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Abstract

Camera traps have proven very useful in ecological, conservation and behavioral research. Camera traps non-invasively
record presence and behavior of animals in their natural environment. Since the introduction of digital cameras, large
amounts of data can be stored. Unfortunately, processing protocols did not evolve as fast as the technical capabilities of the
cameras. We used camera traps to record videos of Eurasian beavers (Castor fiber). However, a large number of recordings
did not contain the target species, but instead empty recordings or other species (together non-target recordings), making
the removal of these recordings unacceptably time consuming. In this paper we propose a method to partially eliminate
non-target recordings without having to watch the recordings, in order to reduce workload. Discrimination between
recordings of target species and non-target recordings was based on detecting variation (changes in pixel values from
frame to frame) in the recordings. Because of the size of the target species, we supposed that recordings with the target
species contain on average much more movements than non-target recordings. Two different filter methods were tested
and compared. We show that a partial discrimination can be made between target and non-target recordings based on
variation in pixel values and that environmental conditions and filter methods influence the amount of non-target
recordings that can be identified and discarded. By allowing a loss of 5% to 20% of recordings containing the target species,
in ideal circumstances, 53% to 76% of non-target recordings can be identified and discarded. We conclude that adding an
extra processing step in the camera trap protocol can result in large time savings. Since we are convinced that the use of
camera traps will become increasingly important in the future, this filter method can benefit many researchers, using it in
different contexts across the globe, on both videos and photographs.
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Introduction

Camera traps, triggered by motion and/or heat of a passing

subject, are a non-invasive way to study animals and their

behavior. Valuable knowledge is gathered by registering animals

in their natural habitat. Questions addressed by using camera

traps are often related to animal ecology, behavior and conser-

vation [1]. For example, camera traps have been used to study

niche separation [2], competitive exclusion [3], population

structure [4,5], density estimation with [6,7] and without

individual recognition [8,9], abundance estimation [10], foraging

behavior [11], biodiversity [12], activity patterns [13] and habitat

use [14,15]. Camera traps can replace other study methods or add

to direct observations, track inventories, knowledge of local

inhabitants or genetic surveys [16–20]. The target species are

mostly medium to large terrestrial mammals since capture

probability decreases with decreasing size of the species [21,22].

In recent years, species such as small arboreal primates [23,24],

ectothermic Komodo dragons [25] and birds [26,27] have been

subjects of camera trap study, showing wide ranging applicability.

Rovero et al. (2013) showed that the amount of camera trap

papers being published in biological research is still increasing

[28]. Although a number of papers are published concerning

methodology (see above), data processing, the step between the

downloading of the images and the start of the statistical

processing of data obtained from the images, is often overlooked.

The switch from analog to digital cameras and technical progress

such as increasing data storage capacity, caused the amount of

recordings to increase massively. As a consequence, processing

recordings became more time consuming and is becoming one of

the limiting factors in the use of camera traps [29]. Automated

image analysis has been used in different biological contexts

ranging from microbiological ecology [30], experimental labora-

tory systems [31], phenotypic analysis [32], remote sensing [33] to

corridor mapping [34]. However, publications about software

solutions to manage and analyze image data and metadata

collected by camera traps are limited [29,35]. The TEAM

(Tropical Ecology Assessment & Monitoring) network uses a

software package to manage and standardize image processing

since they expect to have 1 000 000 photographs per year [36]. Yu

et al. (2013) recently proposed a method to automatically recognize

species, based on manually cropped camera trap photos of

animals, however, for their algorithm to work, they still had to

visually inspect and manually select all recordings [37]. The

method proposed in this paper addresses the previous step in the

workflow, namely reducing the amount of recordings that must be

visually inspected by automatically classifying the recordings
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according to the potential of containing the target species (see

Material and methods).

