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ABSTRACT Cryptocurrencies (e.g., Bitcoin and Ethereum), which promise to become the future of

money transactions, are mainly implemented with blockchain technology. However, blockchain suffers from

scalability issues. Sharding is the leading solution for blockchain scalability. Sharding splits the blockchain

network into sub-chains called shards/committees. Each shard processes a sub-set of transactions, rather

than the entire network processing all transactions. This raises security issues for sharding-based blockchain

protocols. In this paper, we propose a novel methodology to analyze the security of these protocols

(e.g., OmniLedger and RapidChain). In particular, this methodology estimates the failure probability of one

sharding round taking into consideration the failure probabilities of all shards. To illustrate the effectiveness

of the estimated failure probability, we conduct a numerical analysis of our methodology based on a huge

number of trials. Finally, we compute confidence intervals to accurately estimate the failure probability and

compare our methodology with existing approaches.

INDEX TERMS Blockchain, security analysis, sharding, failure probability, hypergeometric distribution.

I. INTRODUCTION

In recent years, blockchain, which is the underlying tech-

nology behind digital cryptocurrencies, e.g., Bitcoin [1] and

Ethereum [2], has attracted considerable attention from both

academia and industry. Blockchain plays a significant role

in emerging fields such as Internet of Things (IoT), the

healthcare sector, edge computing, artificial intelligence and

the government sector. All these emerging fields benefit

from blockchain’s decentralization, immutability, robustness,

security, transparency and peer-to-peer network that records

digital transactions (e.g., cryptocurrency transfer). However,

Blockchain has a number of open issues such as scalability

[10]. Indeed, scalability is one of the key limitations and

the main challenge of blockchain [13]; while traditional cen-

tralized payment systems (e.g., Visa [5]) can handle 1000s

of transactions per second (tx/s), Bitcoin and Ethereum pro-

cess about 7 and 15 tx/s, respectively. Several solutions,

The associate editor coordinating the review of this manuscript and

approving it for publication was Jonghoon Kim .

to the scalability issue, have been proposed in the litera-

ture, such as sharding (e.g., Elastico [7], OmniLedger [8],

RapidChain [9]), Directed Acyclic Graph (e.g., [16]), Plasma

[14], and Lightning Network [15]. The most promising solu-

tions of the scalability in the blockchain literature make

use of sharding [10]. Sharding splits/shards the blockchain

into sub-chains called shards/committees. Each shard pro-

cesses a sub-set of transactions rather than the entire network

processing all transactions. This increases the throughput

(i.e., number of transactions per second) of the network.

However, sharding may compromise the blockchain security.

Indeed, for the blockchain to be secure, all shards need to

satisfy the committee resiliency (i.e., maximum percentage

of malicious nodes that a shard can tolerate without being

compromised); throughout the paper we will use the terms

committee and shard interchangeably. In most networks, this

resiliency is 33% (e.g., Elastico [7] and OmniLedger [8]);

beyond that resiliency, a consensus instance is fundamen-

tally insecure. The critical issue is that even if the whole

network falls well under the total resiliency (i.e., maximum
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FIGURE 1. Sharding divides the network into subsets (shards), which means only a shard can handle a set of transactions,
rather than the entire network. A scenario where there is a single shard takeover attack (shard 2 in this case).

percentage of malicious nodes that the blockchain network

can tolerate without being compromised); this limit is 25% in

most blockchain networks, e.g., Elastico [7] and OmniLedger

[8]), a single shard could be compromised. Figure 1 shows a

scenarios in which a network, that contains 20 nodes with

25% malicious nodes (i.e., 5 malicious nodes), is split evenly

into 4 shards where 3 malicious nodes end up in shard 2.

