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A novelmethod to identify topological domains
using Hi-C data

Yang Wang1,†, Yanjian Li1,2,†, Juntao Gao1,* and Michael Q. Zhang1,3,*

1 MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, TNLIST;
Department of Automation, Tsinghua University, Beijing 100084, China

2 Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
3 Department of Molecular and Cell Biology, Center for Systems Biology, the University of Texas at Dallas, Richardson, TX
75080, USA

* Correspondence: jtgao@biomed.tsinghua.edu.cn, michaelzhang@tsinghua.edu.cn

Received April 10, 2015; Revised June 20, 2015; Accepted July 6, 2015

Over the last decade the 3C-based (Chromosome Conformation Capture, 3C) approaches have been developed to
describe the frequency of chromatin interaction. The invention of Hi-C allows us to obtain genome-wide chromatin
interaction map. However, it is challenging to develop efficient and robust analytical tools to interpret the Hi-C data.
Here we present a newmethod called Clustering based Hi-C Domain Finder (CHDF), which is based on the difference
of interaction intensity inside/outside domains, to identify Hi-C domains. We also compared CHDF with existing
methods including Direction Index (DI) and HiCseg. CHDF can define more chromatin domains validated by higher
resolution local chromatin structure data (Chromosome Conformation Capture Carbon Copy (5C) data). Using Hi-C
data of lower sequencing depth, chromatin structure identified by CHDF is closer to that discovered by data of higher
sequencing depth. Furthermore, the implement of CHDF is faster than the other two. Using CHDF, we are potentially
able to discover more hints and clues about chromatin structural elements at domain level.
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INTRODUCTION

During interphase, chromosomes in eukaryotic cells do
not mix randomly but occupy separate areas called
chromosome territories [1]. Nucleus is spatially compart-
mentalized and gene expression is correlated with gene
position in the nucleus [2]. Although advances in
microscopes and imaging methods, such as super-
resolution microscopy [3,4] and fluorescence in situ
hybridization (FISH) [5,6] allow people to visualize
targeted genes or chromosomes at increasing resolution
through base pairing of nucleic acid probes, these
methods do not offer positioning information of chroma-
tins at genome-wide scale. Fortunately, advances of the
3C-based techniques have surpassed and complemented
the imaging approach, especially demonstrating that the
target genes and their regulatory elements are in close
spatial proximity [2], and indicating that the topological

associated chromatin domains contain clusters of genes
that are co-regulated [7].
To study chromatin structure with 3C-based data,

people developed different kinds of algorithms, such as
domain calling method based Direction Index [8], HiCseg
[9], three-dimensional reconstructions and molecular
dynamic simulations [10–14], among which bottom-up
restraint-based three-dimensional approaches proved to
be useful for rather stable chromosomal domains, while
top-down polymer-based biophysical models present the
statistical organizational features of folding states of
chromosomes, in order to rationalize the measured
probabilities of 3D chromatin interactions.
Studies using these approaches have discovered that in

metazoan genomes, chromatin itself is further packaged
into ~5 Mb-sized compartment A and B and spatially
segregated megabase-sized domains [2]. In Saccharo-
myces cerevisiae, the clustering of the rDNA locus on
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chromosome XII [15], the clustering of tRNAs [16,17]
and telomeres, and the known rosette organization of
centromeric regions as regions of early replication, where
chromosome arms extend from a centromeric cluster near
one spindle pole, were confirmed [12,18]. Many of these
genomes are predicted to have fractal globule conforma-
tions [19,20]. For example, metazoan organism has a
higher degree of organizational complexity. It was
discovered that there are discrete megabase-sized
domains [8,13], where gene regulatory elements such as
promoters and enhancers can be brought in contact by
chromatin loop. Direction Index (DI) method [8] and
HiCseg method [9] offer such solutions to identify
domains systematically in mammalian cells.
Here we present a new method, Clustering based Hi-C

Domain Finder (CHDF), to analyze Hi-C data based on
clustering. With this method we systematically identified
domains using Hi-C data from three cell lines. We
compared CHDF with existing methods such as DI and
HiCseg. CHDF has four advantages: (i) CHDF model is
based on the knowledge, which is easy to understand, that
chromatin interaction domains are the regions which have
higher intensity of chromatin contacts inside, lower
outside. (ii) CHDF can define chromatin domains at
smaller scales and provide a finer chromatin structure,
which can be verified by other kinds of experiment
datasets. (iii) The boundary regions of CHDF results are
more enriched with CTCF binding sites and active histone
modification marks which are highly characteristic with
known topological associated domain boundaries. (iv)
Last but not the least, the implement of CHDF is faster
than the other two methods, especially for the Hi-C matrix
of large dimension.