Although pictures are more commonly used in camera trap

studies and are easier to process, videos provide more detailed

information, especially behavioral. They are used in determining

competitive exclusion [3], observing time budget [38], observing

behavior and determining population structure [4,39] and to study

nest predation [40]. Videos are also more appealing to the general

public when used as an awareness tool. Technological advances

and continued innovation will ensure that camera traps will play

an increasingly important role in wildlife studies [1]. We expect

that the use of videos will increase and so will the need for a tool to

automatically identify the non-target recordings.

In this study, we develop such a tool based on recordings

gathered while studying beavers. We used camera traps to record

the spread of recently reintroduced beavers in northern Belgium,

to evaluate territory occupancy by individuals or mated pairs and

to study activity patterns.

Our first results indicate that, although the target species was

recorded frequently, the majority of the recordings were empty or

contained non-target species. Since it is very time consuming to

watch all recordings, we developed an automated filtering method.

The goal of this algorithm is to eliminate the maximum amount of

the non-target recordings while minimizing the amount of target

recordings discarded. To our knowledge, this extra filtering of

recordings (photos or videos) between the downloading of the

recordings and the manually processing was never reported before

in camera trap studies.

Materials and Methods

Bushnell Trophy cams (Bushnell Outdoor Products, 9200 Cody,

Overland Park, Kansas 66214, Model 119436c) were positioned at

12 different locations in 9 different beaver territories, in the

province of Limburg, in the east of Flanders, 20 July 2012 - 8

October 2012. The responsible authority, the ‘Agentschap voor

Natuur en Bos’ (Agency for Nature and Forest) decided that,

although beavers are a protected species, no special permit was

required since camera traps do not disturb the animals.

Permissions to access the camera trap locations were granted by

Limburgs Landschap (1 location), Natuurpunt (5 locations), nv De

Scheepvaart (1 location) and Steengoed (5 locations).

Cameras were attached to a nearby tree 30–90 cm above the

ground and directed at the burrow (5 locations), a running track (3

locations), or a foraging location (4 locations). The anticipated

passage of a beaver was never farther than 6 m away from the

camera (but often closer). The camera settings were standardized

over all cameras as follows: Type = Video, Video Size = 7206480,

Video Length = 15s, Interval = 1s, Time Stamp = On, Video

sound = On. Cameras were activated when detecting a combina-

tion of movement and heat. Cameras were positioned for an

average of 35 days at each location (range = 30 to 50 days,

SD = 5.6). The sensitivity of the sensor was set to low, medium or

high, according to local circumstances. The medium sensitivity

was used in most environmental settings. When cameras were

directed to highly dynamic streams, the sensitivity was set low.

When beavers were expected to pass rather far from the camera

and vegetation was limited, high sensitivity was selected. The

sensitivity must be sufficiently high since we suspect that the cold

water in the fur of the beavers reduces the probability of detection

by camera traps. The illumination of recordings in poor light

conditions (dusk, dawn or night) was assisted by infrared LEDs,

resulting in black and white recordings. Only black and white

recordings were considered since it is known that beavers are

nocturnal [41]. All movies were saved in the.AVI format on a

Transcend SD HC 16GB card, and copied in the field to a small

portable computer to a unique folder per camera and location.

Filename, date and hour of the recordings were automatically

extracted to Excel. Location, camera number and species were

manually entered. An extra category was added cataloging image

as ‘beaver’ or ‘non-target’ (including empty images and recordings

of other animals) since our main interest was to separate beaver

recordings from all the rest.

Camera locations were divided according to the area of water

visible in the video. The area was measured by using ImageJ, an

open source application to process images [42]. When the surface

of the water was ,10% of the frame, videos were classified as Dry

(5 locations, water surface ranges from 0–4%), while locations with

.10% of water surface in the recordings were classified as Wet (5

locations, water surface ranges from 12%–57%). Two locations

varied because of rainfall and drying of the water body respectively

between 0% and 48% and 0% and 53%, and were included in the

Wet classification since not enough beavers (n = 15) were

registered to analyze these locations separately.