This means that 60% of the nodes in shard 2 are malicious,

which is bigger than the committee resiliency (33%). This is

known as a single shard takeover attack. In sharding-based

blockchain protocols, the network is compromised if only

one shard is compromised (i.e., 1% attack). In this paper,

we analyze the security of sharding-based blockchain pro-

tocols. In particular, we compute the failure probability of

the whole network by taking into consideration the failure

probability of each committee. The key contribution of this

paper is to propose a novel methodology that outperforms

the computation accuracy of existing approaches [3], [4],

[9]. The limitations of these approaches [3], [4], [9] come

from the fact that they assume that the failure probability of

the first committee is indicative of the failure probability of

any other committee; more specifically, they assume that the

failure probability of one epoch (i.e., fixed time period; e.g.,

once a day) is the failure probability of the first committee

times the number of committees [3], [4], [9]. However, when

the sampling, to partition the network into shards, is done

without replacement, the samples are not independent; this

means that when we sample the first committee, it is clear that

the parameterizations of the model change (i.e., the number

of nodes in the network, as well as the number of malicious

nodes). Thus, the failure probability of the second committee

will be different from the first, and the third will be different

from the first and the second, and so on. In addition, the

changes in the values of the parameters increase with the

sampling process (e.g., values when sampling the second

shard are very different from the values when sampling the

fifth shard compared to the values when sampling the third

shard). This means that the inaccuracy of the failure probabil-

ity estimate proposed in [3], [4], [9], grows with the number

of committees. Our methodology computes the real failure

probability of each committee, then computes the failure

probability of the entire network in one sharding round (aka,

one epoch), taking into consideration the failure probabilities

of all committees. The contributions of this paper can be

summarized as follows:

• We develop a probabilistic methodology to analyze the

security of sharding-based blockchain protocols. This

methodology corrects and outperforms, in terms of accu-

racy, existing approaches;

• We estimate the failure probability and compute the

confidence intervals (CIs) in order to lower and upper

bound the estimated failure probability;

• We compare the proposed methodology with existing

approaches;

• We identify the parameters that impact the security of

sharding-based blockchain protocols (e.g., the size of

the committee, the number of sharding rounds in a pre-

defined period of time and the number of nodes in the

network).

The paper is organized as follows. Section II presents defi-

nitions and notations used in the paper; in addition, it presents

the details of the proposed methodology. Section III evaluates

the proposed methodology. Finally, Section IV concludes the

paper.

II. METHODOLOGY

In this section, we propose a methodology to esti-

mate/compute the failure probability of one sharding round.
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TABLE 1. Notations.

A. ABBREVIATIONS AND DEFINITIONS

Table 1 shows the list of symbols/variables that are used to

describe the proposed approach.

Definition 1 Cumulative Hypergeometric Distribution):

The cumulative hypergeometric distribution H (N ,M , n,m)

is the sum of the probability distribution function

h(N ,M , n, i) for all i ≥ m, which can be expressed as follows:

H (N ,M , n,m) =
∑

i≥m

h(N ,M , n, i) (1)

where

h(N ,M , n, i) =

(

M
i

)(

N−M
n−i

)

(

N
n

)
(2)

Definition 2 (Committee Resiliency: The maximum per-

centage of malicious nodes that the committee is able to

contain whereas still being secure.

Definition 3 (Total Resiliency: The maximum percentage

of malicious nodes that the whole network is able to contain

whereas still being secure.

Definition 4 (Failure Probability: The probability that the

number of malicious nodes exceeds the malicious nodes limit

(i.e., maximumpercentage of nodes that can act in amalicious

manner, e.g., in case of RapidChain [9], this limit is 50%

of nodes in a committee and 33% in the network) in the

network/committee.

B. HYPERGEOMETRIC DISTRIBUTION

In sharding-based blockchain protocols, the process of

assigning nodes to shards can be modeled as sampling with-

out replacement because the committees do not overlap.

When the sample is done without replacement, we make use

of hypergeometric distribution instead of binomial distribu-

tion [4]. Indeed, assigning nodes from the network to shards

can be modeled as sampling without replacement because

the committees can not overlap. When the sampling is done

without replacement, the hypergeometric distribution yields

better approximation compared to the binomial’s, especially

when the sample’s is bigger than 10% of the entire network

[4], [12]. Let Xi denote the random variable corresponding to

the number of malicious nodes in committee i and P(Xi = mi)

denote the failure probability that committee i contains mi
malicious nodes.

We assume that we have a network of N nodes where M

nodes (M < N ) are malicious. The probability that a node

is malicious is p = M
N
. We split N nodes into committees

where each committee has a size n = N
λ

where λ is the

number of committees. When we sample the first committee,

the parameterizations of the model change (i.e., N and M); in

particular, N changes to N − n and M changes to M − m1,

where m1 is the number of malicious nodes sampled in com-

mittee 1. Then, when we sample the second committee,N−n

changes to N − 2n and M − m1 changes M − m1 − m2,

where m2 is the number of malicious nodes sampled in the

committee 2. The third committee will have m3 malicious

nodes, and committee λ will have mλ malicious nodes such

thatm1+m2+ . . .+mλ = M (see Figure 1). The distribution

of the first committee can be modeled by the hypergeometric

distribution with the parameters N , M and n as follows:

X1 ∼ H(N ,M , n); (3)

Similarly, the second committee can be modeled

by the hypergeometric distribution with the parameters

N − n, M − m1 and n as follows:

X2 ∼ H(N − n,M−m1, n); (4)

And for the third committee we get:

X3 ∼ H(N − 2n,M − (m1 + m2), n); (5)

Finally, the distribution of committee λ (last committee) can

be expressed as follows:

Xλ ∼ H(N − (λ − 1)n,M −

λ−1
∑

i=1

mi, n). (6)

The probability density function of X = (X1,X2, . . . ,Xλ)

(i.e., joint distribution) is given in (7).