RESULTS

Application to synthetic data

To compare the performance of CHDF with DI and
HiCseg, we first applied three methods to simulated Hi-C
contacts matrices generated by ourselves. The domains
called by DI method in IMR90 cell line were used to
generate simulated matrices. For each domain called by
DI, we calculated the means and variances of normalized
Hi-C contacts intra-domain (refers region Di in Figure
1A) and region between itself and its 5′ upstream domain
(refers region Ai in Figure 1A). For each chromosome, the
mean and variance of normalized Hi-C contacts in the
regions of residual (refers region R in Figure 1A) were
calculated as background. Next, we randomly selected
100 domains and one background and generated
simulated Hi-C contact matrix by the means and variances
using Gaussian distribution and maintained the size of
each domain in DI results in IMR90 cell line. This step
was repeated 50 times and 50 simulated Hi-C contact
matrices were generated. CHDF, DI and HiCseg methods
were applied to these 50 simulated Hi-C contact matrices.
To evaluate the each result, we compared the domain
borders (see the definition of borders in Supplementary
Materials) called by each method to the real borders
(designed in simulated matrices). The sensitivity (the ratio
of the number of true positive borders versus the number
of all real borders) and the false discovery rate (the ratio of
the number of false borders versus the number of borders
called by each method) were calculated for each result
(Figure 1B). Obviously, it was CHDF method that owned

Figure 1. Schematic graph of CHDFmodel and results of simulation studies. (A) Examples of domains (Di), adjacent regions
(Ai) and residuals (R) were illustrated respectively. (B) The comparison of the sensitivity and false discovery rate (FDR) of three

methods on simulated Hi-C data. For the overlapped points in the figure, the size of the points were used to illustrate the number of
points.
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the highest sensitivities and the lowest false discovery rate
among the three methods, indicating that CHDF
performed best on simulated data.

Application to real Hi-C data

We identified 5,715 domains with 6,067 borders in human
IMR90 cell line (Figure S2A), and 5,326 domains with
5,504 borders in mouse ES cells (Figure S2B) using
CHDF. We calculated the domain number distribution in
human IMR90 cell line and mouse ES cells, using three
different methods. The distribution of domain number in
every chromosome of human IMR90 cell line (Figure
S3A) and mouse ES cells (Figure S3B) was listed. The
size distributions of domains in mouse ES cells were
shown (Figure S4). We used several datasets (Table S1) to
evaluate the results called by these three methods.

Smaller-scaled chromatin structure defined by
CHDF can be validated by 5C data

5C [21] is another 3C-based method which provides the
map of chromatin structure at higher resolution in specific
chromatin regions. Phillips-Cremins and colleagues used
5C and high-throughput sequencing to map higher-order
chromatins in six gene regions (Oct4, Nanog, Nestin,
Sox2, Klf4, Olig1-Olig2) in mouse ES cells [22]. There
are other two 5C experiments in mouse ES cells, designed
in chromosome X (base-position from 98,831,149 to
103,404,509) [7] and HoxD cluster region [23]. In these
gene regions, we employed the method to call domain
using 5C data in Phillips-Cremins’s paper to verify the
domains called by Hi-C data using three methods.
We showed the heatmaps of Hi-C and 5C data, Hi-C

domains called by three methods and 5C domains in Klf4
and Sox2 gene regions (Figure 2A). From the heatmap of
Hi-C data in Sox2 gene region, obviously the Hi-C
interaction intensity was changed around base-position
34,520,000, where a border was identified by 5C data (the
third border in Sox2 region). CHDF identified a border at
base-position 34,560,000, while HiCseg and DI method
did not. In Klf4 gene region, CHDF identified 3 borders
and 2 of them can be aligned to the borders called by 5C
data. The only border that cannot be aligned was too close
to the beginning of Klf4 gene region, which lacks
upstream 5C data. In contrast, DI method identified just
two borders of which only one border can be aligned,
while HiCseg method identified only one border which
cannot be aligned at all.
Next, we compared all the borders called by three

methods to borders called by 5C data in these eight
regions (Figures 2B and S5). CHDF can not only identify
more borders but also increase the ratio of the borders
which can be aligned to borders called by 5C data. The

false discovery rate (the ratio of the number of the Hi-C
domain borders which could not be aligned to 5C domain
borders versus total number of Hi-C domain borders) of
CHDF result was 0.4762, while 0.5625 for DI and 0.5833
for HiCseg. The false discovery rate of CHDF was
slightly lower than that of the other two methods. The
sensitivity (the ratio of the number of the Hi-C domain
borders which could be aligned to 5C domain borders
versus total number of 5C domain borders) of CHDF
result was 0.3235, while 0.1029 for DI and 0.1471 for
HiCseg. The sensitivity of CHDF was significantly higher
than that of the other two methods (P-value 0.002932 to
DI and P-value 0.02523 to HiCseg; Fisher's exact test).
Comparing the Hi-C domains called by three methods to
domains called by 5C data in these eight regions, we
concluded that CHDF can identify more precise domains
and provide chromatin structure at smaller size.

