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ABSTRACT Bitcoin is one of the most popular decentralized cryptocurrencies to date. However, it has

been widely reported that it can be used for investment scams, which are referred to as high yield investment

programs (HYIP). Although from the security forensic point of view it is very important to identify the

HYIP operators’ Bitcoin addresses, so far in the open technical literature no systematic method which

reliably collects and identifies such Bitcoin addresses has been proposed. In this paper, a novel methodology

is introduced, which efficiently collects a large number of the HYIP operators’ Bitcoin addresses and

identifies them based upon a novel analysis of their transactions history. In particular, a scraping-based

method is first proposed which is able to collect more than 2,000 HYIP operators’ Bitcoin addresses from

the Internet thus providing a large number of the HYIPs’ samples. Second, a supervised machine learning

technique, which classifies, whether or not, specific Bitcoin addresses belong to the HYIP operators,

is introduced and its performance is evaluated. The proposed classification method is based upon two

novel approaches, namely the rate conversion technique that mitigates the effect of Bitcoin price volatility

and the sampling technique that reduces the computational amount without sacrificing the classification

performance. By employing close to 30,000 real Bitcoin addresses, extensive performance evaluation results

obtained by means of computer simulation experiments have shown that the proposed methodology achieves

excellent performance, i.e., 95% of the HYIP addresses can be correctly classified, while maintaining a

false positive rate less than 4.9%. In order to further validate the proposed classifier’s ability to detect the

HYIP operators’ Bitcoin addresses, our designed classifier has been tested against a recently published list

of the HYIP addresses maintaining its excellent detection accuracy by achieving a 93.75% success rate.

INDEX TERMS Bitcoin, blockchain analysis, forensics, data mining, HYIP (high yield investment

programs).

I. INTRODUCTION

In recent years, cryptocurrency has been widely accepted as a

new digital currency in the world, with Bitcoin being possibly

the most popular digital currency [1]. Bitcoin is a decentral-

ized cryptocurrency for which no central authority is required

to control it. Unlike other conventional non-cryptocurrencies,

Bitcoin possesses two key features: (i) Transparency and

(ii) Pseudo-anonymity. The former is typically assured

because all transactions are kept at a decentralized ledger

The associate editor coordinating the review of this manuscript and
approving it for publication was Donato Impedovo.

called blockchain and can be publicly observed. The latter

is achieved by introducing Bitcoin address computed from

a user’s public key, and thus no real identifier, e.g. the user

name, is embedded on the transactions.

Recent studies have revealed that the property of pseudo-

anonymity is abused by investment scams, which are referred

to as HYIP (High Yield Investment Programs) [2], [3].

HYIP is a rather popular scam that operators use to lure

investors to promise high interest payment, e.g., 1-2% interest

per day. Although HYIP related activities emerged in the

1920’s [4], the dramatic increase of Bitcoin-enabled HYIPs

has been witnessed in recent years. For example, one of the
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Bitcoin-enabled HYIP operators, who operated the Bitcoin

Saving and Trust (BTCST) that offered 7% daily interest to

investors and raised 700,000 BTC (worth $4.5 million based

on the average trading value) [5], was charged by the Security

and Exchange Commission (SEC) [6]. It is noted that a recent

study has shown that there exist many statistical aspects

of HYIP, e.g. its lifetime and advertisements [2], [3]. The

threatening fact is that HYIP operators can start new HYIPs

again and again in almost ‘‘no-time’’, as Bitcoin addresses

can be generated unlimitedly. Therefore, it is very important

to identify HYIP operators’ Bitcoin addresses and associated

transactions related to fraud by extracting features from the

transaction history.

Capitalizing on this need, we have recently proposed a

HYIP operators’ Bitcoin addresses identification methodol-

ogy [7]. Themain idea behind this work is that when a Bitcoin

address is tested, its transactions characteristics, which are

also known as features, are calculated from its transaction

history, and then designing a machine learning classifier by

training the characteristics of HYIP and non-HYIP. As the

work reported in [7] is rather preliminary, there are a number

of important issues which need to be further investigated. The

first one is that the dataset used for evaluation in [7] is rather

limited, as only 43 HYIPs and 1,523 non-HYIPs have been

considered. Hence, an efficient HYIP operators’ address col-

lection method is required in order to obtain reliable results.

The second one is that, since [7] does not consider the volatil-

ity of Bitcoin, the calculated features related with the amount

of transferred Bitcoin have not been accurately calculated.

The third one is that with the approach considered in [7] it

is not feasible to process a large number of transactions of

‘‘giant’’ Bitcoin addresses and owners.

Motivated by the above, in this paper we extend our pre-

vious work [7] toward more solid and accurate HYIP own-

ers’ Bitcoin addresses identification solutions by individually

addressing the above mentioned issues. Firstly, in order to

increase the number of dataset, we leverage the fact that

many HYIPs are introduced on Investor-based games section

on bitcointalk.org,1 which is a major Bitcoin online forum.

We then identify more than 2,000 HYIP operator’s Bitcoin

addresses from the collected TXID (Transaction Identifier)

by making decisions based upon the context of posts. Sec-

ondly, when transactions are processed to calculate features,

the unit is converted from BTC to USD through the use of

chart rate offered by a Bitcoin exchange. As it will be shown

later, this simple step significantly improves classification

performance. Lastly, a sampling approach is introduced to

reduce the computation complexity when a large number of

transactions or addresses are retrieved. It will be also shown

that, even if sampling is executed, the actual classification

performance does not degrade much.

We have evaluated the classification performance of the

proposed methodology by means of computer simulation

employing 2,026 HYIP operators’ Bitcoin addresses and

1https://bitcointalk.org/index.php?board=207.0

FIGURE 1. An example of two Bitcoin transactions.