P(X1 = m1, . . . ,Xλ = mλ)

= h(N ,M , n,m1) × h(N − n,M − m1, n,m2) . . .

× h(N − (λ − 1)n,M −

λ−1
∑

i=1

mi, n,mλ)

=

λ−1
∏

j=0

h(N − jn,M −

j
∑

i=0

mi, n,mj+1) (7)

P(X1 = m1,X2 = m2, . . . ,Xλ = mλ)

=

(

n
m1

)(

n
m2

)

. . .
(

n
mλ

)

(

N
M

)

=

∏λ
j=1

(

n
mj

)

(

N
M

)
(8)

The distribution in (7) is difficult and complex to compute.

Using Theorem 1 (see proof in Appendix), (7) can be rewrit-

ten as (8).
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Theorem 1: Let X = {X1,X2, . . . ,Xλ} be a random vector

such that Xi ∼ H(N − (i − 1)n,M −
∑i−1

i=1 mi, n) for all i in

{1, 2, . . . , λ}. We have:

λ−1
∏

j=0

h(N − jn,M −

j
∑

i=0

mi, n,mj+1) =

∏λ
i=1

(

n
mi

)

(

N
M

)
(9)

A simple way to prove that the distribution in (7) is the

distribution in (8), is as follows: We have N nodes and we

need to pick M malicious nodes out of them. Thus, the total

number of possibilities is
(

N
M

)

. For shard 1, the number of

possibilities to arrange m1 from n is
(

n
m1

)

, for shard 2 is
(

n
m2

)

,

and for shard λ is
(

n
mλ

)

. Consequently, the number of all pos-

sibilities taking into account all shards is the product of
(

n
mi

)

for i ∈ {1, 2, . . . , λ}. To compute the required probability,

we need to divide this product by
(

N
M

)

.

Now, to ensure that our methodology adapts well to the

situation, Lemma 1 (see proof in Appendix) proves that the

probability distribution in (8) is a proper Probability Distri-

bution Function (PDF).

Lemma 1: The probability in (8) is a proper PDF; this

means that:

n
∑

i=0

n
∑

j=0

· · ·

n
∑

k=0

P(X1 = m1i, . . . ,Xλ = mλk ) = 1 (10)

Note that m1 malicious nodes in shard 1 can assume any

of the following values: n, n − 1, . . . and 0. Similarly, m2

malicious nodes in shard 2 can assume any of the following

values: n, n−1, . . . and 0, and so on until the last shard. Thus,

the distributions in (7) and (8) represents only one particular

outcome. To consider all the possible outcomes, we need

to compute the joint hypergeometric distribution, which is

expressed in (11).

P(X1 ≤ nr,X2 ≤ nr, . . . ,Xλ ≤ nr)

=

nr
∑

m1=0

nr
∑

m2=0

· · ·

nr
∑

mλ=0

(

n

m1

)(

n

m2

)

. . .

(

n

mλ

)/(

N

M

)

(11)

Finally, the failure probability (the probability that at least

one committee fails) can be expressed as follows:

fp = 1 − P(X1 ≤ nr,X2 ≤ nr, . . . ,Xλ ≤ nr) (12)

Even after the simplification we make (from (7) to (8)), the

probability in (12) is still complex and difficult to compute,

especially, when we consider a huge number of nodes. For

this reason, in the section III, we estimate this probability

instead of computing it.

C. EXISTING APPROACHES

In this section, we present existing approaches that are

devoted to analyze the security of sharding-based blockchain

protocols [3], [4], [9]. More specifically, we present Hoeffd-

ing’s bound since it is the better bound (in terms of accuracy)

proposed in [3], [4] as well as RapidChain methodology [9].

1) HOEFFDING’s BOUND

We present Hoeffding’s bound [11] in order to compare

it with the proposed methodology. We choose Hoeffding’s

bound because it is the accurate bound, proposed in [3], [4].

This bound can be expressed as follows:

H (N ,M , n,m) ≤ F(y), (13)

where

F(y) =

(

(

p

p+ y

)p+y( 1 − p

1 − p− y

)1−p−y
)n

, (14)

p = M
N

and m = (p+ y)n with y ≥ 0.