More CHDF domain borders can be validated by
high-resolution Hi-C interaction map

Deeper sequencing in Hi-C experiment could probe the
3D architecture of genomes at higher resolution (i.e.,
smaller bin size). Rao et al. [13] constructed 10 kb
resolution map in IMR90 cell line, providing finer
chromatin structure than Dixon’s Hi-C data, and parti-
tioned the genome into contact domains (called arrow-
head domains which have different definition from non-
overlap domains called by three methods). Domains
called by Hi-C contact matrix of small size bins will be
small, which were more approximate to real domain-
structure. Arrowhead domains were generated by Hi-C
contact matrix with bin size of 10 kb. They also used
much priori biological knowledge combined with their
model to find domains and employed many other
experiments to validate their domains. Based on these
two reasons, we considered arrowhead domains could
provide more precise chromatin structure than all domains
called by Hi-C contact matrix with bin size of 40 kb. So
arrowhead domains were employed to evaluated domains
called by three methods in IMR90 cell line (Figure 2C).
Large parts of borders identified by three methods were

aligned to the borders of arrowhead domains (Figure 2C).
The false discovery rate (the ratio of borders which could
not be aligned to arrowhead domain borders versus
number of all borders called by each method) of CHDF
result was 0.3737, while 0.4032 for DI and 0.3779 for
HiCseg. The false discovery rate of CHDF was slightly
lower than that of the other two methods. The sensitivity
(the ratio of aligned borders which can be aligned to
arrowhead domain borders versus number of all arrow-
head domain borders) of CHDF result was 0.3298, while
0.1862 for DI and 0.2339 for HiCseg. The sensitivity of
CHDF was significantly higher than that of the other two
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methods (P-value < 2:2� 10 – 16 to DI and P-value < 2:2
�10 – 16 to HiCseg; Fisher's exact test). Therefore, CHDF
owns almost the same false positive rate, but higher
sensitivity.
CHDF results were more coincident with arrowhead

domains which provide chromatin structure at higher
resolution, indicating that we could get more precise
chromatin structure using Hi-C data matrix of limited

resolution comparing with other two methods.

CHDF boundary regions enrich more CTCF
binding sites, active histone marks and cis-eQTLs

The insulator binding protein CTCF is known to
demarcate most boundaries between euchromatin and
heterochromatin, thus important for the maintenance of

Figure 2. 5C data and arrowhead domains were used to validate the results called by three methods. (A) The boundaries
and domains around gene Sox2 and Klf4 identified by CHDF method in mouse ES cell. Top: the chromatin interactions in Hi-C data
after normalization. Middle: blue bars were the domain borders identified using three different methods (The width of border was the
size of one bin, 40 kb). Bottom: the matrix of 5C interactions, with bin size of 10 kb. 5C domains were the lines marked in yellow and

blue with different resolution. If a Hi-C border can be aligned to a 5C domain border, then a red dash line with arrows was used to
connect these two borders. (B) The comparison of Hi-C domain borders called by three methods with borders called by 5C data in
these eight genomic regions in mouse ES cells. Red: borders called by CHDF method. Blue: borders called by DI method, and

green: borders called by HiCseg method. (C) The comparison of Hi-C domain borders called by three method with the borders of
arrowhead domains (grey): CHDF method (red); HiCseg method (green); DI method (blue).
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chromatin structure [8,24]. CTCF binding sites are
enriched at the topological boundary regions (see the
definition of boundary in Supplementary Materials) [8].
When comparing the results of every two methods, we
called all regions within+/ – 20 kb of the boundaries.
Among these regions, the overlapped regions between
two results were removed, and the average peak number
of CTCF binding site was calculated in the un-overlapped
regions (Figure 3). Comparing to other two results, CHDF

boundary regions were enriched more CTCF binding
sites, especially in IMR90 cell (Figure 3).
Although most topological boundaries are enriched for

the binding of CTCF, CTCF binding alone is insufficient
to form domain boundaries. Active histone modification
marks, combining with CTCF, demarcate domain bound-
aries [8]. Here we used four active histone modification
marks (H3K4me1, H3K4me3, H3K27ac and H3K9ac) to
compare the transcription activity in boundary regions