26,967 non-HYIP ones obtained from bitcointalk.org and

Blockchain.info. These experiments have shown that 95%

of HYIPs are correctly classified, while maintaining false

positive rate less than 4.9%. Furthermore, the computational

time, the contributing features, and their distribution by

HYIP and non-HYIPs are shown. Finally, to test the gen-

erality of the proposed classifier to detect HYIP operators’

Bitcoin addresses, an additional experiment without consid-

ering our previous dataset collection has been run. In par-

ticular, our designed classifier is tested against the HYIP

address list offered by Bartoletti et al. [8] which consists

of 32HYIP operators’ Bitcoin addresses. The obtained results

have shown that, also for this experiment, the detection accu-

racy is 0.9375, again verifying that the proposedmethodology

can be effectively used for the forensics of Bitcoin-related

fraud.

The remainder of this paper is structured as follows. After

this introduction, Section II presents the background informa-

tion on Bitcoin which is related to this paper. In Section III,

the detailed description of the proposed methodology can be

found. In Section IV, various performance evaluation results

are presented and discussed. Finally, the conclusions of this

paper are given in Section V.

II. PRELIMINARIES

In this section, the most important operational procedures of

Bitcoin are presented and their relationship to the research

area and topic of the paper is explained. Subsequently, fraud-

ulent activities that coexist with Bitcoin and its conventional

studies are discussed. Finally, the HYIP scam activities and

their operation are briefly reviewed.

A. TRANSACTIONS FUNDAMENTALS

Bitcoin is a decentralized cryptocurrency that works in a P2P

(Peer-to-Peer) network [1]. FIGURE 1 illustrates an example

of two Bitcoin transactions. As illustrated in FIGURE 1,

Bitcoin is transferred among Bitcoin addresses via a message

format called transaction. For each of the two Bitcoin trans-

actions illustrated in this figure, the senders and recipients

of Bitcoin are identified as inputs and outputs, respectively.

A Bitcoin address is created from a pair of ECDSA (Elliptic
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FIGURE 2. A sequence of blocks used to construct a blockchain.

Curve Digital Signature Algorithm) private and public keys.

When a user creates a transaction to send a certain amount of

Bitcoin to a specific Bitcoin address, a message signature that

can be calculated from its pairwise private key is required.

A transaction is sent to the P2P network and its validity

is checked, e.g. whether or not the inputs of a transaction

have not been previously spent, and the attached signature

is validated by participating nodes. If identified to be valid,

this transactionmust be agreed by every participant of Bitcoin

and stored permanently in the Bitcoin blockchain. In Bitcoin,

a set of approved transactions are stored in a block and newly

created blocks are periodically distributed among all nodes

of the P2P network. However, since no single trusted author-

ity exists in Bitcoin, there is a possibility that such blocks

are abandoned and the already spent Bitcoin might be used

again. Such transactions might be double-spending and thus

must be avoided. In fact, Bitcoin avoids double-spending by

rewarding Bitcoins to rational nodes as incentive. In Bitcoin,

a block is created by solving a computational puzzle that is

difficult to solve but easy to check. More specifically nodes,

which are often referred to as miners, are required to find a

nonce (i.e. a number used once) under the condition that the

result of a (SHA-256) hash value together with a reference

to the previous block and a set of the unapproved transac-

tions lowers the specified target value. The first miner that

identified such a nonce can acquire the newly minted Bitcoin

through a so-called coinbase transaction, and all transaction

fees included in the block. FIGURE 2 illustrates a sequence

of blocks used to construct a blockchain. Since the previous

block is required to create the next block, this results in an

ever-growing chains of blocks, i.e., a blockchain. It is noted

that as a ‘‘by-product’’ of this block creation process, valid

transactions agreed by the nodes are permanently stored.

B. BITCOIN ADDRESSES CLUSTERING

As the complete Bitcoin transactions are available via the

blockchain, it is interesting to analyze them for the better

understanding of how Bitcoin is used, e.g., the anonymity

it offers to its users. For this, let’s recall that anyone can

manage a number of Bitcoin addresses. To infer Bitcoin

addresses controlled by the same owner, there exist several

techniques proposed in the past which are usually referred

to as AC (Address Clustering), e.g. [9]–[12]. For example

in [9], Androulaki et al. showed that two heuristics are effec-

tive to tie a set of Bitcoin addresses to its owner. The first

FIGURE 3. Collecting labelled Bitcoin addresses from the Internet.
(a) WalletExplorer.com. In this figure, a part of Bitcoin addresses
controlled by an online wallet service, Xapo.com, are displayed.
(b) Blockchain.info/tags.

such heuristic is that any input addresses in a transaction are

assumed to be owned by the same entity. The second heuristic

is that, if and only if, the number of addresses at the output

is two and one of them has never appeared in the blockchain,

such address is for the sending entity to accept changes. Nick

in [13] proposed two other heuristics that are applicable only

to general Bitcoin wallet applications, e.g. Bitcoin Core and

Electrum. The first one is to leverage the fact that such wallet

applications can only send, by default, Bitcoin to one Bitcoin

address. Thismeans that at most twoBitcoin addresses appear

in the outputs of transactions, i.e. one is recipient’s address

and the other is for the change. The second heuristic is that

when the output value of a Bitcoin transaction is lower than

any of its inputs, such output Bitcoin address is likely to be a

change address. Recently in [14], Neudecker and Hartenstein

proposed a sophisticated AC technique that combines the

previously proposed heuristics and aswell as IP address infor-

mation extracted from observing the message flood process

of the Bitcoin network. In the same reference, twomonitoring

peers were deployed on the Bitcoin network and the location

where a transaction is issued is inferred by leveraging the

information measured at the two peers with a GeoIP service,

which provides the rough location of client by querying its IP

address.