Hence, we can bound the failure probability of one com-

mittee with resiliency r as follows:

H (N ,M , n, nr) ≤ F(y), (15)

where

y = r − p, (p ≤ R).

Hafid et al. [3], [4] compute the epoch failure probability by

multiplying the failure probability for one committee by the

number of committees λ = N
n
. In addition, it is possible

to ignore the bootstrap probability (i.e., the probability that

the committee election fails in the first epoch) since it is too

small (e.g., for RapidChain [9], this probability is smaller

than 2−26.36). The epoch failure probability (pe) can thus be

bounded as follows:

pe ≤ λ × F(y). (16)

2) RapidChain METHODOLOGY

In this section, we present RapidChain methodology [9]

to analyze security of sharding-based blockchain protocols.

Unlike Ethereum-sharding [19] and OmniLedger [8] that

use binomial distribution to analyze the security of their

sharding-based blockchain protocols, RapidChain method-

ology uses the hypergeometric distribution. Note that using

binomial distribution does not model correctly the sampling

[4]. However, the limitation of RapidChain methodology

comes from assuming that the failure probability of the first

committee is the same as the other committees; this is because

RapidChain methodology assumes that the failure probability

of one epoch (i.e., one sharding round) is the failure proba-

bility of the first committee times the number of committees.

As reported in Section I, the parametrizations of the model

change after we sample a shard; thus, in practice each shard

has its own failure probability.

The failure probability for a committee with resiliency

r by using the cumulative hypergeometric distribution is

expressed as follows:

H (N ,M , n, n r) =

n
∑

k=⌊nr⌋

(

M
k

)(

N−M
n−k

)

(

N
n

)
(17)

In RapidChain, they compute the epoch failure probability

by multiplying the failure probability of the first committee
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by the number of committees. By ignoring the bootstrap

probability, the epoch failure probability can be expressed as

follows:

pe = λ × H (N ,M , n, n r) = λ ×

n
∑

k=⌊nr⌋

(

M
k

)(

N−M
n−k

)

(

N
n

)
(18)

D. COMPUTING CONFIDENCE INTERVALS

In this section, we investigate the reliability of simulations in

estimating the failure probability. For this purpose, we would

like to compute the confidence intervals in order to lower

and upper bound the estimated failure probability. There are

different and several methods to compute confidence inter-

vals including Normal approximation interval, Wilson score

interval [17], [18], Jeffreys interval [17], Clopper–Pearson

interval [17], and Agresti–Coull interval [17]. A commonly

and popular method to compute confidence intervals is Nor-

mal approximation interval. This method is based on the

Central Limit Theorem (CLT); it is inaccurate and unreliable

when the sample size is small or the success probability (the

failure probability in our case) is close to 0 or 1.

In this paper, we choose Wilson score interval since this

method has been shown to be the most accurate and the most

robust [17], [18]. Agresti-Cull method also provides a good

accuracy for larger sample sizes [17].

E. YEARS TO FAIL

To measure the security of a given protocol, we propose to

compute the average number of years to failure. To perform

this computation, we need to determine the failure probability

of epoch per sharding round, which refers to the failure prob-

ability that at least one committee fails. The average number

of years to fail corresponding to the proposed methodology

is given by:

Yf =
Es

Nsy
, where Es =

1

fp
(19)

The average number of years to fail corresponding to

Hoeffding’s bound as well as RapidChain methodology is

given by:

Yf =
Es

Nsy
, where Es =

1

pe
(20)

III. RESULTS AND EVALUATION

In this section, we present a simulation-based evaluation of

our methodology and we compare it with existing contribu-

tions including Hoeffding’s bound [3], [4], and RapidChain

methodology [9].

A. SIMULATION SETUP

To estimate the probability proposed by our methodology

(i.e., the probability in (12)), we use NumPy Python library,

which offers mathematical functions, random number gen-

erators, etc. In particular, we use numpy.array() to set up

an array of M malicious nodes and N − M honest nodes.