Figure 3. The average peak number of CTCF, active histone modification marks and number of cis-eQTLs at the different
boundary regions. (A) Comparison of CHDF method with HiCseg method in human IMR90 cell line. (B) Comparison of CHDF

method with DI method in human IMR90 cell line. (C) Comparison of CHDF method with HiCseg method in mouse ES cells. (D)
Comparison of CHDF method with DI method in mouse ES cells.
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identified by three methods (Figure 3). In IMR90 cell line,
CHDF boundary regions were significantly enriched of
more active histone modification marks (Figure 3A, 3B).
In mouse ES cells, the number of average peaks of active
marks in CHDF boundary regions was higher than that of
HiCseg results, but lower than that of DI results (Figure
3C, 3D).
Cis-eQTLs are genomic loci that regulate expression

levels of genomically approximate target gene. Latest
study found that cis-eQTLs were genomically close to
topological domain boundaries [25]. We collected cis-
eQTLs from a database of eQTLs (eQTL Browser, https://
eqtl.uchicago.edu) in six cell types (Table S1) [26–34]. Of
these, we selected 24,757 cis-eQTLs that were at least
40 kb from the boundary of their associated genes because
Hi-C data have an inherent resolution limit (40 kb in the
data we used). In IMR90 cell line, the average number of
cis-eQTLs was calculated in the un-overlapped regions
(Figure 3A, 3B). CHDF boundary regions were enriched
of more eQTLs.
Although the enrichments of CTCF binding sites,

active histone modification marks or cis-eQTLs are not
the criterion of topological domain boundaries, the
regions with higher enrichments of these marks are
more likely to be boundaries, indicating that the
boundaries called by CHDF were more likely to be the
real boundary regions comparing to boundaries called by
the other two methods.

Comparison of robustness and speed of three
methods

Since random ligation of DNA fragment in Hi-C
experiment may generated much noise in the final data,
the robustness of analysis method must be considered.
First, to evaluate the consistency of three methods on
biological replicate Hi-C datasets, we applied each
method to two replicates and combined Hi-C data in
IMR90 cell line. For each method, we named the domains
called by these three datasets replicate1-domains, repli-
cate2-domains and combined-domains respectively. The
ratio of the number of same domains between replicate1-
domains and replicate2-domains versus the mean number
of replicate1-domains and replicate2-domains was 0.6668
in CHDF result, while 0.5915 for DI and 0.6515 for
HiCseg. The ratio of the number of same domains among
replicate1-domains, replicate2-domains and combined-
domains versus the mean number of replicate1-domains,
replicate2-domains and combined-domains was 0.5970 in
CHDF result, while 0.3466 for DI and 0.4499 for HiCseg
(Figures 4C and S6). Comparing the three methods using
these two ratios, the domains called by CHDF using
different replicate data variated least. We concluded that
consistency of CHDF performed the best on the

biological replicates among the three methods.
Next, to evaluate the robustness to technical noise, we

compared these three methods by sub-sampling the
original data. Here robustness was measured by two
parameters P1 and P2:

P1=the  number  of   C=the  number  of   B,

P2=the  number  of   C=the  number  of   S,

where S is the domains identified in sub-sampled Hi-C
data, B is the original domains, and C is the same domains
between S and B.
The robustness to the technical noise of CHDF was

better than that of DI method, though a little lower than
that of HiCseg (Figure 4A and 4B).
As human genome size (3 billion base pairs) is larger

than that of mouse (2.5 billion base pairs), we used human
IMR90 cell line for speed comparison. In the optimal
solution, the maximum size of domain was less than 200
bins. When implementing CHDF, we set a parameter to
limit the maximum size of domain to find the optimal
solution, which reduced the computational cost. When the
maximum size of domain was set to 200 bins, the time
cost of CHDF implement was the shortest among three
methods (Figure 4D). The memory cost of CHDF was
O(n2) (n refers to the dimension of Hi-C contact matrix),
while O(n2) for HiCseg and O(n) for DI. Since O(n2)
memory was needed to read Hi-C contact matrix into
memory, we considered that the memory cost of CHDF
was acceptable.