We were ultimately interested in recordings of beavers. But

using computer algorithms to discriminate beavers in video

footage was a very difficult endeavor, requiring high-level pattern

recognition, which was by no means the aim of this study. Our

goal was less ambitious, as we tried to discriminate the videos that

were likely to be beaver free (non-target recordings) and to reduce

the set of videos that had to be inspected for beaver presence. As a

consequence, we tried to maximize the true positive rate (TP-rate;

number of non-target recordings correctly classified as non-target

recordings divided by total number of non-target recordings) while

minimizing the false positive rate (FP-rate; number of target

recordings wrongly classified as non-target recordings divided by

total number of target recordings) (Table 1).

The discrimination was based on to what extent the video

frames change throughout the length of the video. As beavers are

fairly large mammals (0.80–1.20 m body length, 0.25–0.50 m tail

length, 11–30 kg [43]) and among the largest in our study area, it

is to be expected that their presence on the footage will induce

bigger changes, compared to other smaller animals, e.g. small

rodents and birds, or movement of water and/or vegetation

registered in the recordings. In the following, we propose and

evaluate two different ways to quantify the amount of ‘move-

ments’, on which the discrimination will be based. All following

manipulations and calculations were performed in MATLAB [44]

except when stated differently.

To start, we performed two basic manipulations of the

recordings. The first two frames were removed from each movie

because of the time stamp on the first frame and the instability of

the light caused by the starting of the camera in the first two

frames. Second, we averaged out small spatial and temporal

changes due to detection noise, movement of vegetation, water

reflections, etc. This was done by down sampling (averaging) the

video along both the spatial, x and y, and temporal dimension, t

(respectively with factor 5, 5, 10). As beavers are large and move

rather slowly, the detection of their movement would not suffer

from this reduction. Moreover, this operation would also improve

computational speed.

To detect non-target recordings, we first quantified the amount

of variation throughout the video. If the pixel values did not vary

much throughout the video, then it was unlikely that the camera

was triggered by an animal as large as a beaver. We used two

different methods to quantify this amount of pixel variation and

arrived at a ‘measure of frame variation’. Both were chosen since

they are easy to apply and differ qualitatively from each other.

Novel Filter Mechanism for Camera Trap Videos
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In the first method, Filter 1, we considered the frame variations

compared to the average frame V (x,y)~SV (x,y; t)Tt, of which

every pixel (x,y) was averaged across the length of the video (along

t = time). At every time step the squared distance of the frame

V (x,y; t) to the average frame is calculated,

d2
a (t)~

X
x,y

V (x,y; t){V (x,y)
� �2

.

We used the following equation as a measure of the ‘amount of

pixel variation’:

D~ max d2
a (t)

� �
{ min d2

a (t)
� �

.

Note that for the calculation of D we subtracted min d2
a (t)

� �
in

order to compensate for the fact that different environments show

different base line variations, e.g. aquatic sceneries exhibit more

variations compared to dry area and we were interested in the

movements of animals against this variable background.

The second method, Filter 2, focused on the changes between

subsequent frames

d2
b (t)~

X
x,y

V (x,y; t){V (x,y; t{1)½ �2,

and is essentially different from the previous method. The

parameter D was calculated in the same way as before (see

Matlab Code S1).

Both methods quantify the changes in pixel values within the

recording, which we consider to be a proxy for movement. If this

D value is fairly low, then the recorded movements were rather

small; a larger value points to increased activity during the 15

second recording. These calculated values were used to discrim-

inate the assumed non-target recordings from the possible target

recordings.