We also use numpy.random.choice() to distribute randomly

TABLE 2. Parameter Settings.

and without replacement these nodes across shards. When-

ever, we distribute nodes without replacement across shards;

we know the number of malicious nodes in each shard. If only

one shard exceeds the limit (committee resiliency), we save

1 (i.e., failure), otherwise we save 0. Once this procedure is

complete, we have one trial/simulation. To consider all the

possibilities (i.e., the possible number of malicious nodes in

each shard), we need to repeat this trial a large number of

times. After repeating this procedure, we sum the numbers

that we save (i.e., 1 or 0) and we divide by the number of

trials to get the estimated failure probability. For example, let

us assumewe executedNt = 10000 trials andwe encountered

at least one shard failure in each of 500 trials; in this case, the

estimated failure probability is:

f̂p =
500

10000
= 0.05

The relation between the exact failure probability (fp) and the

estimated failure probability (f̂p) can be expressed as follows:

| fp − f̂p |
Nt−→+∞
−−−−−−→ 0 (21)

Table 2 shows the values of the parameters used in the sim-

ulations. In Table 2, we assume that the number of malicious

nodes in the network is the maximum number of malicious

that the network can support (for Elastico and OmniLedger

[7], [8], this maximum number should not exceed 25%

of the entire network); this means that M assumes 25%

(M = R× N ) of the entire network. Note that we can assume

values smaller than 25% of the entire network. For the values

of N , we assume different values of the network size for the

purpose of analyzing how the size of the network impacts its

security.

B. RESULTS AND ANALYSIS

Table 3 shows the estimated failure probability of the pro-

posed methodology when varying the size of the committees

(125, 200, 250) as well as the number of trials (104, 105, 106).

Table 3 illustrates the Wilson score confidence interval for

the purpose of computing bounds (i.e., computing lower and

upper bounds) to better bound and estimate the failure proba-

bility. In addition, Wilson score confidence interval allows us

to bound the failure probability with a high confidence rate

of 95% and with a low error rate of 5%; this is means that,

we are confident 95% that the estimated failure probability is

between lower and upper bounds of Wilson score CI.

In particular, Table 3 shows that when the size of the com-

mittee increases the failure probability decreases. In addition,

Table 3 shows that as the number of trials increases the width
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TABLE 3. Estimated failure probability of one sharding round vs. committee size and number of trials.

FIGURE 2. Estimated failure probability of one sharding round versus the
size of the committee.

of Wilson score interval gets smaller; this means that, as the

number of trials increases, we better bound (lower and upper

bound) the failure probability.

It is worth noting that we could not run a very large number

of trials due to the limited performance of our personal com-

puter. A fundamental question we need to answer is ‘‘How

does the number of trials influence the estimated failure prob-

ability?’’. To answer this question, wemake use of confidence

intervals. Table 3 shows a lower bound and an upper bound

of the estimated failure probability using Wilson score confi-

dence interval. For 1000000 number of trials computed by a

regular computer (i7-2677MCPU 1.80GHz and 6GB RAM),

the execution time (running time) is 249.84 seconds, which

is about 4.16 minutes. Table 3 shows that the ‘‘width’’ of

Wilson score interval gets smaller as the number of trials gets

larger. This means that, as the number of trials gets larger we

better bound the estimated failure probability. However, when

the number of trials gets larger, we need a supercomputer to

calculate/estimate the failure probability in a reasonable time.

It turns out that we have to make a trade-off between accuracy

and computational overhead.

Figure 2 compares the estimated failure probability com-

puted by using our methodology and that of Hoeffding’s

bound and RapidChain when varying the size of the com-

mittee (100-250) in a network of 1000 nodes. We observe

(as expected) that the failure probability decreases as the

size of the committee increases. As mentioned in section I,

Hoeffding’s bound and RapidChain methodology allow us

to compute ‘‘false" failure probabilities since they esti-

mate/compute the failure of the first shard and multiply it

by the number of shards to get the epoch failure probability.

Let us consider an example to show that existing approaches

[3], [4], [9] produce inaccurate results. Let assume a net-

work that contains N = 1000 nodes and each shard con-

tains n = 25 nodes. The failure probability (by using

RapidChain’s methodology) for one epoch (one sharding

round) is 1.569, which is bigger than 1. This means that

RapidChain’s methodology computes "false" probabilities.

The failure probability (by using Hoeffding’s bound) for one

epoch is 9.118, which is bigger than 1. However, the pro-

posed methodology computes (by considering Nt = 100000)

0.99987, which is smaller than 1 and it will not assume values

greater than 1 because it is a proper probability distribu-

tion (see Lemma 1). Table 4 shows the failure probabili-

ties, computed by the three methods, and the corresponding

years to fail. It is worth noting that we did consider a small

committee size (i.e., n=25) to show that existing approaches

compute probabilities that are bigger than 1 (which is not

correct); indeed, the smaller committee size, the bigger the

failure probability. In this example, RapidChain (resp. the

approaches in [3], [4]) computes a failure probability that is

equal to 1.569 (resp. 9.118). The smaller the size of the com-

mittee the bigger the failure probability; thus, by decreasing

the size, we can show that the failure probabilities computed

by the existing approaches [3], [4], [9] exceed 1. Finally,

it worth noting that as the number of years to fail decreases;

this means that computing "false" probabilities impacts the

number of years to fail, which impacts the security of the

network. Figure 3 compares the estimated years to fail using

our methodology with that of Hoeffding’s bound and Rapid-

Chain’s when varying the size of the committee (100-250) in a

network of 1000 nodes. More specifically, Figure 3 illustrates

that as the size of the committee increases the number of

years to fail increases; this is expected since when the size

of the committee increases, the failure probability decreases

(Figure 2) leading to increasing the number of years to fail.