DISCUSSION

Chromatin DNA is organized into hierarchical modules
spatially, therefore it is of vital importance to identify
modules or domains at genomic level. It is well accepted
that chromatin domains are regions with higher contact
intensity inside than outside [8]. Based on this knowl-
edge, we developed a novel domain detection method and
compared the domains called by this new method and by
other two published methods in human IMR90 cell line
and mouse ES cells. Independent biological judgment is
needed to verify the domains identified. We used 5C data,
CTCF binding sites, histone modification marks, cis-
eQTLs and higher resolution map of Hi-C data to evaluate
these three methods.
So far there is no gold standard to define the size of

domains. Based on the public data, people tend to define
compartment at mega-base size (about 5 Mb) while TAD
at hundred kb (about 800 kb) [35]. Finer structure smaller
than TAD is called sub-TAD. When people use Hi-C data
to call domains, the size of the domain is largely
dependent on the size of bins which is determined by
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the number of Hi-C contact counts in the experiment.
When the size of bins is chosen, the average size of Hi-C
domains is also determined. Generally, restricted by
sequencing depth, the size of bins ranges from 10 kb to
100 kb, which makes the size of Hi-C domains ranges
from 0.5Mb to 1Mb. So Hi-C data can only define the
structure at the level of TAD size range from 0.5Mb to
1Mb. Using the Hi-C contact matrix of same bin size,
CHDF method can define chromatin domains at smaller
scales which provided finer chromatin structure.
With the reduction of sequencing cost, Hi-C data

become larger and larger and provide higher resolution
chromatin contact map. When calling domains in Hi-C
contact matrix of large dimension, time cost must be
considered. Here we consider the maximum size of
domains in the optimal solution of CHDF method Max
bins. When dynamic programming is used to achieve the
optimal solution of CHDF model, the cases that
maximum domain size is larger than Max could not be
the optimal solution and should not be considered. To
reduce computation cost and save time, we defined a
parameter P which limits domain size and should be
larger than Max. Users can use their prior knowledge to

set the P to avoid the unnecessary computation.
The further improvement of CHDF method should be:

First, as chromatin architecture displays a hierarchical
structure at different scales, we can improve CHDFmodel
to find hierarchical domain structure. Second, as the
calculation of interaction matrix of larger dimension is
time-consuming, we need to improve the speed of CHDF
method. Furthermore, new strategy should be applied to
sparse matrix, to reduce the cost of memory. Fourth, many
inter-chromosome chromatin interactions in Hi-C data,
which might provide more information to identify
domains, should be considered as well.

METHODS

We suppose that three kinds of regions exist in a Hi-C
interaction matrix (Figure 1): domain regions (D), the
regions between two adjacent domains (A) and the
residuals (R). For domain k, the starting and ending
positions are b1k and b2k , respectively. So regions of Dk ,
Ak and R in the N-dimensional matrix:

Dk=fði, jÞ : b1k£i<j£b2kg,

Figure 4. Robustness and time cost of the three methods. (A, B) The robustness to technical noise of three methods was
compared by applying three methods to subsampled data in mouse ES cell. Here robustness was measured by two parameters P1

(A) and P2 (B). (C) Number of domains called by CHDF in two replicate and combined datasets. The intersection represented the

same domains called in different Hi-C datasets. (D) The comparison of computational time cost of three methods in human IMR90
cell line. For the time cost comparison, a single 3.2 GHz CPU was used.
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Ak=fði, jÞ : b1k£i£b2k , b1k – 1£j£b2k – 1g,

R=fði, jÞ : 1£i<j£Ng \ A \ D:

Every domain or region between two adjacent domains
(corresponding to the interaction of the two domains) is
regarded as a cluster. We do clustering to find the borders
of domains. The border of a domain is defined as the two
end points of a domain.
Our goal is to identify a set of non-overlapping domains

D. The sum-of-squared-error criterion is used here as it is
the most widely used and the simplest criterion function
for clustering. For each cluster, let x be the sample of Hi-C
interaction data between two bins (see the definition of
bins in Supplementary Materials), n the number of the
sample and m the mean of the sample. The sum-of-
squared-error S in a cluster is:

S=
Xn

k=1

ðxk –mÞ2:

When the number of domains is K, the sum-of-squared-
error criterion Je is:

Je=
XK

k=1

SDk
þ
XK

k=2

SAk
þ SDR

:

We not only need to minimize the sum-of-squared-
error, but also find the domains where the Hi-C interaction
intensity is much higher than that of the regions between
two adjacent domains. So a penalty term P was added:

Pk=signðmDk
–mAk

ÞðmDk
–mAk

Þ2lDk
,

where l is the length of the domain.
The goal is to identify a set of non-overlapping domains

Dk that optimizes the following objective:

O=min Je –
XN

k=2

P

 !
:

Dynamic programming algorithm [36] is applied here
to identify optimal solutions efficiently. The details of
using dynamic programming algorithm was provided in
Supplemental materials.

SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at

DOI 10.1007/s40484-015-0047-9.
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