The main limitation with the identification of Bitcoin

addresses controlled by the same user is that these Bitcoin

addresses do not involve any information that links its own-

ers’ identifiers. Hence, there have been many attempts to

retrieve the information from the other sources, e.g. web-

sites and posts on SNS (Social Networking Services), and
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combine it with the data from the blockchain. For exam-

ple, Meiklejohn et al. have studied how Bitcoin transactions

are used via transaction graph analysis based on AC [11].

In particular, they have shown that Bitcoin is used for various

services, e.g., (i) Mining pools; (ii) Wallets; (iii) Exchanges;

(iv) Vendors, (v) Gambling, and (vi) Money laundry. They

have further analyzed the transaction volume and graph net-

work among Bitcoin addresses used for these services. More

recently, Lischke and Fabian have analyzed the develop-

ment and advances of Bitcoin during the first four years of

their operation [15]. McGinn et al. have developed a tool

to visualize Bitcoin transaction patterns [16]. Rahouti et al.

have surveyed the recent threats and security solutions to

Bitcoin [17]. Fleder et al. [12] developed a system which

ties real names or entities to Bitcoin addresses by scraping

the topics of bitcointalk.org, which is the biggest Bitcoin

forum. Spagnuolo et al. [18] also developed a powerful tool

called BitIodine to cluster Bitcoin addresses and tie themwith

identifiers used in bitcointalk.org and bitcoin-otc, which is

an OTC (Over The Counter) market for Bitcoin. They have

demonstrated its effectiveness by using their own tool to iden-

tify Bitcoin addresses owned by Ross William Ulbricht, who

was the creator and operator of Silk Road and ransom

payment caused by CryptoLocker [19].

C. HYIP

Bitcoin has been also misused in various investment scams,

e.g. [20]–[22]. For example, HYIP, which is a classical invest-

ment fraud scheme that offers high interest payments, e.g.,

more than 1% per day, while the earned interest is collected

from new investors [20]. HYIP itself is not new as it has been

known since the 1920s. Charles Ponzi was one of the most

famous HYIP operators who promised investors a 50% profit

within 45 days, or 100% profit within 90 days by claiming

that he runs arbitrage [21]. Because of this scam, HYIP is

also known as Ponzi scheme. More recently, in 2009, Bernie

Madoff pled guilty to swindling investors by 64.8 billion

USD, which is the largest Ponzi scheme in history [22]. Next

we will briefly present the fundamentals of the HYIP scheme.

Let us consider a HYIP which offers daily interest of 2%

and assume that an investor, by investing 0.01 BTC into

this HYIP, he/she will receive 0.0002 BTC per day. Thus,

in 50 days, the earnings will be the same as the investment,

i.e., 0.01 BTC. If this HYIP continues to pay for more than

50 days, this investor can yield a profit. It is noted that,

in general, HYIP investments do not allow early withdrawal,

unless high penalties, e.g. 10% (or even more) of the total

investment, are paid. However, it is obvious that this HYIP

will, sooner or later, disappear so that many investors will

lose their investment. Vasek and Moore in [2] analyzed the

statistical aspect of Bitcoin-enabledHYIPs. They showed that

the median lifetime of HYIP is 37 days looking at 23 HYIPs

that existed from January 2, 2013 through September 9, 2014.

Furthermore, they showed that these HYIPs totally earned

1,562 BTC (843,000 USD). They have also identified the

differences between successful and non successful HYIPs

by investigating HYIP-related threads in bitcointalk.org [3].

They investigated the relationships between the lifetime of

the scam, the profiles of the scammers and their victims, and

how much interactive the threads are on scams. It is interest-

ing to note that, as reported in [5], a Bitcoin-enabled HYIP

operator was charged by the Security and Exchange Commis-

sion (SEC) [6]. This HYIP, Bitcoin Saving and Trust (BST),

offered 7% daily interest to investors and raised 700,000BTC.

In these days, it is relatively easy to collect investors

and operate HYIP with Bitcoin. The operators can advertise

on the Internet and swindle investments from all over the

world [23]. Even if a HYIP collapses, operators can restart

quite easily another HYIP, because any number of Bitcoin

addresses can be generated at almost no cost. Furthermore,

there exists a ‘‘ready-to-use’’ script code of HYIPs [24], e.g.,

the well-known HYIP manager script Gold Coders. All-

in-all, since the operation of HYIP together with Bitcoin can

be easily implemented, it is expected that the economical

losses by Bitcoin-enabled HYIPs will become even higher in

the near future.

D. MOTIVATION AND CONTRIBUTIONS

Motivated by the urgent issue mentioned above, we pre-

viously proposed a basic methodology to identify Bitcoin

addresses which are used to operate HYIPs [7]. However,

it is noted that there exists at least three shortcomings in our

conference paper [7]. The first one is related to the dataset

used for evaluation is small: Only 43 HYIPs and 1,523 non-

HYIPs were included. To increase the number of non-HYIP

Bitcoin addresses, not only Blockchain.info/tags but also

WalletExplorer.com will be used. In contrast, since there is

no available website that explicitly offers HYIP operators’

Bitcoin addresses, an efficient HYIP operators’ address col-

lection scheme is necessary. The second shortcoming of [7]

is that the features related with the amount of transferred

Bitcoin are not well calculated, since we did not consider

the volatility of Bitcoin. For this reason, BTC should be con-

verted to real currency value before feature extraction. The

last shortcoming is that it is infeasible to process a large num-

ber of transactions of ‘‘giant’’ Bitcoin addresses and owners.

For example, the number of transactions related with Bitcoin

address 1N52wHoVR79PMDishab2XmRHsbekCdGquK

in Apr. 2018wasmore than 97,000. Furthermore, by applying

the AC technique, the owner of this address is inferred to

control more than 1 million Bitcoin addresses. Obviously,

it is necessary to reduce the required computational time at

feature extraction.