Figure 4 shows the number of trials (varying from

10000-1000000) versus the width ofWilson score confidence

179394 VOLUME 8, 2020
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TABLE 4. Comparison (in terms of failure probability and years to fail)
between the proposed methodology and the existing approaches.

FIGURE 3. Years to fail versus the size of the committee.

FIGURE 4. Number of trials versus the width of Wilson score confidence
interval.

interval. We observe that as the number of trials increases

the width of Wilson score interval gets smaller; we conclude

that as the number of trials gets larger we better bound the

estimated failure probability (as expected).

Figure 5 illustrates the number of trials (varying from

10000-1000000) versus the running time in seconds in a

network of N = 1000 nodes. We observe that as the number

of trials increases the running time ‘‘sharply’’ increases due

to the limited performance of our machine. From Figures 4

and 5, we conclude that as the number of trials increases we

FIGURE 5. Number of trials versus the running time (in second).

FIGURE 6. Number of years to fail for different numbers versus the size of
the committee for the different number of sharding rounds per year (Nsy ).

better estimate the failure probability but the running time

sharply increases. It turns out that we have to make a trade-off

between accuracy and computational overhead.

Figure 6 shows the number of years to fail for different

numbers of sharding rounds per year (Nsy = 180,Nsy = 360,

and Nsy = 730) when varying the size of the committee

(100-250) in a network of N = 1000 nodes. We observe that

as the number of sharding rounds per year decreases the num-

ber of years to fail increases; this means that, as the number of

sharding rounds per year decreases the security of the network

increases. We conclude that the number of sharding rounds

impacts the security of sharding-based blockchain protocols.

Figure 7 shows the failure probability of one sharding

round for different network’s sizes (N = 1000, N = 2000,

N = 4000) when varying the committee’s size (100-250).

Specifically, this failure probability is calculated by using the

proposed methodology for Nt = 1000000 trials. We observe

that as the network’s size increases the estimated failure

probability increases; this means that the size of the network

affects its security.

Finally, we identify numerous factors that impact the secu-

rity of the network, which are the size of the committee, the

number of years to fail, and the size of the network. Now,
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FIGURE 7. Failure probability of one sharding round versus the size of the
committee (n) for the different network’s sizes (N).

FIGURE 8. Years to fail versus the size of the committee and the number
of sharding rounds per year.

let us determine the best combination of the values of these

factors to achieve the best security. In practice, the network

size is given (i.e., an average) since it is public blockchain

(i.e., users can leave/join at any time). However, we can

increase/decrease the size of the committee and the number

of sharding rounds per year in order to determine a predefined

level of security (i.e., a predefined number of years to fail).

Let us consider some 3D graphs to show the best combina-

tion that gives us the best security (the bigger number years

to fail). Figure 8 shows the number of years to fail versus

the size of the committee (n varying from 10 to 200) and

the number of sharding rounds per year (Nsy varying from

45 to 730) by considering Nt = 100000 in a network of

N = 1000 nodes. We observe that for n = 192.421 and

Nsy = 22.589 we have the best combination that achieves the

biggest number of years to fail, which is about 2.58026 years.

Figure 9 shows the years to fail for different network’s sizes

(N = 2000, N = 3500 and N = 5000) versus the size of

the committee (n varying from 10 to 200) and the number

of sharding rounds per year (Nsy varying from 45 to 730)

by considering Nt = 10000. We observe three surfaces; the

higher one corresponds to N = 5000 nodes, followed by the

surface that corresponds to N = 3500 nodes, and the last

one corresponds to N = 2000 nodes. We conclude that as the

network’s size increases the number of years to fail increases,

FIGURE 9. Years to fail versus the size of the committee and the number
of sharding round per year for different network’s sizes.

which shows again that the size of the network impacts its

security.

IV. CONCLUSION

In summary, the paper proposes a novel methodology

to analyze and investigate the security of sharding-based

blockchain protocols. This methodology corrects the existing

approaches [3], [4], [9]. In particular, we estimate the failure

probability of the entire network in one sharding round taking

into account the failure probability of each committee/shard.