This discrimination was done by means of a threshold: if the

calculated D-value of the video was below this threshold, then we

assumed that the video was empty (a non-target recording); we did

not make any inferences on the target’s presence when the

threshold value was exceeded. Hence, our approach was aimed at

detecting non-target recordings. Classifying a video without a

beaver (empty or with other species) as a non-target video was

considered a success, see Table 1. Consequently, for a particular

threshold value, one could calculate the true positive rate (TP-rate;

the number of correctly classified non-target recordings divided by

the total number of non-target recordings) and the false positive

rate (FP-rate; the number of beaver recordings misclassified as

non-target, divided by the total number of beaver recordings) that

a classification based on this threshold would produce. Variation

of the threshold over the full range of D-values, resulted in the so-

called receiver operating characteristics curve (ROC curve, [45]),

from which the costs and benefits corresponding to a particular

threshold could be easily assessed. This analysis was performed in

RStudio [46].

We also calculated the time savings generated by using a filter

method, as the summed duration of the recordings that would not

have to be inspected visually. To determine the ability of the

threshold to discard the intended amount of non-target videos in

spite of sampling variation (i.e. proportion of beavers discarded in

future videos), a bootstrap procedure was carried out. Briefly, a

subset of 500 observations were resampled from the dataset and

classified according to the original 5% FP-rate. The operation was

repeated 1000 times and the FP-ratio was calculated at each step.

Descriptive statics for the bootstrapped FP-ratio were computed

for the Complete, Dry and Wet datasets.

Results

During 405 camera nights, the 12 cameras recorded 1991

videos, 933 recordings in dry locations and 1058 in wet locations,

with a mean of 166 recordings per location (49–296, SD = 81.9).

All recordings were watched and cameras registered 1043

recordings of the target species, the beaver, 553 empty recordings

and 395 recordings of non-target species. The resulting ROC-

curves are shown in Figure 1 for the two different filters, when

applying them to videos recorded in different conditions. Both

filter methods discriminated between non-target and potential

target recordings, but Filter 2 performed slightly better than Filter

1, especially when lower FP-rates were tolerated (5% FP-rate

marked by a vertical dashed line). Also, irrespective of the FP-rate,

the TP-rate in Dry circumstances was always higher compared to

Wet circumstances.

The FP-rate that can be tolerated depends on the study goals

and design, and will be most decisive in what threshold can be

used. In this particular study, a loss of 5% to 20% of the beaver

footage was tolerable. A FP-rate of 5% resulted in a reduction of

workload allowing us to remove 26% to 53% of non-target

recordings (time savings 30–53 min) in dry conditions, 13% to

33% (time savings 25–55 min) in wet conditions and 18% to 42%

(time savings 56–113 min) in the complete dataset. When we

tolerated a FP-rate of 20%, then 72% to 76% (time savings 92–

95 min) of non-target recordings could be discarded in dry

Table 1. Classification matrix of the recordings.

Reality

Non-target recordings Target recordings

Classification result Non-Target recordings True Positive False Positive

Target recordings False Negative True Negative

1991 videos were recorded at 12 different locations in 9 different beaver territories, in the province of Limburg, in the east of Flanders, Belgium, between 20 July 2012
and 8 October 2012. We recorded 1043 recordings of the target species, the beaver, 553 empty recordings and 395 recordings of non-target species. Every recording
was classified based on D = ‘‘the amount of pixel variation’’ as target or non-target recording. The correct classification of non-target recordings was considered to be a
success (True positive, TP) since these recordings can be correctly discarded. This value must be as high as possible in order to remove the maximum amount of non-
target recordings. False positives (FP) were the beavers (target recordings) which were classified as non-target recordings and wrongly discarded. This number must be
as small as possible since valuable data is being discarded. False negatives (FN) were non-target recordings which were classified as being target recordings. True
negatives (TN) were the target recordings which were recognized as being target recordings.
doi:10.1371/journal.pone.0098881.t001
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conditions, but only 46% to 54% (time savings 92–104 min) in wet

conditions and between 59% and 65% (time savings 191–206 min)

in the complete dataset.