Here we will present a generic methodology which deals

with these shortcomings in a more systematic and complete

manner. In this paper, apart from introducing and analyzing

the performance of a generic and accurate HYIP owners’ Bit-

coin addresses identificationmethodology, it further proposes

the following new ideas:
1) A novel dataset collection approach, which signifi-

cantly increases the number of HYIP owners’ Bit-

coin addresses is introduced. Specifically, as many as
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2,134 HYIP owners’ Bitcoin addresses have been iden-

tified, which is significant by considering the fact that

our previous work could only collect 43.

2) A solid identification methodology is proposed, which

consists of several key ideas such as unit conversion

and sampling approach, to realize the lightweight, fast,

and accurate identification. Our sampling approach

significantly decreases the computational time of pre-

processing while maintaining good classification per-

formance. If the sampling method is not used, it takes

more than two hours to process a Bitcoin address with

10,000 transactions. In contrast, with our sampling

method, it only requires one minute for the whole

process without sacrificing the best classification per-

formance.

3) The proposed classifier is further tested against a

dataset which involves 32 HYIP owners’ Bitcoin

addresses [8]. As it will be shown, 30 out of 32 such

addresses are successfully identified, i.e. the proposed

methodology achieves a high accuracy of 93.75%.

III. METHODOLOGY

This section presents the proposed methodology using a two-

step approach, namely: (i) Scraping-based HYIP transactions

and operators’ Bitcoin addresses collection; and (ii) Identifi-

cation process.

A. SCRAPING-BASED HYIP TRANSACTIONS AND

OPERATORS’ BITCOIN ADDRESSES COLLECTION

In general, it is difficult to collect a large number of HYIP

transactions and its operators’ Bitcoin addresses. To over-

come this, we leverage the fact that many HYIPs are intro-

duced on the Investor-based games section on bitcointalk.org,

which is a major Bitcoin online forum. FIGURE 4(a) illus-

trates an example of topics in Investor-based games section

on BitcoinTalk.org, which clearly shows that HYIP opera-

tors (and sometimes investors) create topics to lure investors

together with their HYIPs’ rule. In such topics, it can be

seen that investors and operators sometimes post the proofs

of investment or withdrawal of interest with their TXID

(transaction identifier). FIGURES 4(b) and 4(c) illustrate two

such examples of investment and payment proof with TXID,

respectively. Clearly, both HYIP operators and investors

have reasons to post such investment and payment proof:

i) On the one hand, HYIP operators want more and more

investments; and ii) On the other hand, investors need more

investors for their interest to be paid. Consequently, HYIP

transactions and HYIP operators’ Bitcoin addresses can be

scraped from TXIDs that appear in such posts. The follow-

ing algorithms are used to retrieve HYIP operators’ Bitcoin

addresses.
1) Collect HYIP-related topics: The topic titles,

the number of page view, the number of replies, and

the links of topics are retrieved from the Investor-based

games section of BitcoinTalk.org.

FIGURE 4. The procedure for collecting HYIP transactions and HYIP
operators’ Bitcoin addresses from bitcointalk.org. (a) An example of HYIP
promoting on bitcointalk.org. (b) A post to prove an investment with
TXID. (c) A post to prove a successful payment with TXID.

2) Collect posts with TXIDs in the topics: Since Bit-

coins’ TXIDs can be expressed as 64 characters includ-

ing alphabets from ‘a’ to ‘f’ and digits ‘0’ to ‘9’, for

each post of the collected topics, any TXID is extracted

with the regular expression [a-fA-F0-9]{64} that

can extract any TXID. Here, [a-fA-F0-9] matches

a letter from ‘a’ to ‘f’, or from ‘A’ to ‘F’, or from ‘0’ to

‘9’, and {64} denotes that the previous pattern must be

repeated 64 times. Hence, [a-fA-F0-9]{64} can

match every possible TXID in the posts.

3) Identify HYIPBitcoin addresses from the posts with

TXIDs: For each post that involves a TXID, a HYIP

Bitcoin address is extracted by manually judging the

context of posts with TXIDs. Specifically, when a post

is to show a payment proof, Bitcoin addresses that

appear in the inputs of the TXID are owned by HYIP

operators with high probability. In contrast, when a

post is with an investment proof, a Bitcoin address that

appears in the outputs might be owned by HYIP oper-

ators. Therefore, when a post with TXID is given, it is

necessary to extract HYIP Bitcoin addresses according

to the context of posts.
By following the above steps, topics in the Investor-based

games section have been retrieved. FIGURE 5 illustrates the
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FIGURE 5. The cumulative count of created HYIP topics for the years
2011-2017.

FIGURE 6. The breakdown of online wallets used by HYIPs for the years
2011-2017.

cumulative count of topics for the years 2011-2017. The first

topic is posted in June 2011 but very few topics are cre-

ated. However, the number of HYIP-related topics suddenly

increases in 2015. From each topic, we obtained 1,187 TXID

that are related with HYIP, out of which 1,187 TXID,

81 TXID are posted with investment proof while 1,106 are

with payout proof. From 1,187 transactions, 2,134 HYIP

operators’ Bitcoin addresses have been manually extracted.

By checking WalletExplorer.com, 100 of the 2,134 Bitcoin

addresses are found to be controlled by online wallets.

FIGURE 6 shows the breakdown of online wallets used by

HYIPs. As can be seen from this figure most of them use

Xapo.com, which, at the time of writing this paper, is one

of the biggest online wallets.