To validate and confirm that our methodology gives better

estimation, we compute confidence intervals using Wilson

score method since it is the most accurate and robust. After

estimating the failure probability, we canmeasure the security

of the network by estimating the number of years to fail.

A. PROOF OF THEOREM 1

First we prove the equality for λ = 2.

For λ = 2, we have M = m1 + m2 and N = 2n.

Let A2 = P(X1 = m1,X2 = m2) We need to prove that:

A2 =

(

n
m1

)(

n
m2

)

(

N
M

)
(22)

We have:

A2 =

1
∏

j=0

h(N − jn,M −

j
∑

i=0

mi, n,mj+1)

=

(

M
m1

)(

N−M
n−m1

)

(

N
n

)
×

(

M−m1
m2

)(

N−n−(M−m1)
n−m2

)

(

N−n
n

)

=

(

M
m1

)(

N−M
n−m1

)

(

N
n

)
×

(

m2
m2

)(

n−m2)
n−m2

)

(

n
n

)

=

(

M
m1

)(

N−M
n−m1

)

(

N
n

)
× a2

=

M !
m1!(M−m1)!

× (N−M )!
(n−m1)!(n−m2)!

N !
n!n!

× 1

=
M !(N −M )!

m1!m2!(n− m1)!(n− m2)!
×
n!n!

N !
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=
n!

m1!(n− m1)!
×

n!

m2!(n− m2)!
×
M !(N −M )!

N !

=

(

n
m1

)(

n
m2

)

(

N
M

)

Now, let us prove the equality for λ = 3.

For λ = 3, we have M = m1 + m2 + m3 and N = 3n.

And

A3 =

2
∏

j=0

h(N − jn,M −

j
∑

i=0

mi, n,mj+1)

We need to prove that:

A3 =

(

n
m1

)(

n
m2

)(

n
m3

)

(

N
M

)
(23)

Let m0 assumes 0,

A3 =

2
∏

j=0

h(N − jn,M −

j
∑

i=0

mi, n,mj+1)

A3 =

2
∏

j=0

h(N − jn,M −

j
∑

i=0

mi, n,mj+1)

=

(

M
m1

)(

N−M
n−m1

)

(

N
n

)
×

(

M−m1
m2

)(

N−n−(M−m1)
n−m2

)

(

N−n
n

)
× a3

=

M !
m1!(M−m1)!

× (N−M )!
(n−m1)!(N−M−(n−m1))!

N !
n!(N−n)!

×

(M−m1)!
m2!m3!

× (N−n−(M−m1))!
(n−m2)!(n−m3)!

(N−n)!
n!n!

× 1

By simplifying the previous expression, we get:

A3 =
n!

m1!(n− m1)!
×

n!

m2!(n− m2)!

×
n!

m3!(n− m3)!
×
M !(N −M )!

N !

=

(

n
m1

)(

n
m2

)(

n
m3

)

(

N
M

)

Finally, we get:

A3 =

(

n
m1

)(

n
m2

)(

n
m3

)

(

N
M

)

Now, let us prove the equality for λ. Let m0 assumes 0.

For λ, we have M =
∑λ

k=1 mi and N = λn.

And

Aλ =
∏λ−1

j=0 h(N − jn,M −
∑j

i=0 mi, n,mj+1).

We need to prove that:

Aλ =

∏λ
i=1 (

n
mi
)

(NM)
We have:

Aλ =

λ−1
∏

j=0

h(N − jn,M −

j
∑

i=0

mi, n,mj+1)

=

λ−2
∏

j=0

h(N − jn,M −

j
∑

i=0

mi, n,mj+1) × aλ

=

(

M
m1

)(

N−M
n−m1

)

(

N
n

)
×

(

M−m1
m2

)(

N−n−(M−m1)
n−m2

)

(

N−n
n

)

×

(

M−(m1+m2)
m3

)(

N−2n−(M−(m1+m2))
n−m3

)

(

N−2n
n

)
× . . .

×

(

M−
∑k−2

i=0 mi
mk−1

)(N−(k−2)n−(M−
∑k−2

i=0 mi)
n−mk−1

)

(

N−(k−2)n
n

)

×

(

M−
∑k−1

i=0 mi
mk

)(N−(k−1)n−(M−
∑k−1

i=0 mi)
n−mk

)

(

N−(k−1)n
n

)

×

(

M−
∑k

i=0 mi
mk+1

)(

N−kn−(M−
∑k

i=0 mi)
n−mk+1

)

(

N−kn
n

)
× . . .

