION

In this study, based on multiple authoritative databases,

we constructed a more balanced ECG dataset including the

noise-contaminated ECG signals. We developed a method

to detect 12 rhythm classes using the time-frequency distri-

bution and CNNs. This work was the first to evaluate the

classification performance over a wide range of arrhythmias

with different time-frequency analysis methods and CNNs.

This method does not rely on extraction and calculation of

morphological features such as R wave, P wave, or any

other manually selected features. Under the same network

structure, the method using STFT and a CNN achieved the

best classification performance, with an average accuracy

of 96.65%, an average sensitivity of 96.47%, an average

specificity is 99.68%, an average F1 score of 96.27% and

a value of AUC of 0.9987. The results demonstrate that the

proposed approach can classify a broad range of distinct

arrhythmias from single-lead ECGs with high diagnostic per-

formance. We are going to evaluate this method in clinical

data and apply this method to clinical practice. Through

subsequent studies and validations by more data, this method

will improve the efficiency of dynamic ECG interpretation.
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