B. IDENTIFICATION PROCESS

The idea behind the novel identification process is to extract

the characteristics of transactions, which are so-called fea-

tures, by Bitcoin addresses and train a machine learning clas-

sifier which detects whether or not a given Bitcoin address is

controlled byHYIP or non-HYIP. Our proposedmethodology

consists of the following steps:
1) Collecting HYIP operators’ Bitcoin addresses and

other (non-HYIP) addresses;

2) Retrieving transactions;

3) Pre-processing transactions;

4) Extracting features; and

5) Training amachine learning classifier with the features.

For each Bitcoin address, transactions where a given Bitcoin

address is included in either inputs and outputs are retrieved

from the blockchain. If the entity-based scheme is applied,

not only a single Bitcoin address but other addresses that may

be controlled by the same user are also retrieved by applying

the AC technique. Each transaction is then pre-processed

for feature extraction in two steps: (a) Change removal; and

(b) Digit conversion.

After pre-processing, a number of features are calculated,

e.g. fTX, which is the frequency of transactions per day. Once

the features are calculated, a machine learning classifier,

e.g. RF (Random Forests) [25], XGBoost (eXtreme Gradient

Boosting) [26], is trained by using labels (HYIP or non-

HYIP) together with a set of the extracted features. After the

classifier is properly trained, whether a given Bitcoin address

is operated for HYIP can be inferred. In particular, when a

Bitcoin address whose label is unknown is given, then the set

of features is calculated. These features are used as inputs

into the trained classifier and it can be clarified whether or

not a given Bitcoin address is used for HYIP operation. Next,

the detailed algorithms will be described.

1) TRANSACTIONS RETRIEVAL FROM BLOCKCHAIN

For each Bitcoin address, transactions, for which a given

Bitcoin address is included in inputs or outputs, are retrieved

from the blockchain. However, since some Bitcoin addresses

have a large number of transactions, to reduce the computa-

tional complexity, at most nTX subsequent transactions are

retrieved. In the entity-based scheme, not only the given

address but also other addresses controlled by its user are also

retrieved with the help of AC. As far as the operation of the

AC is concern, we use the heuristic that any input addresses

in each transaction are assumed to be controlled by the same

owner. However, when applying this heuristic, several owners

are found to possess a large number of Bitcoin addresses.

Hence, to reduce the computational time, we randomly sam-

ple naddr addresses from them.

2) TRANSACTIONS PRE-PROCESSING

The retrieved transactions are then pre-processed for feature

extraction by employing a four-step procedure. The first

step removes change parts in spent transactions, which are

transactions where the given Bitcoin address spends Bitcoin,

i.e. the address appears in the inputs of the transactions.

FIGURE 7(a) illustrates an example of this phase. In the

following, it is assumed that a given Bitcoin address is

1abc... and wants to send 1 BTC from its controlled

1.9 BTC to the receiver 1def.... Since in Bitcoin, BTC

cannot be split, the sender of Bitcoin must specify another

Bitcoin address to receive a change. Hence, if the same Bit-

coin addresses appear in both the inputs and outputs, it is safe

to assume that the sender received his/her change of 0.9 BTC

to 1abc....

The second step removes any outputs other than the

given Bitcoin address in the received transactions where the

given Bitcoin address receives Bitcoin. In other words, such
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FIGURE 7. An example of pre-processing on Bitcoin address 1abc...’s
transactions. (a) Change removal of spent transactions. (b) Removal of
unnecessary outputs in received transactions. (c) Currency conversion
from BTC to USD. (d) Extracting the digit of USD amount.
(e) Pre-processed transactions.

TABLE 1. Recent USD/BTC daily conversion rates.

an address only appears at the outputs of the transactions

because any other outputs entries are not related with the

given Bitcoin address. FIGURE 7(b) illustrates an exam-

ple of pre-processing against the received transactions of

1abc.... In this example, a Bitcoin address 1c3h...

sends not only 1 BTC to 1abc... but also to 1ghi...,

1jkl..., and 1cUX.... Since 1abc...’s transactions

are pre-processed, outputs except for 1abc... are removed.

After removing the unnecessary parts of transactions,

the third step of the pre-processing is to convert the unit from

BTC to USD and extract the digits of each output entry in

the transactions. A daily currency conversion rate offered by

TABLE 2. The list of calculated features.

Blockchain.info [27] is leveraged for this currency conver-

sion. TABLE 1 shows typical daily conversion rates available

at the time of writing this paper. As shown in FIGURE 7(c),

the amounts in the transactions are converted from BTC to

USD, e.g. by using TABLE 1. Then, since we are more

interested in the digit of transacted amount than the exact

amount, the amount x in USD is converted to 10⌊log10(x)⌋,
where ⌊r⌋ denotes the greatest integer less than or equal to the
real number r . FIGURE 7(d) illustrates an example of such

digit conversion, where 123 USD are converted to 102.

The last step of the pre-processing is to label ‘‘Spent’’,

‘‘Received’’, or ‘‘Coinbase’’ according to the transaction

type. If a given Bitcoin address spends/receives Bitcoin, its

type is labelled as ‘‘Spent’’/‘‘Received’’, respectively. Simi-

larly, if a transaction is coinbase, it is labelled as ‘‘Coinbase’’.

For instance, we assume to process the transactions where a

given Bitcoin address 1abc... is involved. If this address

is included in the inputs of a transaction, this means that

1abc... is willing to spendBitcoin and thus this transaction

is labelled as ‘‘Spent’’. Similarly, if 1abc... has appeared

on an output of a transaction, it means that1abc... receives

Bitcoin and thus it is labelled as ‘‘Received’’. Finally, if any

input is empty while 1abc... has appeared on its output,

such transaction is ‘‘Coinbase’’, which is a special transaction

for miners to receive rewards in return for mining.

3) FEATURE EXTRACTION

After the pre-processing phase, features are extracted from

the pre-processed transactions. TABLE 2 lists the calculated

features and their meaning. The transaction characteristics

of each Bitcoin address are represented as a set of features.