×

(

M−
∑λ−3

i=0 mi
mλ−2

)(N−(λ−3)n−(M−
∑λ−3

i=0 mi)
n−mλ−2

)

(

N−(λ−3)n
n

)

×

(

M−
∑λ−2

i=0 mi
mλ−1

)(N−(λ−2)n−(M−
∑λ−2

i=0 mi)
n−mλ−1

)

(

N−(λ−2)n
n

)
× 1

By substituting each Binomial coefficient by its

algebraic expression, we get:

Aλ =

M !
m1!(M−m1)!

× (N−M )!
(n−m1)!(N−M−(n−m1))!

N !
n!(N−n)!

×

(M−m1)!
m2!(M−(m1+m2))!

× (N−n−(M−m1))!
(n−m2)!(N−M−(n−(m1+m2)))!

(N−n)!
n!(N−2n)!

× · · ·

×

(M−
∑k−2

i=0 mi)!

m2!(M−(
∑k−1

i=0 mi))!
×

(N−n−(M−
∑k−2

i=0 mi))!

(n−mk−1)!(N−M−(n−
∑k−1

i=0 mi))!

(N−(k−2)n)!
n!(N−(k−1)n)!

×

(M−
∑k−1

i=0 mi)!

mk !(M−(
∑k

i=0 mi))!
×

(N−n−(M−
∑k−1

i=0 mi))!

(n−mk )!(N−M−(n−
∑k

i=0 mi))!

(N−(k−1)n)!
n!(N−kn)!

×

(M−
∑k

i=0 mi)!

mk+1!(M−(
∑k+1

i=0 mi))!
×

(N−n−(M−
∑k

i=0 mi))!

(n−mk+1)!(N−M−(n−
∑k+1

i=0 mi))!

(N−kn)!
n!(N−(k+1)n)!

× · · ·

×

(mλ−2+mλ−1+mλ)!
mλ−2!(M−(mλ−1+mλ))!

×
(3n−(mλ−2+mλ−1+mλ))!

(n−mλ−2)!(2n−(mλ−1+mλ))!

(3n)!
n!(2n)!

×

(mλ−1+mλ)!
mλ−1!mλ−1!

×
(2n−(mλ−1+mλ))!
(n−mλ−1)!(n−mλ)!

(2n)!
n!n!

(24)

By simplifying the previous expression, we get (25), as

shown at the top of the next page.

B. PROOF OF LEMMA 1

First, let

A =

n
∑

i=0

n
∑

j=0

· · ·

n
∑

k=0

P(X1 = m1i,X2 = m2j, . . . ,Xλ = mλk )
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=
M !(N −M )!n!

m1!(n− m1)!N !
×

n!

m2!(n− m2)!
× . . .

n!

mk−1!(n− mk−1)!
×

n!

mk !(n− mk )!
×

n!

mk+1!(n− mk+1)!
× . . .

×
n!

mλ−2!(n− mλ−2)!
×

n!n!

mλ−1!mλ!(n− mλ−1)!(n− mλ)!

=

n!
m1!(n−m1)!

× n!
m2!(n−m2)!

× · · · × n!
mk−1!(n−mk−1)!

× . . . n!
mλ−2!(n−mλ−2)!

× n!
mλ−1!(n−mλ−1)!

× n!
mλ!(n−mλ)!

N !
M !(N−M )!

=

(

n
m1

)(

n
m2

)

× · · · ×
(

n
mk−1

)(

n
mk

)(

n
mk+1

)

× · · · ×
(

n
mλ−2

)(

n
mλ−1

)(

n
mλ

)

(

N
M

)

=

∏λ
i=1

(

n
mi

)

(

N
M

)
(25)

where

mij = j, ∀i ∈ {1, 2, . . . , λ}, ∀j ∈ {0, 1, . . . , n}.

We need to prove that the sum over this probability equals

to 1. We have:

A =

n
∑

i=0

n
∑

j=0

· · ·

n
∑

k=0

P(X1 = m1i,X2 = m2j, . . . ,Xλ = mλk )

=

n
∑

i=0

n
∑

j=0

· · ·

n
∑

k=0

(

n
m1i

)(

n
m2j

)

. . .
(

n
mλk

)

(

N
M

)

By using Generalized Vandermonde’s identity [6], we get:

A =

(

n+···+n
m1+···+mλ

)

(

N
M

)

=

(

λn
M

)

(

N
M

)

=

(

N
M

)

(

N
M

)

= 1 (26)

Finally, we have:

n
∑

i=0

n
∑

j=0

· · ·

n
∑

k=0

P(X1 = m1i,X2 = m2j, . . . ,Xλ = mλk ) = 1

(27)

This means that P is a proper probability distribution

function.
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