The bootstrap analysis indicated that sampling variation had a

limited effect on the FP-ratio (Table 2). Within the 95%

confidence interval, a minimum of 2.9% and a maximum of

7.4% of beaver images would be discarded using the 5%

threshold, based on the complete dataset. Results of the bootstrap

analysis indicated that sampling variation had only a limited effect

in all environmental circumstances on the percentage of record-

ings discarded.

Discussion

We show that a filter method based on changing pixel values

can partly discriminate between recordings of the study species

and non-target recordings. The amount of non-target recordings

that can be discarded without watching the footage depends on the

chosen threshold and this threshold will vary between studies.

In both filter methods, it is clear that results depend on the

environmental circumstances of the camera locations. It is easier to

distinguish between beaver and non-target recordings in Dry

circumstances because variation is lower than in Wet circum-

stances. The filtering mechanism will work best on medium to

large mammals, but these are also the most suitable subjects of

species inventory studies by camera traps [47]. Since these filter

Figure 1. Possible gain (true positive rate, TP-rate) given an
accepted loss (false positive rate, FP-rate). The FP-rate represents
the proportion of target recordings (beavers) classified as non-target
recordings. The TP-rate is the proportion of non-target recordings
correctly classified as non-target. This is the proportion of non-target
recordings that will be discarded correctly given a certain FP-rate. The
best performing filter maximizes the TP-rate while minimizing the FP-
rate. Filter 2 performs better in all environmental circumstances. The
dashed diagonal represents the outcome of a random model which
cannot discriminate between target and non-target recordings. The
dashed vertical line represents a 5% threshold (FP-rate). Dry,10% water
area in footage (5 locations, n = 933 recordings), Wet.10% water area
(7 locations, n = 1058 recordings), Complete dataset is the combined
Dry and Wet dataset (12 locations, n = 1991 recordings).
doi:10.1371/journal.pone.0098881.g001
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methods are the first attempt to partially automatically process

recordings, we did not aim to create a very complicated high level

pattern recognition program. The current method is rather robust

to changes in camera-angle, illumination, colour or black and

white recordings, distance from the camera to the subject, size of

the subject and the position of the subject to the camera since they

can be largely accounted for by choice of the threshold.

The greatest differences between filter methods were observed

when the tolerated FP-rate was small. When using a FP-rate of

5%, Filter 2 resulted in a TP–rate which was more than double the

value of Filter 1, in all environmental circumstances. When

increasing the tolerated FP-rate, these differences became smaller

(Figure 1).

Discarding up to 76% of non-target images can prove to be very

timesaving when used in long term survey studies deploying large

number of cameras. This reduction of workload has two direct

implications for camera trap studies. Since the processing of

recordings takes less time, the number of cameras can be increased

allowing covering a larger study area or augmenting the amount of

cameras used in the same study area so that patterns can be

discerned on a finer scale. Second, the sensitivity of the camera

traps can be increased, allowing the cameras to react to smaller

animals. This will result in an increase of the number of

recordings, but the time spent on processing the images will still

be reduced because of the filtering of non-target recordings. The

recordings of small (non-target) animals may be useful for other

studies. The same database of video recordings could then be used,

but now with the small animal as target, without having to perform

a new field campaign.

Although we show that the proposed filter method can reduce

the amount of work substantially given a certain cost (lost of

recordings of interest), there are limitations to this method.

First, a number of recordings must be viewed to determine if the

species of interest is recorded. Only when a sufficient number of

recordings of the species of interest is obtained, a comparison

between these and other images can be made. The necessary

amount of recordings depends highly on the studied species (size

and speed), other sympatric species and the environmental

conditions. Larger species that are detected regularly and will be

studied for a long time by using camera traps are the most suitable

subjects to discriminate from non-target recordings. Based on the

determined threshold, images which most likely not contain

animals can be filtered out, but a distinction between different

species of similar size and speed is not feasible.