Some services very frequently issue transactions, but some

may not. Apart from fTX, which has been previously intro-

duced, rreceived and rcoinbase are the features that represent the

ratio among spent, received, and coinbase transactions. For

example, the feature of mining pool’s rcoinbase may be much

higher than that of the other services. fspent(i) and freceived(i)

are features that characterize the amount of money which is

frequently transferred. For example, the transferred value of

faucet may be typically small, e.g. less than 1 USD which

is in sharp contrast to the everyday marketplace where it is

usually much higher than 1 USD. rpayback is a service which
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pays back to the Bitcoin addresses that spent some amount of

Bitcoin before. Hence, rpayback of HYIP is much higher than

the other features, since HYIP often pays back some money

to investors. In contrast, pay back may seldom occur in faucet

and mining pool.

4) TRAINING A SUPERVISED MACHINE LEARNING

CLASSIFIER BASED ON FEATURES

A supervised machine learning classifier is trained by com-

bining calculated features with HYIP or non-HYIP labels.

It is underlined that any classifier can be used, e.g., RF [25]

and XGBoost [26]. The fundamental idea of training a super-

vised machine learning classifier is to find the best splitting

functions with given features. In other words, the process

of training a classifier is to train splitting functions which

effectively classify a given data into the correct class. Once

a classifier is trained, it can be used to classify unlabeled

Bitcoin addresses intoHYIP or non-HYIP. In particular, when

a Bitcoin address whose label is unknown is given, the set of

features is calculated. Then, the features are used as inputs to

the classifier which decides, whether or not, a given address

is employed by a HYIP operator.

IV. PERFORMANCE EVALUATION AND DISCUSSION

The proposed HYIP operators’ Bitcoin addresses classifi-

cation scheme is evaluated using both scraped HYIP oper-

ators’ Bitcoin addresses and non-HYIP ones. Specifically,

TPR (True Positive Ratio) and FPR (False Positive Ratio) are

evaluated by means of the classification accuracy. On the one

hand, TPR is defined as the ratio of correctly classifiedHYIPs

addresses. On the other hand, FPR is defined as the ratio of

misclassified non-HYIPs addresses. TPR and FPR are eval-

uated by 10-fold cross validation. The evaluation is repeated

100 times and the classification results are averaged by its

results. The detection performancewith different classifiers is

then evaluated. Furthermore computational time is evaluated

by varying nTX. In addition, we qualitatively evaluate how

each feature contributes to classification using the following

expression:

IG(C, f ) = H (C) − H (C|f ), (1)

where IG(C, f ) is the information gain when a feature f

is chosen while C is the class and H (·) is the entropy.

Clearly, when the contribution of fi is higher than fj, then

IG(C, fi) > IG(C, fj).

Our entire dataset consists of 26,967 non-HYIP addresses

and 2,026 HYIP operators’ Bitcoin addresses. Non-HYIP

addresses are collected from the websites WalletEx-

plorer.com and Blockchain.info/tags and their classes are

listed in TABLE 3. In contrast, HYIP operators’ addresses

are collected by the proposed methodology previously pre-

sented in Section III-A. Our dataset is disclosed in our

git repository, so that others can reproduce the obtained

results.2 After applying address clustering to these Bitcoin

addresses, the number of their owners are found to be and

2https://goo.gl/k5PCOZ

TABLE 3. Non-HYIP classes used for our dataset.

1,813 and 955. Hence, when evaluating the address-based

scheme, the dataset size is 28, 993 (= 26, 967 + 2, 026)

whereas for the owner-based scheme, it is 2, 768 (= 1, 813+
955). By down-sampling the dataset, we vary the ratio of

HYIP operators’ Bitcoin addresses in the entire dataset, i.e.

rHYIP takes values from 0.1 to 0.5. Note that, since the

number of Bitcoin addresses depends on the classes, the entire

dataset is down-sampled so that the number of each class’s

Bitcoin addresses is all of the same length. As will be shown

later in Section IV-A, since the classification performance

of the RF outperforms other classifiers, the RF has been

used as the machine learning classifier [25], in which the

following parameters were varied: (i) the number of decision

trees, i.e. Ntree; and (ii) the number of used features in each

split in a decision tree, i.e. Mtry. We set Ntree= 500 and

Mtry=
√

|F | = ⌊
√
26⌋ = 5 where |F | is the number of

features, respectively. We further used the mlr package in

R language for evaluation [28] and employed the blockchain

with block height from 1 to 452,242, taken for the time period

from Jan. 9, 2009 up to Feb. 9, 2017. The blockchain is

processed in the SQLite database with the help of block-

parser [29]. The entire procedure is computationally executed

on a Linux workstation equipped with Intel(R) Xeon(R) CPU

E5-2603 v4 @ 1.70GHz and 128 GiB RAM.

Next, the detection performance comparison between com-

monly used classifiers will be presented, followed by the

impact of nTX, and rHYIP on the classification performance.

Then, the misclassified non-HYIP classes and the impact

of the contributed features on the accuracy of the proposed

classification process are discussed. Finally, to show that our

methodology is practical, unlabeled Bitcoin addresses are

tested with the trained classifier and HYIP owners’ Bitcoin

addresses are newly obtained.

A. PERFORMANCE COMPARISON OF DIFFERENT

CLASSIFIERS

In order to choose the most appropriate classifier to

test the proposed methodology, several readily available
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TABLE 4. Comparison of classification results by different classifiers.

TABLE 5. Computational time required for processing the transactions of
a Bitcoin address. (i) TX (transactions) retrieval; (ii) Pre-processing &
feature extraction; and (iii) Prediction.

classifiers have been selected and their performance has been

tested. In particular, the following five classifiers have been

considered:
• RF

• XGBoost

• Neural network (feed-forward neural network)

• SVM (Support Vector Machine)

• k-NN (Nearest Neighbors)

Furthermore, the following hyperparameters for each clas-

sifier have been chosen: The number of trees for RF is set

to 100. The number of rounds for XGBoost is set to 100.

In neural network, the number of hidden layer and units are

1 and 5, respectively. RBF (Radial Basis Function) is chosen

for SVM’s kernel function and γ is set to 0.04. k = 9 is

set for k-NN (Nearest Neighbors). Furthermore, the owner-

based scheme with currency conversion is adopted for each

classifier. The performance metrics (TPR and FPR) are eval-

uated under rHYIP = 0.5. TABLE 4 presents the comparison

of classification performance for the five classifiers. From

these results, it can be seen that the RF classifier outperforms

the other four. As such it will be employed to obtain the

detailed performance result which will be presented in the

next section. It is also noted that, with the exception of

the k-NN classifier, all the other four achieve similar per-

formance. Consequently, it can be claimed that an additional

advantage of our novel methodology is that it achieves excel-

lent detection performance regardless of the choice of the

employed classifier provided that specific hyperparameters

are set for each classifier.

B. IMPACT OF nTX

In the proposed methodology, each feature is calculated from

nTX subsequent transactions of each address or owner to

shorten, as much as possible, the computational time without

sacrificing the classification accuracy. Hence, (i) classifica-

tion accuracy (TPR and FPR) and (ii) computational time

are evaluated by varying nTX. FIGURE 8 illustrates the TPR

FIGURE 8. Classification performance by varying nTX. (a) TPR. (b) FPR.

and FPR of the owner-based and address-based schemes vs.

nTX, when rHYIP = 0.5. These results clearly show that both

TPR and FPR improve as nTX increases up to nTX = 100.

In other words, for nTX < 100, the transaction history is not

accurately characterized. TABLE 5 shows the computational

time required to process the transactions of a Bitcoin address

for nTX = 100, 1, 000, and 10, 000. In particular, it presents

the computational time of three phases, i.e. (i) TX (trans-

actions) retrieval; (ii) Pre-processing & feature extraction;

and (iii) Prediction with a supervisedmachine learning classi-

fier. Clearly, the computational time of TX retrieval and pre-

processing & feature extraction increases as nTX gets larger.

In particular, when nTX = 10, 000, more than two hours are

required to perform pre-processing and feature extraction of

a Bitcoin address. On the contrary, the computational time

for prediction is rather insensitive to nTX variations. Thus

nTX = 100 has been selected for further evaluation by

considering the compromise between classification accuracy

and computational time to obtain the various performance

results.

C. CLASSIFICATION PERFORMANCE BY rHYIP

FIGURE 9 illustrates the TPR and FPR performance vs.

rHYIP for the owner-based and address-based schemes,

with or without currency conversion. It can be observed

VOLUME 7, 2019 74843



K. Toyoda et al.: Novel Methodology for HYIP Operators’ Bitcoin Addresses Identification

FIGURE 9. Classification performance by varying the ratio of HYIP rHYIP.
(a) TPR. (b) FPR.

FIGURE 10. USD/BTC exchange rates. (Source: Blockchain.info).

from FIGURE 9(a) that, for all four schemes, TPR grad-

ually improves as rHYIP increases. For example, when

rHYIP = 0.5, meaning that an equal number of HYIP and

non-HYIP Bitcoin addresses are trained and classified, TPR

= 0.95 when the owner-based scheme with currency con-

version is applied. Even in the case of rHYIP = 0.1, the TPR

performance remains high at 0.91. It is interesting to note that

TPR improves when the owner-based scheme is employed.

In other words, this means that in this case the characteristics

of the history of transactions are better incorporated when

the address clustering technique is considered. Furthermore,

FIGURE 11. Breakdown of classes mis-classified as HYIP.

by applying currency conversion, the effects of the high

fluctuation of the Bitcoin price, which has been recently

witnessed (see FIGURE 10), on the performance of the pro-

posed scheme can be significantly reduced. For example,

even if a single address is given, the address-based scheme

achieves TPR = 0.90.

On the other hand, as it can be observed from

FIGURE 9(b), as rHYIP increases FPR also increases, i.e.

the classification performance decreases. This is actually not

surprising because fewer number of non-HYIP classes can be

trained when rHYIP increases. Similarly with TPR, the FPR

of the owner-based schemes is again better as compared to

that of the address-based scheme. Furthermore, the FPR of

the scheme with currency conversion is also better than that

of the scheme without currency conversion. Note that when

rHYIP = 0.5, FPR of the owner-based scheme with currency

conversion is still less than 5%.

D. MISCLASSIFIED NON-HYIP CLASSES

It is important to elaborate on what types of non-HYIP

Bitcoin addresses are mis-classified. FIGURE 11 shows the

breakdown of such mis-classified non-HYIP classes. These

results have been obtained through our experiments by count-

ing the mis-classified case, divided by the total cases, when

rHYIP = 0.5 and the owner-based scheme with currency

conversion is applied. From this figure, the top two mis-

classified classes are (i) Faucet and (ii) Gambling. We first

explain why so many faucets are recognized as HYIP. Faucet

is a service that offers small amounts of Bitcoin in return for

solving CAPTCHA, or clicking advertisements. To clarify

the relationship between HYIP and faucet, we verify how

much faucet Bitcoin addresses appear in the transactions

related with HYIP. As a result, 95 of 360 faucet addresses in

our dataset are found to transfer Bitcoin to HYIP operators’

Bitcoin addresses. From this fact it can be inferred that some

HYIP and faucet are operated by same persons. Indeed our

research has verified that several faucets are introduced on

the investor-based games section in bitcointalk.org. As far as

the results for the gambling are concerned, they also make

sense as essentially the characteristics of HYIP are similar to

that of gambling as both accept investment and return some.
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TABLE 6. The 10 highest information gains of the contributing features
calculated by the owner-based scheme. A higher value indicates higher
contribution to classification.