The filter methods are based on changing pixel values. Animals

that do not move (stay on the same location during the length of

the complete recording) will most likely be discarded. It is however

reasonable to assume that a motionless animal was detected while

arriving or will be detected while leaving the location where the

camera trap is aimed at. Animals must be of sufficient size to stand

out from the background noise and to be recognized as a potential

target recording. For very small species, it may be necessary to skip

the down sampling step in both spatial directions in order to

achieve an image that is detailed enough. For very fast species, the

down sampling in the temporal dimension can be detrimental.

However, the performance of the method depends highly on the

variation (movement) in the background. Once the variation in the

background is larger than the changes induced by passing species,

it will not be possible to distinguish between target and non-target

recordings.

The use of the filter protocol must be considered with

knowledge of the species, species community and the study design.

For example: when camera traps are used to perform capture

mark recapture analysis on individually recognizable individuals

[4,48,49] it is probably not acceptable to miss a recording since a

single recording may have a large impact on results. For this study,

a loss of 5% to 20% of the beaver footage was tolerable, since

beavers were recorded frequently and the data were collected to

determine average activity patterns. A reduction of the tolerated

loss of target recordings would have lowered the TP-rate, resulting

in less time savings. How quickly the TP-rate decreases with

decreasing FP-rate depends on the shape of the ROC-curve and

will differ between studies. Also, these filter methods are not

suitable for species which are very hard to record because it will

take a very long time before enough data are collected to

determine the threshold.

The filter protocol is optimized for processing videos and not

photographs. The same process could be used for processing

photographs. Although each picture is a still image, the

comparison of consecutive pictures (as if they were frames of a

movie) makes the analysis possible. The disadvantage of this

method is that the time between pictures can vary a lot when

cameras are movement-triggered, and environmental factors, like

growth of plants or changing light conditions, can make it more

difficult to compare different photographs. However, Hamel et al.

(2013) showed that using a fixed 5-min interval resulted in lower

daily presence raw error rates compared to movement-triggered

cameras and recommend opting for time-triggered cameras when

aiming to capture abundant species [50]. When using fixed time

intervals, high variation is avoided, making it easier to process

images when the interval between pictures is not too long.

However, problems can still occur when light conditions change

rapidly as during sunset and sunrise. When using a series of

pictures that are taken with fast intervals, as a consequence of a

single trigger event, this problem can be avoided.

Camera traps are imperfect detectors and the chance of

detecting a species decreases with decreasing species size and

increasing speed and is influenced by seasons [22,51]. But a

camera can also be ‘tricked’ into recording when there are no

animals. This generates empty recordings and these are rarely

reported although they give an important indication about the

efficiency and expected time effort necessary to process all

recordings. The reasons for recording empty recordings are

diverse, moving vegetation, technical problems, moving water,

sunlight reflection or time lag between passing of an animal and

starting of the camera. These factors will vary depending on

environment, season and study species. These problems are well

known to researchers but receive only limited attention in the

literature [52]. To reduce the amount of empty recordings, the

sensitivity of the sensor can be reduced. However, this also

increases the chance of missing the study species. Although no

published research is available, we think that sensor sensitivity

must be augmented in semi-aquatic mammals when being filmed

on land since they are likely to just have left the water, resulting in

a cold layer around the body of the animal making it more difficult

to detect than a similar sized dry mammal. This high sensitivity

results in more false detections, explaining the high percentage of

empty recordings compared to other studies 15,7% [20]. We want

to encourage authors to not only mention the trapping effort and

the amount of pictures of the studied species but also the amount

of empty recordings (or recordings of non-target species) making it

possible to compare how different types of cameras perform in

different circumstances allowing future researchers to benefit from

this knowledge.

Although we acknowledge the limitations of our filter method,

we believe an important progress has been made by showing that

adding an extra filter step between downloading of images and the
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statistical processing can save lots of valuable time, with losing only

a limited amount of data.
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