FIGURE 12. Density functions of the three highest contributing features
for HYIP and non-HYIP. (a) fTX. (b) rreceived. (c) rpayback.

E. CONTRIBUTING FEATURES

In this section, we discuss the effects on the classification

performance of the contributing features which can be used

to distinguish HYIP from non-HYIP. TABLE 6 lists the

information gains of the 10 highest contributing features cal-

culated by the owner-based scheme, where fTX is the highest

FIGURE 13. Boxplot schematic representation.

FIGURE 14. The distribution of freceived(·) for HYIP and non-HYIP.
(a) HYIP. (b) non-HYIP.

contributing feature together with other features, including

several freceived(·).
Next the density functions of the three highest con-

tributing features, which are fTX, rreceived, and rpayback, for

both HYIP and non-HYIP are presented in FIGURE 12.

From these results, it can be concluded that indeed fTX is

the most important contributing feature, as there is a clear

distinction in the density functions between HYIP and non-

HYIP cases where each has a distinct peak at fTX ≈ 2.0 and

0.125, respectively.

We then discuss the difference of the distribution of rreceived
by HYIP and non-HYIP. FIGURE 12(b) shows the density

function of rreceived by HYIP and non-HYIP. HYIP’s rreceived
is concentrated around 0.5. In contrast, that of non-HYIP is

widely distributed from 0.25 to 1.

FIGURE 12(c) shows the distribution of rpayback by HYIP

and non-HYIP. To focus on HYIP’s rpayback, a sharp peak

can be seen around 0.175, which is much larger than that

of non-HYIP. This clearly reflects the intrinsic nature of

HYIP, i.e. some small amount of Bitcoin is paid back to

investors.
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TABLE 7. List of HYIP operators’ Bitcoin addresses offered in [8] and
successfully detected with our classifier.

Since several freceived(·) are listed on the contributing fea-

tures in TABLE 6, we have also obtained the distribution of

freceived(·) for both HYIP and non-HYIP. For these distribu-

tions, since we want to observe the distributions of multi-

ple freceived(·), it is more convenient to present them using

the boxplot representation illustrated in FIGURE 13. In this

figure, the top and bottom of a box and a horizontal line in

the box indicate the range of quartiles, where each box is

structured with 75th percentile, 25th percentile, and median

(50th percentile), respectively. From the top and bottom of

a box, two lines are vertically drawn. The edges of these

lines indicate the boundaries of outliers. Hence, if the box is

‘‘pressed’’, i.e. the length of the box is rather short, it means

that such feature values are sharply distributed within a

class. In contrast, if the size of the box is large, it means

that such a feature value is widely distributed within a

class.

FIGURE 14 illustrates the distribution of freceived(·), from
where it can be clearly observed that the difference of the dis-

tribution of freceived(−3), freceived(−2), · · · , and freceived(1) by
HYIP and non-HYIP. HYIP typically receives Bitcoin rang-

ing from 10−1 to 102, while non-HYIP receives more widely

from 10−3 to 102. In particular, the median of freceived(−3)

of HYIP is much smaller than that of non-HYIP. In fact this

explains why the freceived(−3) is the most contributing feature

among freceived(·).

F. EXPERIMENTS USING RANDOMLY CHOSEN BITCOIN

ADDRESSES

In order to generalize the procedure for evaluating the

proposed classifier’s ability to detect HYIP operators’

Bitcoin addresses, we have run additional experiments with-

out considering our previous dataset collection. In partic-

ular, we tested our classifier against the HYIP address

list offered in [8] which consists of 32 HYIP operators’

Bitcoin addresses. For this evaluation, the RF classifier with

Ntree= 500 has been chosen. From a total of 32 HYIP

addresses listed in [8], the proposed methodology has suc-

cessfully detected 30 (see TABLE 7) achieving a HYIP

detection accuracy of 93.75%. This result is very encour-

aging and in fact verifies that the proposed methodology

can be effectively used for the forensics of Bitcoin-related

fraud.

V. CONCLUSIONS

In this paper, we have proposed a novel HYIP identifi-

cation methodology which accurately classifies whether or

not a specific Bitcoin address belongs to HYIP operators.

Apart from introducing and analyzing the performance of

a generic and accurate HYIP owners’ Bitcoin addresses

identification methodology, we have also proposed a novel

dataset collection approach, which significantly increases

the number of HYIP owners’ Bitcoin addresses obtained

through scraping the HYIP-related topics in the Bitcoin

forum. A solid identification methodology has been pro-

posed, which consists of several key ideas such as unit con-

version and a sampling approach, to realize the lightweight,

fast, and accurate identification. The idea behind the iden-

tification scheme is to extract the features of transac-

tions and train a machine learning classifier that outputs

whether a specific Bitcoin address is controlled by HYIP or

non-HYIP.

Through various systematic simulation experiments it has

been shown that the owner-based approach with currency

conversion achieves TPR (True Positive Rate) = 0.95 and

FPR (False Positive Rate) = 0.049. In addition, the pro-

posed sampling approach has been shown to be effectively

reducing the computation complexity while maintaining the

high classification accuracy. We have also explained the

reason why several features, e.g. fTX, freceived(10
−3), and

rreceived, contribute for identification by analyzing the distri-

bution of features by HYIP and non-HYIP. Finally, in order

to verify the proposed classifier’s ability to detect HYIP

operators’ Bitcoin addresses, our classifier has been tested

against a HYIP address list offered in [8] and proven that

its detection accuracy achieves 93.75%, which is a very

positive result for the viability of Bitcoin-related fraud

detection.
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